15 research outputs found

    Challenges of developing a digital scribe to reduce clinical documentation burden.

    Full text link
    Clinicians spend a large amount of time on clinical documentation of patient encounters, often impacting quality of care and clinician satisfaction, and causing physician burnout. Advances in artificial intelligence (AI) and machine learning (ML) open the possibility of automating clinical documentation with digital scribes, using speech recognition to eliminate manual documentation by clinicians or medical scribes. However, developing a digital scribe is fraught with problems due to the complex nature of clinical environments and clinical conversations. This paper identifies and discusses major challenges associated with developing automated speech-based documentation in clinical settings: recording high-quality audio, converting audio to transcripts using speech recognition, inducing topic structure from conversation data, extracting medical concepts, generating clinically meaningful summaries of conversations, and obtaining clinical data for AI and ML algorithms

    The digital scribe.

    Full text link
    Current generation electronic health records suffer a number of problems that make them inefficient and associated with poor clinical satisfaction. Digital scribes or intelligent documentation support systems, take advantage of advances in speech recognition, natural language processing and artificial intelligence, to automate the clinical documentation task currently conducted by humans. Whilst in their infancy, digital scribes are likely to evolve through three broad stages. Human led systems task clinicians with creating documentation, but provide tools to make the task simpler and more effective, for example with dictation support, semantic checking and templates. Mixed-initiative systems are delegated part of the documentation task, converting the conversations in a clinical encounter into summaries suitable for the electronic record. Computer-led systems are delegated full control of documentation and only request human interaction when exceptions are encountered. Intelligent clinical environments permit such augmented clinical encounters to occur in a fully digitised space where the environment becomes the computer. Data from clinical instruments can be automatically transmitted, interpreted using AI and entered directly into the record. Digital scribes raise many issues for clinical practice, including new patient safety risks. Automation bias may see clinicians automatically accept scribe documents without checking. The electronic record also shifts from a human created summary of events to potentially a full audio, video and sensor record of the clinical encounter. Digital scribes promisingly offer a gateway into the clinical workflow for more advanced support for diagnostic, prognostic and therapeutic tasks

    Combining automatic speech recognition with semantic natural language processing in schizophrenia

    Get PDF
    Natural language processing (NLP) tools are increasingly used to quantify semantic anomalies in schizophrenia. Automatic speech recognition (ASR) technology, if robust enough, could significantly speed up the NLP research process. In this study, we assessed the performance of a state-of-the-art ASR tool and its impact on diagnostic classification accuracy based on a NLP model. We compared ASR to human transcripts quantitatively (Word Error Rate (WER)) and qualitatively by analyzing error type and position. Subsequently, we evaluated the impact of ASR on classification accuracy using semantic similarity measures. Two random forest classifiers were trained with similarity measures derived from automatic and manual transcriptions, and their performance was compared. The ASR tool had a mean WER of 30.4%. Pronouns and words in sentence-final position had the highest WERs. The classification accuracy was 76.7% (sensitivity 70%; specificity 86%) using automated transcriptions and 79.8% (sensitivity 75%; specificity 86%) for manual transcriptions. The difference in performance between the models was not significant. These findings demonstrate that using ASR for semantic analysis is associated with only a small decrease in accuracy in classifying schizophrenia, compared to manual transcripts. Thus, combining ASR technology with semantic NLP models qualifies as a robust and efficient method for diagnosing schizophrenia.</p
    corecore