147 research outputs found

    Dictionary Learning-Based Speech Enhancement

    Get PDF

    Notes on the use of variational autoencoders for speech and audio spectrogram modeling

    Get PDF
    International audienceVariational autoencoders (VAEs) are powerful (deep) generative artificial neural networks. They have been recently used in several papers for speech and audio processing, in particular for the modeling of speech/audio spectrograms. In these papers, very poor theoretical support is given to justify the chosen data representation and decoder likelihood function or the corresponding cost function used for training the VAE. Yet, a nice theoretical statistical framework exists and has been extensively presented and discussed in papers dealing with nonnegative matrix factorization (NMF) of audio spectrograms and its application to audio source separation. In the present paper, we show how this statistical framework applies to VAE-based speech/audio spectrogram modeling. This provides the latter insights on the choice and interpretability of data representation and model parameterization

    Blind source separation using statistical nonnegative matrix factorization

    Get PDF
    PhD ThesisBlind Source Separation (BSS) attempts to automatically extract and track a signal of interest in real world scenarios with other signals present. BSS addresses the problem of recovering the original signals from an observed mixture without relying on training knowledge. This research studied three novel approaches for solving the BSS problem based on the extensions of non-negative matrix factorization model and the sparsity regularization methods. 1) A framework of amalgamating pruning and Bayesian regularized cluster nonnegative tensor factorization with Itakura-Saito divergence for separating sources mixed in a stereo channel format: The sparse regularization term was adaptively tuned using a hierarchical Bayesian approach to yield the desired sparse decomposition. The modified Gaussian prior was formulated to express the correlation between different basis vectors. This algorithm automatically detected the optimal number of latent components of the individual source. 2) Factorization for single-channel BSS which decomposes an information-bearing matrix into complex of factor matrices that represent the spectral dictionary and temporal codes: A variational Bayesian approach was developed for computing the sparsity parameters for optimizing the matrix factorization. This approach combined the advantages of both complex matrix factorization (CMF) and variational -sparse analysis. BLIND SOURCE SEPARATION USING STATISTICAL NONNEGATIVE MATRIX FACTORIZATION ii 3) An imitated-stereo mixture model developed by weighting and time-shifting the original single-channel mixture where source signals can be modelled by the AR processes. The proposed mixing mixture is analogous to a stereo signal created by two microphones with one being real and another virtual. The imitated-stereo mixture employed the nonnegative tensor factorization for separating the observed mixture. The separability analysis of the imitated-stereo mixture was derived using Wiener masking. All algorithms were tested with real audio signals. Performance of source separation was assessed by measuring the distortion between original source and the estimated one according to the signal-to-distortion (SDR) ratio. The experimental results demonstrate that the proposed uninformed audio separation algorithms have surpassed among the conventional BSS methods; i.e. IS-cNTF, SNMF and CMF methods, with average SDR improvement in the ranges from 2.6dB to 6.4dB per source.Payap Universit

    Single-Channel Signal Separation Using Spectral Basis Correlation with Sparse Nonnegative Tensor Factorization

    Get PDF
    A novel approach for solving the single-channel signal separation is presented the proposed sparse nonnegative tensor factorization under the framework of maximum a posteriori probability and adaptively fine-tuned using the hierarchical Bayesian approach with a new mixing mixture model. The mixing mixture is an analogy of a stereo signal concept given by one real and the other virtual microphones. An “imitated-stereo” mixture model is thus developed by weighting and time-shifting the original single-channel mixture. This leads to an artificial mixing system of dual channels which gives rise to a new form of spectral basis correlation diversity of the sources. Underlying all factorization algorithms is the principal difficulty in estimating the adequate number of latent components for each signal. This paper addresses these issues by developing a framework for pruning unnecessary components and incorporating a modified multivariate rectified Gaussian prior information into the spectral basis features. The parameters of the imitated-stereo model are estimated via the proposed sparse nonnegative tensor factorization with Itakura–Saito divergence. In addition, the separability conditions of the proposed mixture model are derived and demonstrated that the proposed method can separate real-time captured mixtures. Experimental testing on real audio sources has been conducted to verify the capability of the proposed method

    Principled methods for mixtures processing

    Get PDF
    This document is my thesis for getting the habilitation à diriger des recherches, which is the french diploma that is required to fully supervise Ph.D. students. It summarizes the research I did in the last 15 years and also provides the short­term research directions and applications I want to investigate. Regarding my past research, I first describe the work I did on probabilistic audio modeling, including the separation of Gaussian and α­stable stochastic processes. Then, I mention my work on deep learning applied to audio, which rapidly turned into a large effort for community service. Finally, I present my contributions in machine learning, with some works on hardware compressed sensing and probabilistic generative models.My research programme involves a theoretical part that revolves around probabilistic machine learning, and an applied part that concerns the processing of time series arising in both audio and life sciences

    Underdetermined convolutive source separation using two dimensional non-negative factorization techniques

    Get PDF
    PhD ThesisIn this thesis the underdetermined audio source separation has been considered, that is, estimating the original audio sources from the observed mixture when the number of audio sources is greater than the number of channels. The separation has been carried out using two approaches; the blind audio source separation and the informed audio source separation. The blind audio source separation approach depends on the mixture signal only and it assumes that the separation has been accomplished without any prior information (or as little as possible) about the sources. The informed audio source separation uses the exemplar in addition to the mixture signal to emulate the targeted speech signal to be separated. Both approaches are based on the two dimensional factorization techniques that decompose the signal into two tensors that are convolved in both the temporal and spectral directions. Both approaches are applied on the convolutive mixture and the high-reverberant convolutive mixture which are more realistic than the instantaneous mixture. In this work a novel algorithm based on the nonnegative matrix factor two dimensional deconvolution (NMF2D) with adaptive sparsity has been proposed to separate the audio sources that have been mixed in an underdetermined convolutive mixture. Additionally, a novel Gamma Exponential Process has been proposed for estimating the convolutive parameters and number of components of the NMF2D/ NTF2D, and to initialize the NMF2D parameters. In addition, the effects of different window length have been investigated to determine the best fit model that suit the characteristics of the audio signal. Furthermore, a novel algorithm, namely the fusion K models of full-rank weighted nonnegative tensor factor two dimensional deconvolution (K-wNTF2D) has been proposed. The K-wNTF2D is developed for its ability in modelling both the spectral and temporal changes, and the spatial covariance matrix that addresses the high reverberation problem. Variable sparsity that derived from the Gibbs distribution is optimized under the Itakura-Saito divergence and adapted into the K-wNTF2D model. The tensors of this algorithm have been initialized by a novel initialization method, namely the SVD two-dimensional deconvolution (SVD2D). Finally, two novel informed source separation algorithms, namely, the semi-exemplar based algorithm and the exemplar-based algorithm, have been proposed. These algorithms based on the NMF2D model and the proposed two dimensional nonnegative matrix partial co-factorization (2DNMPCF) model. The idea of incorporating the exemplar is to inform the proposed separation algorithms about the targeted signal to be separated by initializing its parameters and guide the proposed separation algorithms. The adaptive sparsity is derived for both ii of the proposed algorithms. Also, a multistage of the proposed exemplar based algorithm has been proposed in order to further enhance the separation performance. Results have shown that the proposed separation algorithms are very promising, more flexible, and offer an alternative model to the conventional methods
    • …
    corecore