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Combining automatic speech recognition with semantic natural language 
processing in schizophrenia 
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A B S T R A C T   

Natural language processing (NLP) tools are increasingly used to quantify semantic anomalies in schizophrenia. 
Automatic speech recognition (ASR) technology, if robust enough, could significantly speed up the NLP research 
process. In this study, we assessed the performance of a state-of-the-art ASR tool and its impact on diagnostic 
classification accuracy based on a NLP model. We compared ASR to human transcripts quantitatively (Word 
Error Rate (WER)) and qualitatively by analyzing error type and position. Subsequently, we evaluated the impact 
of ASR on classification accuracy using semantic similarity measures. Two random forest classifiers were trained 
with similarity measures derived from automatic and manual transcriptions, and their performance was 
compared. The ASR tool had a mean WER of 30.4%. Pronouns and words in sentence-final position had the 
highest WERs. The classification accuracy was 76.7% (sensitivity 70%; specificity 86%) using automated tran-
scriptions and 79.8% (sensitivity 75%; specificity 86%) for manual transcriptions. The difference in performance 
between the models was not significant. These findings demonstrate that using ASR for semantic analysis is 
associated with only a small decrease in accuracy in classifying schizophrenia, compared to manual transcripts. 
Thus, combining ASR technology with semantic NLP models qualifies as a robust and efficient method for 
diagnosing schizophrenia.   

1. Introduction 

Recently, natural language processing (NLP) models have been 
increasingly used to quantify speech incoherence in schizophrenia- 
spectrum disorders (SSD) (Corcoran et al., 2018; Elvevåg et al., 2007; 
Tang et al., 2021; Voppel et al., 2021). Although these methods are 
highly accurate and thus hold extensive potential for future clinical 
applications (Corcoran and Cecchi, 2020; de Boer et al., 2018), to date, 
participant interviews have been manually transcribed, which is a 
dedicated, extremely time-consuming, and hence high-cost process. 

Automatic speech recognition (ASR) technology allows for the quick 
conversion of speech signal into text with human-like performance level 
in optimal settings (Kodish-Wachs et al., 2018). ASR could therefore 
greatly speed up the NLP research process and pave the way to devel-
oping actual clinical tools. Additionally, ASR technology would facili-
tate the remote assessment of patient symptoms through language and 
speech data, potentially increasing the frequency of monitoring and 
enabling more timely interventions (Insel, 2017). 

Although ASR can reach human-like performance levels in optimal 

settings such as human-machine interface tasks (e.g., automatic call 
processing) or prepared speech (e.g., political speeches), the automatic 
transcription of conversational speech has generated less satisfactory 
results (Chiu et al., 2018; Kodish-Wachs et al., 2018). These challenges 
are due to various factors such as background noise, type and method of 
recording device, speakers’ accents and disfluencies (e.g., false starts, 
repetitions, filled pauses) (Radha and Vimala, 2012). In addition, 
acoustic differences between male and female voices are likely to affect 
speech intelligibility and, in turn, ASR performance. For example, 
women were shown to have a greater fundamental frequency range than 
men, which was correlated with higher overall speech intelligibility 
(Bradlow, Torretta & Pisoni, 1996). Similarly, sex-specific ASR yielded 
better recognition results for women as compared to men (Adda-Decker 
and Lamel, 2005). The accuracy of ASR may be further reduced when 
applied to conversational speech from individuals with SSD because 
they may speak at a slower rate, have reduced intonation, and produce 
longer pauses (Parola et al., 2020). 

Previous research showed that ASR can be used for the automated 
transcription of oral retellings of stories from individuals with SSD, 
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substance abuse disorders, and affective disorders (Chandler et al., 
2019; Holmlund et al., 2020). Although ASR transcripts in these studies 
had an overall Word Error Rate (WER) ranging between 10% and 23%, 
these errors did not affect the performance of the final rating and clas-
sification models, which remained highly correlated with results ob-
tained from manually transcribed recordings. Similarly, despite an 
average WER of 36%, most ASR-derived coherence measures from oral 
descriptions of participants’ auditory hallucinations retained a moder-
ate to high correlation with manual-transcript derived measures of 
coherence (Xu et al., 2022). A study by Corcoran & Cecchi (2020) sug-
gested that up to a 25% WER in automated transcriptions can be toler-
ated for language analyses in psychiatry applications, because in 
contrast to other fields such as finance, they rely on the statistical 
properties of whole samples, hence higher error rates have a lower 
impact on the final outcome. 

However, despite these results indicating that ASR errors do not 
affect the final performance of language models, a more in-depth ex-
amination of the type of ASR errors is essential to enhance the 
explainability of these findings and elucidate what factors influence 
specific classification tasks. When we take into consideration models of 
semantic similarity, we might indeed expect that not all ASR errors are 
relevant in the same manner. For example, in the sentence ‘She was 
happy to win the prize’ the function words ‘she’,’was’,’to’,‘the’ play 
grammatical roles, while the content words ‘happy’,‘win’,‘prize’ convey 
the most important semantic information, i.e., the meaning; which is the 
focus of semantic NLP research. 

This knowledge will aid to detailed understanding of the current 
limits of ASR in speech analysis and pave the way for implementing ASR 
applications in clinical settings. 

In this work, we employ both quantitative and qualitative methods to 
investigate the performance of a state-of-the-art ASR tool and its influ-
ence on classification accuracy when applied to the semi-spontaneous 
speech of patients with SSD and healthy controls. First, we assess the 
performance of the ASR tool compared to that of “gold standard” human 
transcriptions quantitatively (using the WER) and qualitatively by 
analyzing the most frequently mistaken words, their grammatical parts 
of speech (POS), and their linguistic position. Subsequently, we evaluate 
the impact of ASR on diagnostic classification accuracy in SSD. In pre-
vious work by our group, we used semantic similarity measures on 
manual transcripts to classify patients with SSD and healthy controls 
(Voppel et al., 2021). Here, we replicate these analyses on a larger 
sample, and compare the classification accuracy of manual transcripts to 
that of ASR-derived transcripts. Because previous research suggested sex 
to have a major impact on ASR accuracy, we compare the performance 
in men and women separately. 

2. Methods 

2.1. Subjects 

Speech recordings were obtained from a total of 163 participants, 
namely 93 patients with SSD and 70 healthy controls between 2015 and 
2021 at the University Medical Center Utrecht. To be eligible for the 
study, participants had to be at least 18 years old, speak Dutch as their 
native language, and have no uncorrected hearing impairment or speech 
disorder, such as stuttering. Bilingual speakers were included if Dutch 
was (one of) their dominant language(s). Patients were included if they 
met criteria for a DSM-IV diagnosis of: 295.x (schizophrenia, schizo-
phreniform disorder, schizoaffective disorder) or 298.9 (psychotic dis-
order not otherwise specified). The diagnosis was established in all 
patients by their treating psychiatrist and was confirmed by a trained 
researcher using the Comprehensive Assessment of Symptoms and His-
tory interview (CASH) (Andreasen et al., 1992) or the Mini-International 
Interview (MINI) (Overbeek and Schruers, 2019). The severity of psy-
chopathology was measured in patients with the Positive and Negative 
Syndrome Scale (PANSS) (Kay et al., 1987). Participants in the control 

group were included provided that they had no mental health com-
plaints and no family history of psychotic symptoms. Past episodes of 
depression or anxiety disorders in full remission were not an exclusion 
criterion. Prior to enrollment, all individuals provided written informed 
consent. Participants received a small monetary award for participation 
(10 euros). The study was approved by the ethical review board of the 
University Medical Center Utrecht. 

2.2. Language data acquisition 

Spontaneous speech was elicited by a trained researcher using a 
semi-structured interview of approximately 15 min. To avoid biases in 
participants’ responses, subjects were told that the study concerned the 
evaluation of their spoken language only at the end of the interview 
process. The interview consisted of open-ended questions about 
‘neutral’, everyday topics (e.g., ‘Which Dutch TV shows do you often 
watch? And which do you hate? Why?’); topics that could trigger an 
emotional response (e.g., ‘health’, ‘quality of life’) were avoided to 
control for possible variations in language caused by the topics covered. 
The questions were asked in a semi-randomized order; if a patient 
refused to answer a question, the interviewer would ask the following 
question. This interview procedure was applied to both control and 
patient participants. For a full list of questions, see Table S1 in the 
supplementary material. 

2.3. Speech recording, pre-processing, and manual transcription 

Two AKG-C544l head-worn cardioid microphones were used to re-
cord the interview, one for the participant and one for the interviewer. 
To minimize the alteration of vocal loudness, the distance between 
mouth and microphone was kept as stable as possible (2 cm). Speech was 
digitally recorded onto a Tascam DR40 solid-state recording device at a 
sampling rate of 44,100 kHz with 16-bit quantization, using two 
different channels. The PRAAT software (Boersma, 2001) was used to 
remove cross-talk (i.e., the interviewer’s speech on the participants’ 
audio channel). For this purpose, the function ‘annotate to text grid si-
lences’ was applied to the interviewer’s channel with the following 
settings: minimum pitch 100 Hz, time step 0.0, silence threshold − 30.0 
dB, minimum silence duration 1.0 s, minimum sounding duration 0.1 s. 
This function selected all speech segments where the interviewer was 
silent. These speech segments were subsequently selected on the par-
ticipant’s channel and concatenated into a new audio file that only 
included the participant’s speech signal. 

The digital recordings were manually transcribed by researchers who 
were blind to the participant condition using the CLAN–CHILDES 
transcription guidelines (Brundage and Bernstein Ratner, 2018; Mac-
Whinney, 2000). Once transcribed, interviews were converted to 
plaintext (e.g., no punctuations, no capitalization). Hesitations (e.g., 
uhm) and interjections (e.g., yes/no) were discarded to facilitate sub-
sequent comparison with ASR-derived transcripts. Contracted words 
were converted into their full form (e.g., m’n’-mijn). 

2.4. Automatic speech recognition (ASR) 

ASR was applied to the audio files using the Kaldi NL Speech 
Recognition Toolkit (version 0.4.1) (Povey et al., 2011). Kaldi NL is a 
speech recognition system trained on the Corpus Gesproken Nederlands 
(CGN; Corpus Spoken Dutch) (van Eerten, 2007) and it is composed of 
an acoustic model, a lexicon, and a language model. Since 
domain-specific ASR tools have been shown to perform better than 
generic ones (Dingliwal et al., 2021), we used the KALDI model based on 
daily conversations, which matched the specific domain of our audio 
data (i.e., neutral-topic interviews). In order to determine whether 
improving audio quality led to better ASR performance, we tested noise 
reduction, sound intensity normalization, and alternate splitting on a 
subsample of the audiofiles using PRAAT (Boersma, 2001). However, 
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none of these pre-processing steps improved the word error rate and 
therefore we used the original unmodified files as input for the ASR 
analysis (see supplementary methods). The ASR transcripts were sub-
sequently cleaned to plaintext (e.g., no punctuations, no capitalization). 
Hesitations and interjections were removed. Contracted words were 
converted into their full form (e.g., m’n’-mijn). 

2.5. Quantitative error analysis 

The Word Error Rate (WER) was used to quantitatively assess the 
performance of the ASR system by comparing automatic transcriptions 
with manual transcriptions, which we considered the “gold standard”. 
The WER was calculated in Python (version 3.9) (Van Rossum and 
Drake, 2009) with the “Symbl.ai” utility (https://github.com/symblai/ 
speech-recognition-evaluation), by computing a Levenshtein align-
ment between two-word sequences i.e., the minimum amount of edit 
operations that must be performed on a string to obtain a target string. 
To obtain the WER, we divided the number of insertions, substitutions, 
and deletions by the total number of words per interview. 

2.6. Qualitative error analysis 

We qualitatively characterized ASR errors based on grammatical 
part-of-speech classes (POS), most frequently misrecognized words, and 
their linguistic position within a sentence. Part-of-speech labels were 
obtained in Python (version 3.9) (Van Rossum and Drake, 2009) using 
the CLAM Client API version of Frog (version 0.24) (Van der Sloot et al., 
2018). The part-of-speech tagger uses 12 POS categories, which were 
derived from the 316-tag set of the Corpus Gesproken Nederlands 
(Table S1) (van Eynde, 2004). Subsequently, we investigated the rela-
tive position in a sentence for each ASR error by dividing the index of 
each error in a sentence by the total sentence length. 

2.7. Classification performance using semantic similarity analysis 

Semantic similarity analysis was performed separately for automated 
transcripts and manual transcripts. Semantic similarity was computed 
using a 300-dimensional Word2vec model (Mikolov et al., 2013), which 
was trained on a large text corpus from the Corpus Gesproken Neder-
land; words were then converted into vectors of numbers (i.e., word 
embeddings) (for a more extensive description of how the model was 
trained, see Voppel et al., 2021). Once words were vectorized, similarity 
measures between vectors were calculated. We employed the similarity 
measures that were found most informative in earlier analyses, which 
included minimum similarity, variance of similarity, mean similarity, 
and maximum similarity (Corcoran et al., 2018; de Boer et al., 2018; 
Voppel et al., 2021). 

Following these studies, a moving window size approach of 5 to 10 
words was applied. This meant that a single similarity value per window 
was generated, by calculating and averaging the similarity between a 
word and all of its nearby words inside that window. The window was 
then slid to the next word, a new similarity value was calculated, and so 
on until the interview was complete. 

2.8. Statistical analyses 

Statistical analyses were performed with R (version 4.1.2) (R Core 
Team, 2020). Two-tailed independent t-tests were performed to test for 
group differences in age, years of education, and parental years of ed-
ucation. A Chi-Square goodness of fit test was carried out to test whether 
the proportion of males and females was equal in the patient and in the 
control group. A non-parametric Kruskal-Wallis one-way analysis of 
variance (ANOVA) was conducted to evaluate differences in WER be-
tween groups and sexes. Wilcoxon’s approach (non-parametric) was 
used to test if the difference in effect sizes of WER between the groups 
was significant (Tomczak and Tomczak, 2014). Post-hoc Mann-Whitney 

U tests were used to compare word deletion rate, word substitution rate, 
and word insertion rate between groups and sexes. Paired samples 
Wilcoxon’s signed-rank tests were performed to compare the distribu-
tions of semantic similarity metrics between ASR-derived transcripts vs. 
manual transcripts. Non-parametric two-tailed Spearman bivariate 
correlations were performed to investigate associations between WER, 
age, education, and the severity of patients’ psychotic symptoms 
(PANSS). To control for multiple comparisons in correlation tests, False 
Discovery Rate (FDR) was employed. Alpha was set to 0.05 for all 
analyses. 

Two Random Forest Classifiers (RFC) (Breiman, 2001) were built to 
discriminate controls from patients with SSD based on similarity mea-
sures derived from automatic and manual transcripts (Fig. 1). During 
model training 10-fold cross-validation was performed, which randomly 
divides the data set into 10 separate folds. 9 subsamples of the data per 
fold were used for training and 1 for testing. This process was iterated 10 
times, so that the model was tested each time on a different data sub-
sample. Downsampling was applied to ensure equal distribution be-
tween classes (patients vs. controls) per fold. We calculated Gini 
importance scores to compare the relative ranking of semantic similarity 
measures in the ASR and manual classifiers. McNemar’s test was per-
formed to verify whether the diagnostic accuracy of the two classifiers 
significantly differed based on the type of transcript used. 

3. Results 

3.1. Demographics 

Clinical and demographic information is shown in Table 1. Patients 
and controls differed in their education level, although their parental 
educational level did not differ significantly. This difference was ex-
pected, as psychosis frequently develops throughout scholastic years 
and may therefore impact (higher) educational achievements. Patients 
had an average PANSS total score of 51.1 (with a standard deviation of 
14.5), indicating that most of them were in remission. 

3.2. Quantitative error analysis 

The ASR tool had an overall WER of 30.4%. The Kruskal-Wallis test 
revealed that the WER significantly differed between groups (H(1)=
7.438, p=.006), with patients having a WER of 32.3% and controls of 
27.8% (Fig. 2). The difference in effect size between the groups was 
estimated to be 0.22, indicating a significant difference in effect size 
since the confidence intervals calculated with the bootstrap method 
(1000 iterations) did not include the value 0 [0.08; 0.36]. Automated 
transcripts of patients with SSD had a higher rate of word deletion and 
substitution than controls’, while the rate of word insertion did not differ 
between the two groups (Table S3). 

3.2. Association with demographics and symptomatology 

No significant association was found between WER and participants’ 
age, education, and parental education (all p>.05). After FDR correc-
tion, correlational analyses between WER and psychotic symptoms in 
patients with SSD indicated that the WER was significantly associated 
with PANSS total, general, positive, and negative subscales (Table 2). 

Analysis of sex differences in WER (all men compared to all women) 
indicated that sex significantly impacted WER (H(1) = 19.019, p=.009), 
with men reaching a WER of 32.7% and women a WER of 25.5% (Fig. 3). 
Post-hoc analyses showed that men had a greater word deletion rate (W 
= 3846, p<.001) and a higher word substitution rate (W = 4403, 
p=.002) than women, with no significant difference in the rate of word 
insertion (W = 3170.5, p=.366). Analyses of sex differences in WER 
within the patient and the control group revealed that sex had a sig-
nificant effect on the WER in transcripts of both the patients (H(1) =
11.307, p<.001) and the controls (H(1) = 7.742, p=.005). Healthy men 
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had a WER of 29.7% and healthy women a WER of 24.4%; the difference 
in mean WER between the sexes was larger in the patients, with male 
patients reaching a WER of 34.8% and female patients a WER of 26.5%. 
Further post-hoc tests revealed that transcripts of male patients with SSD 
had a significantly higher word deletion rate (W = 1258, p=.004) and a 
higher word substitution rate (W = 1391, p=.039) compared to tran-
scripts of female patients with SSD, while there was no difference in 
word insertion rate (W = 862, p=.691). In the control group, transcripts 
of healthy men contained more word substitution errors (W = 829, 
p=<0.001) than healthy women, whereas no difference in word in-
sertions (W = 643, p=.098) and deletions (W = 629, p=.142) was found. 
For a more in-depth examination of the effect of sex on WER, see sup-
plemental methods & results. 

3.3. Qualitative error analysis 

Grammatical analysis of ASR errors revealed that, out of the total 
number of errors, pronouns were the most mistaken part-of-speech class 

(26.1%), followed by verbs (18.3%), adverbs (15.4%), and common 
nouns (12.7%). Adjectives, prepositions, conjunctions, and articles were 
recognized by the ASR with similar accuracy, with respectively 7.6%, 
6.8%, 6.1, and 5.1% error rates. Errors in proper nouns accounted for 
1.2% of the total error rate, while numerals were mistaken with a 0.7% 
error rate. Compared to controls, patients’ ASR transcripts had a 
significantly higher error rate for verbs (p=.045). When examining the 
top 20 errors in the automated transcripts of individuals with SSD, ‘I/Ik’ 
was found to be the most frequently misrecognized word, followed by 
‘that/dat,die’, ‘the/het/de’, and ‘and/en’ (Fig. 4). A similar pattern was 
observed in the ASR-derived transcripts of healthy participants 
(Figure S1). Analysis of ASR errors’ linguistic position revealed that 
substitutions, deletions, and insertions were more likely to occur at the 

Fig. 1. Overview of the methodological pipeline.  

Table 1 
Demographic characteristics of patients with SSD and healthy controls.   

SSD patients (n 
= 93) 

Healthy Controls 
(n = 70) 

Test statistics 

Age (years) 33.8 ± 12.77 35.7 ± 15.29 t = 0.848, p =
.398 

Female sex, n (%) 28 (30.11%) 25 (35.71%) χ2 = 0.843, p 
= .359 

Education (years) 12.8 ± 2.41 14.7 ± 2.25 t = 5.087, p =
.009 

Parental Education 
(years) 

12.3 ± 2.86 12.2 ± 3.09 t = 0.028, p =
.978 

Illness duration (years) 8.5 ± 10.76   
Diagnosis    

Psychosis NOS 32(34%)   
Schizoaffective 
disorder 

19(20%)   

Schizophrenia 40(43%)   
Schizophreniform  
Disorder 

2(2%)   

PANSS total 51.1 ± 14.53   
Positive 11.8 ± 4.67   
Negative 12.8 ± 4.84   
General 26.5 ± 7.99   

Legend. Reported values are means ± SD or n (%). N=sample size, SD=standard 
deviation, PANSS=positive and negative syndrome scale, NOS=not otherwise 
specified. 
Indicates significance at the level p<.01. 

Fig. 2. Word Error Rate (WER) in transcripts of healthy controls and patients 
with SSD. 
Legend. ** Indicates significance at the level p<.010. 
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end of a sentence. The probability of an error happening at the start of a 
sentence was the lowest (Figure S2). 

3.4. Semantic similarity analysis and classification 

The RFC distinguished patients with SSD from controls with a mean 
accuracy of 76.7% (sensitivity 70%; specificity 86%) using automated 
transcriptions and 79.8% (sensitivity 75%; specificity 86%) based on 
manual transcriptions. The area under the curve-receiver operating 
characteristic (AUC-ROC) was 0.80 for the manual RFC, with a 
0.73–0.87 95% confidence interval; and 0.79 for the automatic RFC, 
with a 0.72–0.86 95% confidence interval. McNemar’s test revealed that 
the two classifiers did not statistically differ in their performance 
(p=.791), which indicates that they had a similar proportion and type of 
errors. 

The distribution of semantic similarity measures in a sentence-length 
window of 5 words significantly differed between ASR transcripts and 
manual transcripts, including mean similarity (V = 89, p=<0.001), 
maximum similarity (V = 4500.5, p=.021), variance similarity (V =
3950, p=<0.001), and minimum similarity (V = 3287, p=<0.001). 

Similar results were found for the distribution of similarity measures in 
windows across the 6–10 word range (Supplementary Table S4). The 
manual and ASR classifiers shared 80% of the top 10 semantic similarity 
measures, indicating that differences in distribution only partially 
affected how useful similarity features were at predicting a schizo-
phrenia diagnosis (Fig. 5). 

4. Discussion 

The aim of the current study was to quantitatively and qualitatively 
assess the performance of a state-of-the-art ASR tool and its impact on 
diagnostic classification in SSD using a semantic NLP model. Automated 
transcripts could be used to classify patients with SSD with an accuracy 
of 77%, compared to the 80% accuracy achieved with manual tran-
scripts. When comparing the models, this drop in accuracy was not 
significant. This indicates that despite relatively high WERs, the final 
classification accuracy of the semantic NLP model remained high, which 
could be explained by the fact that most ASR errors occurred in function 
words (e.g., pronouns), whereas semantic NLP models rely more on 
content words (e.g., nouns) when calculating coherence measures. 

4.1. Quantitative error analysis 

In this study, we showed that with ASR there was an overall WER of 
30.4%, with poorer performance in patients with SSD (32.3%) than in 
healthy controls (27.8%) (Holmlund et al., 2020; Moro-Velazquez et al., 
2019). The higher WERs in patients’ transcriptions were due to a higher 
word deletion and substitution rate, which may be associated with 
phonetic-acoustic differences in the speech of patients with SSD. 
Compared to controls, patients with SSD tend to speak less, at a slower 
rate, with longer pauses, and less pitch variability, factors that may 
cause the ASR to repeatedly miss or misrecognize words (de Boer et al., 
2021; Martínez-Sánchez et al., 2015). Furthermore, our study supports 
previous research showing a lower ASR error rate in healthy women 
compared to healthy men (Adda-Decker and Lamel, 2005), and extends 
these results to speech from patients with SSD. In healthy individuals, 
the differences in ASR results may be explained by the fact that women 
have a more standard-like pronunciation compared to men, who tend to 
articulate less carefully and have a higher number of pauses and repe-
titions (Adda-Decker and Lamel, 2005). On the other hand, the larger 
sex differences in WER found among patients with SSD relative to con-
trols may be related to sex differences in SSD symptoms. Men with SSD 
have on average more negative symptoms than women with SSD (Bar-
ajas et al., 2010), which have a disadvantageous impact on speech 
(Tahir et al., 2019), possibly resulting in higher WERs. Indeed, (nega-
tive) symptom severity of both male and female patients correlated 
significantly with the WER. Overall, these results confirm our initial 
hypothesis and results of prior research indicating that patients’ and 
men’s speech are less accurately recognized by the ASR tool than 
healthy controls’ and women’s speech, respectively. 

4.2. Qualitative error analysis 

Pronouns were the most difficult part of speech to recognize by the 
ASR tool. A closer analysis of the 20 most mistaken words indicated that, 
in both patients and controls’ ASR transcriptions, these errors all belong 
to the class of function words, including pronouns (e.g., I/Ik, my/mijn), 
articles (e.g., the/het,de, a/een), and auxiliary verbs (e.g., is/is, was/ 
was). We therefore extended previous findings showing that function 
words were more likely to be misrecognized by ASR tools than content 
words (Goryainova et al., 2014; Santiago et al., 2015) to automated 
transcripts from patients with SSD. One possible explanation for this 
result is that, with Dutch being a stress-timed language, content words 
are typically stressed in speech whereas function words are often un-
stressed and pronounced in a contracted form, making the latter more 
difficult for the ASR’s acoustic model to recognize (Cutler and Foss, 

Table 2 
Correlations between quantitative error metrics and symptom severity in SSD.   

PANSS 
Negative 

PANSS 
Positive 

PANSS 
General 

PANSS 
Total 

Word error rate 
(WER) 

0.295** 0.326* 0.320** 0.412** 

Word insertion rate 
(WIR) 

0.154 0.191 0.076 0.154 

Word deletion rate 
(WDR) 

0.265* 0.286* 0.328** 0.333** 

Word substitution 
rate (WSR) 

0.303* 0.310** 0.353** 0.395* 

Correlation coefficients are Spearman’s rho. Legend. PANSS=Positive and 
Negative Syndrome Scale. 

* Indicates significance at the level of p <0.050,. 
** p <0.010. 

Fig. 3. Word Error Rate (WER) in transcripts of men and women. 
Legend. *** Indicates significance at the level p<.001. 
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1977). Moreover, function words are usually short and subject to 
co-articulation, further reducing their acoustic-phonetic predictability 
(Harper and Maxwell, 2008). 

From a semantic viewpoint, function words contribute to a lesser 
extent to the meaning of a sentence, because they are not associated with 
real-world identifiable concepts and primarily serve grammatical pur-
poses. Although the mean WER was higher than 25%, errors did not 
significantly reduce the diagnostic value of semantic similarity mea-
sures, which can be explained by the fact that NLP tools rely more on 
content words, such as nouns, adjectives, verbs, and adverbs when 
calculating word embedding representations (Lenci, 2018). 

The distribution of semantic similarity measures differed based on 
the type of transcript (ASR-derived vs. manual). This is likely due to the 

high number of word deletions and substitutions occurring in the 
automatic transcriptions, which caused differences in the calculation of 
word embeddings and, in turn, cosine similarity per window. However, 
these changes in the distribution of semantic similarity features between 
automated vs. manual transcripts had minimal impact on their relative 
importance in the RFCs, as evidenced by an 80% overlap between the 
top 10 semantic similarity features in the two classifiers. Thus, this study 
suggests that semantic NLP models can tolerate WERs up to 30% on 
specific classification tasks. For future clinical applications, the 3% ab-
solute drop in performance may still necessitate manual correction of 
ASR errors or the development of better ASR tools. High diagnostic ac-
curacy is among the most important premises for the future application 
of automated language assessments in clinical practice. 

Fig. 4. Top 20 ASR errors in the transcripts of patients with SSD. 
Dutch translation: ‘I-Ik’, ’that-die,dat’, ’the-het,de’, ’and-en’, ’a-een’, ’there-er,daar’, ’well-wel’, ’my-mijn’, ’but-maar’, ’thus-dus’, ’then-dan’, ’is-is’, ’was-was’, 
’have-heb’, ’in-in’, ’not-niet’, ’you-je’, ’so-zo’, ’am-ben’, ’when-toen’. 

Fig. 5. Top 10 semantic similarity features of Random Forest Classifiers trained on ASR-derived transcripts and manual transcripts.  
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In addition to semantic similarity between words, emerging research 
has shown that connectives-related similarities (Corona-Hernández 
et al., 2022) and referential meaning as measured by linguistic devices 
such as pronouns and determiners (Palominos et al., 2023) are partic-
ularly informative for assessing coherence in the speech of patients with 
SSD. Based on our current findings, we believe that the ASR tool is not 
robust enough yet to support such grammatical analyses, as evidenced 
by the highest pronoun error rate and the most common mistaken 
words, which included various determiners (that/dat, the/het,de), and 
connectives (and/en, thus/dus). 

The linguistic position of ASR errors revealed that deletion, substi-
tution, and insertion errors occurred most frequently at the end of a 
sentence and least frequently at the beginning, with a roughly uniform 
distribution across a sentence. These results are in contrast with those of 
Goldwater et al. (2010) and Markl and Lai (2021) who found that words 
at the beginning of a turn have the highest error rate. This discrepancy 
could be related to a different ASR system (e.g., Google Cloud 
Speech-to-Text versus Kaldi) or, alternatively, to a different type of 
speaking task (e.g., self-recorded audio) or language employed in these 
studies. The peak of errors we observed in sentence-final position could 
be linked to falling intonation and lower speech intensity, common in 
most languages at the end of a sentence (Carranza et al., 2014), or the 
fact that speakers often lower their voices (i.e., loudness) at the end of a 
turn (Gravano and Hirschberg, 2011), both of which could affect ASR 
performance. The fact that the most mistaken word ’I/Ik’ rarely occurs 
at the end of a sentence was assumed to be unrelated to the highest rate 
of error in sentence-final position but could rather be explained by the 
fact that it is one of the most widely used words in the Dutch language. 

4.3. Limitations and final remarks 

Some limitations to our study should be considered when inter-
preting the results. First, we emphasize the need to replicate these re-
sults in a larger cohort, across languages, and settings. While this study 
used high-quality speech recordings collected in a research setting, 
further research should test whether these findings are generalizable to 
speech of diverse quality obtained in more naturalistic environments (e. 
g., the participant’s home). Second, we evaluated the use of ASR to 
support semantic similarity analysis only, which does not guarantee its 
validity for other types of NLP techniques, e.g., analysis of connectives. 
Third, although the final classification model in our sample was not 
significantly impacted by WERs over 25%, a 3% reduction in diagnostic 
accuracy is an important loss for clinical utility; lower error rates should 
be aimed for, especially in light of future clinical applications. ASR 
technology is rapidly developing, indeed providing opportunities to 
improve transcript accuracy; tools such as Whisper (https://openai. 
com/blog/whisper/), a novel open-source multilingual ASR tool, show 
improved robustness to noise and speakers’ accents (Radford et al., 
2022) and could play a role in enhancing the validity and clinical 
feasibility of NLP methods for automatically predicting and diagnosing 
SSD. 

In conclusion, our analysis helps understand the transcription accu-
racy reachable with a state-of-the-art ASR tool in patients with SSD and 
demonstrates that using automated transcripts instead of manual tran-
scripts, despite high WERs, does not significantly reduce diagnostic ac-
curacy based on a semantic NLP model. Our study therefore suggests 
that the combination of ASR technology and semantic NLP models is a 
viable, robust, and efficient method for diagnosing schizophrenia- 
spectrum disorders. 
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