28 research outputs found

    A new weighted NMF algorithm for missing data interpolation and its application to speech enhancement

    Get PDF
    In this paper we present a novel weighted NMF (WNMF) algorithm for interpolating missing data. The proposed approach has a computational cost equivalent to that of standard NMF and, additionally, has the flexibility to control the degree of interpolation in the missing data regions. Existing WNMF methods do not offer this capability and, thereby, tend to overestimate the values in the masked regions. By constraining the estimates of the missing-data regions, the proposed approach allows for a better trade-off in the interpolation. We further demonstrate the applicability of WNMF and missing data estimation to the problem of speech enhancement. In this preliminary work, we consider the improvement obtainable by applying the proposed method to ideal binary mask-based gain functions. The instrumental quality metrics (PESQ and SNR) clearly indicate the added benefit of the missing data interpolation, compared to the output of the ideal binary mask. This preliminary work opens up novel possibilities not only in the field of speech enhancement but also, more generally, in the field of missing data interpolation using NMF

    An SoC Architecture for Real-Time Noise Cancellation System Using Variable Speech PDF Method

    Get PDF
    This paper presents the architecture and implementation of system-on-chip (SoC) for realtime noise cancellation system which exploits variable speech probability density function (PDF) and maximum a posteriori (MAP) estimation rule as noise cancelling algorithm. The hardware software co-design approach is employed to achieve real-time performance while considering ease of implementation and design flexibility. The software module utilizes LEON SPARC-v8 and FPU co-prosessor as processing unit. The AMBA based Hanning Filter and FFT/IFFT are utilized as processing accelerator modules to increase system performance. The FFT/IFFT module employs custom Radix-2^2 Single Delay Feedback (R2^2SDF). In order to deliver high data transfer rate between buffer and hardware accelerators, the DMA controller is incorporated. The overall system implementation utilizes 18,500 logic elements and consumes 21.87 kB of memory. The system takes only 0.69 ms latency which is appropriate for real-time application. An FPGA Altera DE2-70 is used for prototyping with both algorithms and the noise cancellation function have been verified

    A feedback approach to over complete BSS and its learning algorithm

    Get PDF
    金沢大学理工研究域 電子情報学
    corecore