3 research outputs found

    Cry-Based Classification of Healthy and Sick Infants Using Adapted Boosting Mixture Learning Method for Gaussian Mixture Models

    Get PDF
    We make use of information inside infant’s cry signal in order to identify the infant’s psychological condition. Gaussian mixture models (GMMs) are applied to distinguish between healthy full-term and premature infants, and those with specific medical problems available in our cry database. Cry pattern for each pathological condition is created by using adapted boosting mixture learning (BML) method to estimate mixture model parameters. In the first experiment, test results demonstrate that the introduced adapted BML method for learning of GMMs has a better performance than conventional EM-based reestimation algorithm as a reference system in multipathological classification task. This newborn cry-based diagnostic system (NCDS) extracted Mel-frequency cepstral coefficients (MFCCs) as a feature vector for cry patterns of newborn infants. In binary classification experiment, the system discriminated a test infant’s cry signal into one of two groups, namely, healthy and pathological based on MFCCs. The binary classifier achieved a true positive rate of 80.77% and a true negative rate of 86.96% which show the ability of the system to correctly identify healthy and diseased infants, respectively

    Mini-batch learning of exponential family finite mixture models

    Get PDF
    Mini-batch algorithms have become increasingly popular due to the requirement for solving optimization problems, based on large-scale data sets. Using an existing online expectation-{}-maximization (EM) algorithm framework, we demonstrate how mini-batch (MB) algorithms may be constructed, and propose a scheme for the stochastic stabilization of the constructed mini-batch algorithms. Theoretical results regarding the convergence of the mini-batch EM algorithms are presented. We then demonstrate how the mini-batch framework may be applied to conduct maximum likelihood (ML) estimation of mixtures of exponential family distributions, with emphasis on ML estimation for mixtures of normal distributions. Via a simulation study, we demonstrate that the mini-batch algorithm for mixtures of normal distributions can outperform the standard EM algorithm. Further evidence of the performance of the mini-batch framework is provided via an application to the famous MNIST data set

    Speeding up the EM algorithm for mixture model-based segmentation of magnetic resonance images

    No full text
    Mixture models implemented via the expectation-maximization (EM) algorithm are being increasingly used in a wide range of problems in pattern recognition such as image segmentation. However, the EM algorithm requires considerable computational time in its application to huge data sets such as a three-dimensional magnetic resonance (MR) image of over 10 million voxels. Recently, it was shown that a sparse, incremental version of the EM algorithm could improve its rate of convergence. In this paper, we show how this modified EM algorithm can be speeded up further by adopting a multiresolution kd-tree structure in performing the E-step. The proposed algorithm outperforms some other variants of the EM algorithm for segmenting MR images of the human brain. (C) 2004 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved
    corecore