4,885 research outputs found

    Optimal control of nonlinear partially-unknown systems with unsymmetrical input constraints and its applications to the optimal UAV circumnavigation problem

    Full text link
    Aimed at solving the optimal control problem for nonlinear systems with unsymmetrical input constraints, we present an online adaptive approach for partially unknown control systems/dynamics. The designed algorithm converges online to the optimal control solution without the knowledge of the internal system dynamics. The optimality of the obtained control policy and the stability for the closed-loop dynamic optimality are proved theoretically. The proposed method greatly relaxes the assumption on the form of the internal dynamics and input constraints in previous works. Besides, the control design framework proposed in this paper offers a new approach to solve the optimal circumnavigation problem involving a moving target for a fixed-wing unmanned aerial vehicle (UAV). The control performance of our method is compared with that of the existing circumnavigation control law in a numerical simulation and the simulation results validate the effectiveness of our algorithm

    Deep Q-Learning for Self-Organizing Networks Fault Management and Radio Performance Improvement

    Full text link
    We propose an algorithm to automate fault management in an outdoor cellular network using deep reinforcement learning (RL) against wireless impairments. This algorithm enables the cellular network cluster to self-heal by allowing RL to learn how to improve the downlink signal to interference plus noise ratio through exploration and exploitation of various alarm corrective actions. The main contributions of this paper are to 1) introduce a deep RL-based fault handling algorithm which self-organizing networks can implement in a polynomial runtime and 2) show that this fault management method can improve the radio link performance in a realistic network setup. Simulation results show that our proposed algorithm learns an action sequence to clear alarms and improve the performance in the cellular cluster better than existing algorithms, even against the randomness of the network fault occurrences and user movements.Comment: (c) 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other work

    Socially Aware Motion Planning with Deep Reinforcement Learning

    Full text link
    For robotic vehicles to navigate safely and efficiently in pedestrian-rich environments, it is important to model subtle human behaviors and navigation rules (e.g., passing on the right). However, while instinctive to humans, socially compliant navigation is still difficult to quantify due to the stochasticity in people's behaviors. Existing works are mostly focused on using feature-matching techniques to describe and imitate human paths, but often do not generalize well since the feature values can vary from person to person, and even run to run. This work notes that while it is challenging to directly specify the details of what to do (precise mechanisms of human navigation), it is straightforward to specify what not to do (violations of social norms). Specifically, using deep reinforcement learning, this work develops a time-efficient navigation policy that respects common social norms. The proposed method is shown to enable fully autonomous navigation of a robotic vehicle moving at human walking speed in an environment with many pedestrians.Comment: 8 page

    Neural Machine Translation Inspired Binary Code Similarity Comparison beyond Function Pairs

    Full text link
    Binary code analysis allows analyzing binary code without having access to the corresponding source code. A binary, after disassembly, is expressed in an assembly language. This inspires us to approach binary analysis by leveraging ideas and techniques from Natural Language Processing (NLP), a rich area focused on processing text of various natural languages. We notice that binary code analysis and NLP share a lot of analogical topics, such as semantics extraction, summarization, and classification. This work utilizes these ideas to address two important code similarity comparison problems. (I) Given a pair of basic blocks for different instruction set architectures (ISAs), determining whether their semantics is similar or not; and (II) given a piece of code of interest, determining if it is contained in another piece of assembly code for a different ISA. The solutions to these two problems have many applications, such as cross-architecture vulnerability discovery and code plagiarism detection. We implement a prototype system INNEREYE and perform a comprehensive evaluation. A comparison between our approach and existing approaches to Problem I shows that our system outperforms them in terms of accuracy, efficiency and scalability. And the case studies utilizing the system demonstrate that our solution to Problem II is effective. Moreover, this research showcases how to apply ideas and techniques from NLP to large-scale binary code analysis.Comment: Accepted by Network and Distributed Systems Security (NDSS) Symposium 201
    • …
    corecore