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Abstract -- A novel approach for solving the single-channel signal separation (SCSS) is presented the 

proposed sparse nonnegative tensor factorization under the framework of maximum a posteriori 

probability and adaptively fine-tuned using the hierarchical Bayesian approach with a new mixing mixture 

model. The mixing mixture is an analogy of a stereo signal concept given by one real and the other virtual 

microphones. An “imitated-stereo” mixture model is thus developed by weighting and time-shifting the 

original single-channel mixture. This leads to an artificial mixing system of dual channels which gives rise 

to a new form of spectral basis correlation diversity of the sources. Underlying all factorization algorithms 

is the principal difficulty in estimating the adequate number of latent components for each signal. This 

paper addresses these issues by developing a framework for pruning unnecessary components and 

incorporating a modified multivariate rectified Gaussian prior information into the spectral basis features. 

The parameters of the imitated stereo model are estimated via the proposed sparse nonnegative tensor 

factorization with Itakura-Saito divergence. In addition, the separability conditions of the proposed 

mixture model are derived and demonstrated that the proposed method can separate real-time captured 

mixtures. Experimental testing on real-audio sources has been conducted to verify the capability of the 

proposed method.  

 

Keywords — Blind source separation, underdetermined mixture, tensor factorization, unsupervised 

learning, multiplicative updates, source modeling. 

 

 
1 School of Software Engineering, Payap University, Chiang Mai, Thailand: phetcharat@payap.ac.th 
2 School of Software Engineering, Payap University, Chiang Mai, Thailand: naruephorn_t@payap.ac.th 
3  Department of Computer and Information Sciences, Northumbria University, Newcastle upon Tyne, England, United Kingdom: 

wai.l.woo@northumbia.ac.uk 
4 School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, China: bin_gao@uestc.edu.cn 

Single-Channel Signal Separation using Spectral Basis 

Correlation with Sparse Nonnegative Tensor Factorization 



2 

1  INTRODUCTION 

Blind source separation (BSS) [29, 47] is the process of separating individual source signals without using the 

training information of the sources. BSS is flourishing in numerous fields, including underwater signal processing 

[31], communication [27], speech enhancement [37], biomedical [14] and audio signal recognitions [42]. One 

classical problem of BSS is the so-called "cocktail party problem" [4] is psychoacoustic phenomenon that 

indicates to the significant human capability to attend and recognize the speaker from the interference 

environment. An extreme case of BSS is termed as single channel blind source separation (SCBSS). The SCBSS 

aims to discover individual source signals from a single mixture recording without any a priori information of the 

sources. Since the number of source signals {  ( )}          is greater than the number of the observed 

mixture  ( ), this is known as the underdetermined SCBSS problem [2, 12, 20, 30, 33, 44]. Many algorithms have 

been successfully developed for SCBSS. The conventional ICA method [19] was adapted to the case of SCBSS 

which is known as single-channel ICA (SCICA). In [1, 21, 28, 40], a SCICA method is proposed which maps an 

observed single-channel mixture into a multi-channel model by breaking the observed vector into a sequence of 

contiguous blocks. These blocks are treated as a matrix where the standard ICA can then be employed to estimate 

the underlying sources. Generally, it has two major drawbacks of the SCICA method: first, the algorithm assumes 

stationary sources; and second, the sources are assumed to be disjoint in the frequency domain. These assumptions 

however do not always hold in applications. In the SCICA method, the sources are modeled as sparse combination 

of a set of time-domain basis functions which are initially derived using the standard ICA. This method renders 

optimal separation when the ICA basis functions corresponding to each source have minimal time-domain 

overlap. In the case where the basis functions have significant overlap with each other e.g. mixture of two speech 

sources or the basis functions of two sources are very similar, the method performs poorly. In [46], a 

single-channel mixture was applied multi-component radar or signal-dependent transforms [10, 32] to generate a 

multi-channel mixture. The generated multi-mixtures are subsequently separated by ICA. Another approach is 

decomposing a signal of interest into different sources is nonnegative matrix factorization (NMF) approach [24]. 

The NMF has been used for sound source separation of single-channel mixtures using the multiplicative update 

(MU) algorithm to solve its parametrical optimization based on the least square distance and Kullback-Leibler 

divergence as cost function in [25, 34, 35]. Later, other families of cost functions were continuously proposed for 

example the Beta divergence [22], Csiszár’s divergences [5], and Itakura-Saito divergence [7]. Popular method in 

this category is the sparse non-negative matrix factorization (SNMF) [15] where sparseness constraints can be 

included into the cost function. The two-dimensional sparse NMF deconvolution (SNMF2D) [3, 11] uses a double 
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convolution to model both spreading of spectral basis and variation of temporal structure inherent in the signals. In 

[23], sources are assumed to be non-stationary and nonnegative. The canonical tensor and least squares method is 

used to estimate the mixing model. The source is then discovered by a minimum mean-squared error beamformer 

approach without any hypothetical limitation. On a parallel development, NTF under a parallel factor analysis 

(PARAFAC) structure where the channel spectrograms are jointly modeled by a 3-valence tensor have been 

introduced in [8, 36]. Clustering of the spatial cues to group the NTF components (cNTF) is developed in [6] for 

multichannel audio source separation. In most applications, if the number of components ( ) is too small, the data 

does not fit the model well. Conversely, if   is too large, then overfitting occurs. Choosing the right model is in 

particular challenging in the PARAFAC model as the number of components is specified for each modality 

separately. While these approaches increase the accuracy of matrix factorization, it only works when large sample 

dataset is available. However, the sparsity parameter is manually determined. This will then cause over or under 

sparsity that effect to separation performance. To find an elegant solution for this dichotomy between data fidelity 

and overfitting, it is crucial that the “right” model order of components is selected.  

  

In this paper, a new framework for single-channel blind source separation (SCBSS) is proposed. The proposed 

solution separates sources from a single-channel without relying on training information about the original 

sources. The advantages of the proposed method are: 1) Analogous to the stereo signal concept given by one 

microphone. We create an imitated-stereo mixture from a single-channel mixture signal. From this stereo mixture 

the proposed algorithm can be employed to separate individual source from the mixtures. 2) Overcoming the 

limitations associated with the above NTF problems. Unlike the NTF, our model assigns a probability distribution 

to each element of unknown non-negative matrix   {    
} , where  ,  , and    are an activation coefficient, 

audio components, time slots, respectively, and a sparsity parameter associated with each probability distribution. 

This sets up a platform to enable the sparsity parameter to be individually optimized for each element code. 3) 

Automatically detecting the optimal number of components   of the individual source (i.e.   ,         where 

  is the maximum number of sources). It designates a prior distribution on   and determines the desirable    in an 

unknown basis   by pruning the irrelevant    from  . The term   with the proper    is used for estimating the 

source which renders the better separation performance than   without the proper   . 4) Incorporating prior 

information of the basis vectors using the modified multivariate rectified Gaussian. This benefits the overall 

algorithm in terms of better estimation accuracy and more meaningful feature extraction that pertain to the data. 

Since each pattern in Y has its own features, designing the appropriate basis to match these features is imperative. 
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If these features share some degree of correlation, then this information should be captured to enable better 

part-based representations of each feature. Toward this end, we develop a modified Gaussian prior distribution on 

   to allow the proposed matrix factorization to capture the features of these patterns more efficiently. As our 

proposed method assigns a regularization parameter to each temporal code (which is individually optimized and 

adaptively tuned to yield the optimal sparse factorization) this Bayesian regularization improves the accuracy in 

resolving the spectral bases and the temporal codes which were previously not possible by using cNTF alone. This 

takes the advantage of the combination of the automatic detection of the optimal    through both the pruning 

technique and the prior information on  . This results in the separation performance that surpasses the 

conventional cNTF.  

 

The paper is organized as follows. Section 2 introduces the “imitated-stereo” mixture model along with the 

assumptions of the proposed method. The proposed demixing method and the formulation of the NTF algorithm 

are presented in Section 3. The separability of the mixture model is presented in Section 4. Experimental source 

separation results on musical data coupled with a series of performance comparison with other SCBSS techniques 

using the datasets from Real World Computing (RWC) [13] music database and the 2016 Signal Separation 

Evaluation Campaign (SiSEC) [39] are presented in Section 5. We finally conclude the paper in Section 6. 

2  SINGLE CHANNEL MIXING MODEL 

A. Imitated-Stereo Mixture Model 

The single-channel blind source separation problem can be expressed as  

  ( )    ( )    ( )       
( )                 (1) 

where   ( ) is the single channel observed mixture,   ( ) denotes the  th source signal,   , is the total number 

of source signals and           denotes the time index. To discover the original signals   ( ) given only by 

the sole observed mixture   ( ), we compose another mixture based on the autoregressive (AR) process of the 

sources. Most of audio signals can be modeled by the AR process. This enables us to propose the imitated 

mixture by time-shifting and weighting the observed mixture as 

  ( )  
 

  | |
(  ( )     (  (   )))  

 
 

  | |
(  ( )    ( )   (  (   )    (   )))         (2) 
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where      is the weight parameter, and   is the time-delay. The AR process of the signal can be expressed [43] 

as 

  ( )   ∑    
(   )  (   )

  

      ( )             (3) 

where    is the maximum AR order, z is the number of AR order,    
(   ) denotes the  th order AR coefficient 

of the  th source signal at time   and   ( ) is an independent identically distributed (i.i.d.) random signal with 

variance    and zero mean. We term the mixing model in (2) and (3) as ‘imitated -stereo’ since the mixing model 

resembles a stereo signal where the attenuation of the sources differs but an only identical time delay; due to the 

fact that sources are at one location. By using the AR process in (3), the imitated mixture can be rewritten in terms 

of the sources, its coefficients and time-delay as 

  ( )  
 

  | |
( ∑    

(   )  (   )
  
      ( )     (   )  

 ∑    
(   )  (   )

  
      ( )     (   ))  

 
(    

( )  )   (   )

  | |
 

(    
( )  )   (   )

  | |
 

 ∑    
(   )  (   )   ( )

  
   
   

  | |
 +  

 ∑    
(   )  (   )   ( )

  
   
   

  | |
                        (4)  

 

The proposed mixing model in terms of the sources can now concisely be expressed in time representation as 

  ( )  ∑   ( )
  
     

  ( )  ∑     (   )  
      ( )                 (5) 

where   (     ) and   (     ) represent the mixing attenuation and residue of the     source, respectively. 

  ( )    (     )  
    

(   )  

  | |
                     (6) 

  ( )    (     )  

 ∑    
(   )  (   )   ( )

  
   
   

  | |
                 (7) 

Note that the parameterization of   ( ) and   ( ) depends on   and   although this is not shown explicitly. For 

the time-frequency (TF) representation of   ( ) and   ( ), the mixing model can be expressed for  (    ) as 

  (    )  ∑   (    )
  
     

  (    )  ∑ (  (  ) 
        (      )    (    ))

  
           (8) 

In (8), we use the fact that   ( )    ( ), hence the TF of   ( ) in (7) becomes 
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  (    )   ∑
   

(   )       

  | |

  

   
   

  (      )            (9) 

From (8), it can be seen that the imitated-stereo mixture comprises of   (  ) 
       and   (    ). A careful 

analysis of (5) will reveal that even if   (    ) is unknown, the signature of each source can be extracted directly 

from   (    ) using only information of   (  ) 
      . Care must be exercised in selecting the time-delay   in 

the imitated-stereo (2). The factor         is only uniquely specified if |    |   , to avoid phase-wrap. In order 

to avoid phase ambiguity, the time-delay   must satisfy the following condition  

|            ⁄ |                      (10) 

where      is the maximum time delay,      is the maximum frequency present in the sources and    is the 

sampling frequency. Hence, a term      can be determined from (10) according to 

     
  

     
                 (11) 

As long as the delay parameter is less than     , there will not be any phase ambiguity. This condition will be 

used to determine the range of   in formulating the imitated-stereo mixture. 

 

In the proposed framework, the excitation signal for each source is filtered by a different AR filter. By comparing 

with the observed mixture   ( ), the imitated - stereo mixture   ( ) has extra information of the sources i.e. 

  ( ),  , and    ( ). This results in a form of temporal correlation diversity of the sources in terms of the AR 

coefficients. It is noted in (7) and (8) that the second channel (  ( ) or equivalently   (    )) is a mixture of the 

original sources and weighted by the source’s temporal correlation. Thus, our method in constructing the model 

enables this diversity to be manifested in the pair of imitated - stereo mixture as noted in   ( ) and   ( ). In 

addition, the residue   ( ) can be minimized by selecting the appropriate   and  . As far as the authors are 

concerned, this is the first-time temporal correlation diversity is proposed for solving the SCBSS problem. The 

imitated - stereo mixture pave away of the SCBSS problem to enable applying tensor estimation. 

 

Our novelty of the artificial-stereo mixture has been the emergence of a new diversity in the form of sources’ 

temporal correlation within the context of SCBSS. Furthermore, the concept of temporal correlation admits a 

tensor representation which is then evolved into a statistical estimation problem. This enables us to treat the 

single-channel recording as multiple channels and subsequently allow us to develop a NTF approach for 

estimating the sources. The derivations of the artificial-stereo NTF source separation method are presented in 

Section 3. 
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3  PROPOSED METHOD 

A. Nonnegative Tensor Factorization Separation Model 

The proposed method aims to estimate the original signals [  ( )  ( )     
( )]

 
 by formulating an imitated 

stereo mixture and using the proposed method given only one observed mixture,   ( ). The process of the 

proposed method is illustrated in Fig.1. Based on the linear mixing assumption in (5), the multichannel audio 

mixtures   ( ) of unknown sources    ( ) can be generalized as: 

  ( )  ∑       ( )    ( )
  
    ,               (12) 

where   {   } denotes the channel number,     corresponds to the mixing coefficient, and   ( ) is the noise. In 

this work,   ( ) can also represents the residue from the AR sources, i.e.,   ( )    and   ( )  ∑   ( )
  
    as 

expressed in (5). 

 

Fig. 1: Overview of the proposed method for     . 

 

The source signals can be further modeled as a sum of elementary components themselves i.e. 

   ( )  ∑    ( )    
                 (13) 

 

Imitated Stereo 
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Separation 
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  ( ) 

  (    ) 

  (    ) 

  ̂ 
 ( ) 

 

 ̂ 
 ( ) 

  ̂ 
 ( ) 

 

 ̂ 
 ( ) 

  ̂ (    ) 

 

  ̂ (    ) 

 

     ̂ (    ) 

 

 

    ̂ (    ) 
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where   ,          
 , denotes a nontrivial partition of        . The components    ( ) will be characterized 

by a spectral shape    and a vector of activation coefficient    through a statistical model. Thus, the observation 

  ( ) can be expressed as 

  ( )  ∑       ( )
 
      ( )               (14) 

 

where     is defined as         if and only if      . The TF representation of the mixture in (14) is given by  

  (    )  ∑       (    )    (    )
 
               (15) 

where   (    ),    (    ) and   (    ) denote the TF components of   ( ),    ( ), and   ( ), respectively. The 

time slots are given by             while frequencies by          . This power spectrogram is obtained by 

assuming that the signals and the noise are uncorrelated. The power spectrogram of the residue-free mixture is 

given by 

| ̅ (    )|
  {

|  (    )|
        

|  (    )|
  |  (    )|

      

           (16) 

where |  (    )|
  is estimated using spectral subtraction method [18, 41]. Since each component is a function of 

   and   , we represent this as the 3-valence tensor of mixture STFT  ̅  [ ̅  
(    )]           

         
, of size        , 

is modeled as a sum of    complex-valued latent tensor components         (    )            

         
. The 

time-frequency spectrums of the mixtures are required to be positive values. Assuming    (    )   ( |       ) 

where   ( ) denotes the proper complex Gaussian distribution and         is the variance [1, 21, 40]. In this case, 

the power spectrograms | ̅ |
  are approximated by a linear combination of nonnegative spectrograms 

|   (    )|
          for each      such that 

| ̅ (    )|
  ∑    |   (    )|

  
     

 ∑ ∑    |   (    )|
 

    

  
     

                ∑ ∑               

  
                     (17) 

where     |   |
 . Denoting the non-negative matrices are   {   }         ,   {    }  

   
    

     and   {   }. The problem is to separate the sources    ( ) given by | ̅ (    )|
  in (17). The 

proposed method focuses on the estimation of unknown parameters  ,  , and   of each source. The estimates of 

 ,  , and   are used to reconstruct the original sources which are presented in Section B. 
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B. Formulation of the Proposed Algorithm 

The proposed algorithm is firstly formulated i.e.   is the        tensor with coefficients   (    )  

|  (    )|
 ,   ̂  is the estimated        tensor with coefficients  ̂ (    )  ∑           

 
   . The term 

  {|   |
 
}  is the     mixing matrix,   {   } is the     “labelling matrix” with only one nonzero value per 

column, i.e., such that 

 

    {
           

           
                     (18) 

and nonnegative vector   {    }. We can express   as follows:  

     {|   |
 
   }                (19) 

Thus, we choose a prior distribution  (   )  over the factors {   } . It can be shown that the following 

optimization problem needs to be solved 

            (   )  ̇      (   |     )             (20)  

The posterior can be found by using Bayes’ theorem as  

 (   |     )  
 ( |     ) (   | )

 ( )  
                 (21) 

where the denominator is a constant and therefore, the log-posterior can be expressed as 

    (   |     )      ( |     )      (   | )           (22) 

Then, log-likelihood of the factor  , H and   can be written as 

     ( |     )  ̇ ∑    (  (    )| ̂ (    ))    
  

             ∑
  (    )

 ̂ (    )
    

    
  (    )

 ̂ (    )
             (23) 

The term   is a constant, the symbol “ ̇” denotes equality up to constant, and the term    ( | )   
 

 
    

 

 
   

is the Itakura-Saito divergence. In our proposed model, the prior over   is assumed to be distributed as 

  ( |    ) i.e. zero-mean modified multivariate Gaussian with covariance matrix    which we will now 

develop. Since   is nonnegative, using exponential distribution can render poorer quality of sparsity than the 

modified Gaussian distribution. For a likelihood method based on Gaussian distribution, this is a simple Bayesian 

criterion for NMF. The Gaussian distribution causes the NMF will yield many locally optimal solutions. 

Furthermore, it does not suit with the multiplicative update algorithm. In this work, we propose the rectified 

Gaussian which has previously been shown to provide more flexible shapes of prior distribution [24, 26]. This 
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benefits the distribution model to better suit the signals. The multivariate rectified Gaussian defined as 

 ( )   (       (  )  ) ( ) (√  |  | )
(     ⁄ )

   ( 
 

 
(    )   

  (    ))  ( )   (24) 

where      ( )     
    

      
   ,    ( )  represents the column vectorization,  ( )  is the delta 

function,  ( )        and zero otherwise, and  ( )  denotes the multivariate Gaussian cumulative 

distribution function. Considering the zero mean of the rectified Gaussian distribution (i.e. set     ) on the 

latent variable would better suit most of the real-world data and can enable the induction of sparse positive factors, 

as results in 

 ( )  
 

 
 ( )  (√  |  | )

  

      ( 
 

 
(    )   

  (    ))        (25) 

where    [

         

   
         

]  is the covariance matrix of       ( )  and            
   is the 

cross-correlation matrix between the basis vectors    and   , “    ” denotes the statistical expectation operator. 

The covariance matrix    can be partitioned as         
( )

     
( )

 where      
( )

 is the matrix that contains only 

the diagonal sub-matrices of    whereas     
( )

 contains the off-diagonal sub-matrices. The inverse covariance 

matrix can be approximated as 

  
   [     

( )
     

( )
]
  

 

 [     
( )

]
  

 [     
( )

]
  

    
( )

[     
( )

]
  

         (26) 

      
      

  

where      
  [     

( )
]
  

 ,     
  [     

( )
]
  

    
( )

[     
( )

]
  

. The (   )   sub-matrix of     
  is given by  

        
      

  ( )
    

     
  ( )

                (27) 

Using above, we may cast (27) into two terms: 

     ( )  ̇     ( )  
 

 
       

   
 

 
      

          (28) 

Analyzing the above, the second term        
   ∑   

   
      where   

   is a Toeplitz matrix corresponding 

to the  th diagonal sub-matrix of      
 . Since the source signals are modelled as AR processes, it is natural that 

   assumes the AR autocorrelation matrix of the following form: 
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 [

 
  

 
  

   

  

 
 
 

 
 
 
  

  
   

 
  

 

]            (29) 

where    is the first-order correlation of   . For the third term, we note that         
      

  ( )
    

     
  ( )

 

  
      

   
  . Since the elements in    are exponentially decaying, we can make a crude approximation that 

  
      

   
        where       

    
       and       is the correlation between the     and     basis vectors. 

Thus the term       
   ∑      

       (   )  measures the sum of weighted correlation between    and    for 

all     (   ). Hence, by including both of these terms, the underlying statistical correlation within and 

between the basis vectors can be incorporated into the matrix factorization to yield results that reflect on prior 

information of the AR sources. Therefore, with the factorial model in (28) the desired constraint assumes the 

following form:  

 ( )       ( )  ̇ ∑     (  )  
 

 
∑   

   
      

 

 
∑      

       (   )     (30) 

The use of multivariate rectified Gaussian prior  ( ) enables the matrix factorization to leverage on the statistical 

first order AR correlation between the basis vectors. Once the basis    has successfully extracted a particular 

spectral basis associated with a source signal, subsequent basis vectors {    } will leverage on    to extract other 

spectral components of the same source. However, care must be exercised in order that the basis vectors do not 

extract the same spectral component. Thus this necessitates us to monitor the correlation between the basis vectors 

i.e.    , and as this value gets larger, the more imperative it is to introduce pruning to prevent the basis vectors 

from extracting the same spectral component. This will be elaborated in Section 3.B.2). In order to turn off excess 

components thereby optimizing  , we choose a component-wise exponential distribution prior is imposed on   , 

namely, 

 ( | )  ∏ ∏         (         )                (31) 

The negative log prior on   is defined as  

 ( )       ( | )   ∑ ∑ {                }     

    ∑ ∑          ∑ ∑                              (32) 

By substituting (21), (26) and (31) into (20), the negative log posterior of   and   is given by the following: 

     (   |     )  ̇     ( |     )      ( )      ( | )       (33) 

From (21), (30) and (32), the above can be written as  
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  ̇ ∑   (  (    )| ̂ (    ))

    

  ( )   ( ) 

   ∑
  (    )

 ̂ (    )
    

    
  (    )

 ̂ (    )
   ∑     (  )   

 
 

 
∑   

   
      

 

 
∑      

       (   )   

 ∑ ∑          ∑ ∑                               (34) 

The sparsity term ∑ ∑     
        forms the   -norm regularization to resolve the permutation ambiguity by 

forcing all structure in   onto  . Therefore, the sparseness of the solution in (34) is highly dependent on the 

regularization parameter     . 

1). Estimation of the mixing coefficient, basis and code 

In this section, we will derive the estimation of  ,   and   {|   |
 
}. The derivative of (34) with respect to   of 

the proposed model is given by: 

   

     
 ∑           

 (  (    )|  ̂(    ))  ∑              ∑                (35) 

where       is the (   )   component of the   
   matrix. Similarly, the derivative of (34) with respect to   is 

given by 

   

      

 ∑          
 (  (    )|  ̂(    ))                   (36) 

The derivative of (34) with respect to   {|   |
 
} is given by 

   

     
 ∑     ∑        

   
 (  (    )|  ̂(    ))    

             (37) 

We define the term   is        tensor with entries      
    

 (  (    )| ̂ (    )), namely 

   
 (  (    )| ̂ (    ))  

 

 ̂ (    )
 

  (    )

 ̂ (    )
               (38) 

We note 〈 ̅  ̅〉  ̅   ̅
 the contracted product between tensors  ̅ with size                 and  ̅ with 

size                 and   ̅ and   ̅ are the sets of mode indices over which the summation take place. 

The contracted product 〈 ̅  ̅〉{     } {     } is a tensor of size                 given by 

〈 ̅  ̅〉{     } {     }  ∑  
  
    

∑  ̅                ̅               

  
  

              (39) 

The contracted tensor product is a form a generalized dot product of two tensors along common modes of same 

dimensions. Using (39), the multiplicative update (MU) learning rules in matrix notation for  ,  , and   become 
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〈      〉{   } {   }

〈      〉{   } {   }     ( )  ( )⁄      
 

    
〈      〉{   } {   }

〈      〉{   } {   }     
 

    
〈      〉{   } {   }  

 

〈      〉{   } {   }  
                    (40) 

which has a strikingly similar form with the conventional NMF update rules [16, 38]. In (40), ‘ ’ is element-wise 

product and    is a     matrix whose (   )   element is given by       and    . Here    follows the MU 

rule that denotes the negative part of the derivative of the criterion e.g.    [   
 (  (    )| ̂ (    ))]

 
 

  (    )

 ̂ (    )
  and    denotes its positive part. The term     denotes        tensor with elements        

. 

Similarly,     denotes       tensor with elements        and     denotes        tensor with 

elements        .  

 

2). Estimation of the Adaptive Sparsity Parameter 

The update of    follows from solving  
  

     

   which leads to          
  . However, this may cause abrupt 

changes in the level of sparsity. An adaptive first-order implementation that smooth over time can be obtained as 

follows: 

    
( )       

(   )  (   )
 

      
            (41) 

where   is the smoothing parameter and is normally set to     , and        is a small number to prevent 

division by zero. As mentioned in Section III B, pruning is exercised to prevent the basis vectors from extracting 

the same spectral component. First, note that the sparsity term ∑ ∑             forms the sparse NTF which aims 

to learn the degree of regularization from data, i.e. tune the pruning parameter,     . Second, let us assume that the 

factorization in (16) has an approximation error of  ∑ ∑ ∑ |  (    )|
   

    
 
   

 
       ⁄ . As a result of inference in 

(34), a subset of the     
 will be driven to a large upper bound, with the corresponding columns of   and rows of 

  driven to small values. The effective dimensionality can be deduced from the distribution of the     . We have 

found in practice, two clusters clearly emerge: A group of values in same order of magnitude corresponding to 

relevant components on columns of   and rows of  , and a group of similar values of much higher magnitude 

corresponding to irrelevant components. Furthermore, for components which had become to zero or close to zero 
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we set      
  

 
. Thus, based on the above empirical observation, we propose the following pruning threshold: Let 

 ̅  
 

  
∑     

  
     be the average sparseness value associated with the  th row of  . If  

 ̅          √
∑ ∑ ∑ |  (    )|

   
    

 
   

 
   

    
              (42) 

then the     row of   (equivalently  th column of  ) is to be removed. This method allows us to estimate the 

effective number of components. If the prior assumptions are slightly violated or even if the likelihood function 

differs from the model assumption, the correct factorization rank can be determined by evaluating the above 

bound by the pruning threshold.  

3). Estimation of source signals 

For the proposed method, we obtain the estimates of  ,   and   that yield the smallest cost value. To reconstruct 

the source signals, the term  ̂  (    ) of the component   in channel   is reformulated by using the Wiener 

filtering as  

 ̂  (    )   {   (    )|       }   

 
          

 ̂ (    )
  (    )                 (43) 

where  ̂ (    )  ∑           
 
   . The decomposition is conservative in the sense that it satisfies   (  )  

∑  ̂  (  )
 
   . The estimated sources are converted back into time-domain by using inverse-STFT of  ̂  (    ) for 

all   and  . Finally, the estimated sources can be obtained as 

 ̂  ( )  ∑  ̂  ( )     
                (44) 

The proposed algorithm is summarized in Algorithm 1. 

Algorithm 1: Overview proposed algorithm 

1. Generate the mixture   ( ) from (2) and compute the STFT of   (    ) and   (    ). 

2. Apply spectral subtraction on |  (    )|
           . 

3. Initialize  ,   and   with nonnegative random values and define    {   } ,      {
           

           
 and         

    . 

4. Compute the estimation statistics: 

 Observed tensor:   (    )  |  (    )|
 ,  

 Estimated tensor:  ̂ (    )  ∑           
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 Positive and negative criterion of the multiplicative update (MU) learning rules:    and    

according to (40).  

 First-order correlation of the basis and the correlation between the basis vectors:    and    . 

5. Update model parameters: 

    
〈      〉{   } {   }

〈      〉{   } {   }     ( )  ( )⁄      
 

    
〈      〉{   } {   }

〈      〉{   } {   }     
 

    
〈      〉{   } {   } 

 

〈      〉{   } {   }  
 

     (   )
 

   
   ,    ̅  

 

  
  

      

6. Prune the irrelevant components of   and   using the criteria (42). Normalize   and  . 

 ̅          √
∑ ∑ ∑ |  (    )|

   
    

 
   

 
   

    

 

Repeat Step 5 and 6 until termination (convergence, the max number of iteration)  

7. Compute 

 ̂  (    )  
          

 ̂ (    )
  (    ) 

8. Transform  ̂  (    ) to the time domain  ̂  ( ) and reconstruct the sources using  ̂  ( )  ∑  ̂  ( )    
. 

 

4  SEPARABILITY OF IMITATED-STEREO MIXTURE MODEL 

In this section, the imitated mixture is examined the separability of the proposed method by considering   ( ) and 

  ( ). To achieve this, we assumed that the sources satisfy the W-disjoint orthogonality (WDO) [9] condition: 

  (    )  (    )   ,                                 (45) 

The imitated-stereo mixtures of different cases based on   ( ) and   ( ) are evaluated by the selected minimum 

function   . Motivated by the separation step of the proposed algorithm, the minimum-selecting function is 

derived from the estimated signals in TF domain. This can be expressed by assuming that the  th source dominates 

at a particular TF unit as 

 ̂  (    )  (∑                
 ∑    ∑             ⁄ )  (    )  
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 [  (    )   

 (    )]

  |  (    )|
  

∑       (    )
  
     

 
∑     ∑       |   (    )|

     (    )

∑ |   |
 

   |   (    )|
  

                   (46) 

 

If    , we then obtain 

 ̂  (    )     (    ) 

In this light, we formulate the proposed minimum-selecting function which can be expressed as: 

       |   (    )  
∑               

∑ ∑               
  
   

  (    )|

 

  

     |   (    )   ̂  (    )|
 
                  (47) 

By evaluating the minimum-selecting function, each TF unit is marked to the     argument that yields the 

minimum value. Hence, the TF units of the mixture are classified into   groups of (    )  units. The 

minimum-selected function is further analyzed in the cases of the     mixture. In the first case where     i.e. 

  (    )    ∑   (    )
  
   , the function    can be expressed as 

       |   (    )  
∑               

∑ ∑               
  
   

  (    )|

 

  

     |   (    )  
∑               

∑ ∑               
  
   

∑   
    

(    )|

 

         (48) 

Secondly, when     i.e.   (    )  ∑     (    )
  
    the function    can be expressed as 

        |     (    )  
∑               

∑ ∑               
  
   

  (    )|

 

  

     |     (    )   
∑               

∑ ∑               

  
   

∑     (    )
 
   |

 

           (49) 

The functions    and    will then be used for evaluating the separability of the proposed imitated-stereo mixture 

by considering   ( ) and   ( ) in the following three scenarios.   

 

I: If      ( )   ( )  and   ( )   ( ), then   ( )  (
 ( )  

  | |
)   (   )    ( ). 

The first scenario presents a situation where two identical sources are mixed in the single channel. By a weighted 

and time-shifting of the observed mixture, the imitated mixture is only obtained the time-delayed and scalar of the 

first mixture. This results no advantage of the imitated mixture at all. The separability of this case is presented by 

substituting the imitated-stereo mixture of Scenario I into the functions    and   . Since both sources are 
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identical, the minimum-selecting function of each mixture can be evaluated as follow: For    ,   (    )  

 (    )   , the    function then becomes 

       | (    )  
∑             

 ∑             
  (    )|

 

  

      | (    )   (    )|
  

   for                             (50) 

For    ,   ( ) and   ( ) are related to the source via   , thus     (    )     (    )   . Thus the    function 

becomes:  

       |   (    )   
∑             

 ∑             
    (    )|

 

  

     
 

|   (    )      (    )|
  

   for                             (51) 

As a result, the both minimum-selecting function are zero for all     arguments i.e.        . In this case, the 

function cannot discriminate the     arguments, the mixture is not separable.  

 

II: If   :   ( )   ( ) and   ( )    ( ) for     then   ( )  (
 ( )  

  | |
)   (   )    ( )    ( ). 

Scenario II represents different sources but setting   and   for the imitated-stereo mixture such that   ( )  

     
( ). By following the steps in Case 1, the separability of this mixture can be analyzed using the functions  

   and    as  

       |   (    )  
∑               

∑ ∑               
  
   

∑  
  
    

(    )|

 

  

     |   (    )    (    )|
 
                    (52) 

Since   ( )    ( ) thus     (    )      (    ) for    , we then obtain 

       |     (    )   
∑               

∑ ∑               
  
   

∑     (    )
  
   |

 

  

     |     (    )       (    )|
 
                   (53) 

As a result of    , the both    and    functions yields a zero value. The minimum-selecting functions are 

capable to separate the  th arguments although the sources have the same mixing attenuation;   ( )    

   
( )   ( ). Therefore, the mixture of Scenario II is separable.  
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III: If   ( )    ( ) and   ( )    ( ) for     then  

  ( )  ∑ (
  ( )  

  | |
)   (   )    ( )

  
     

This scenario corresponds to the most general case where the sources are distinct, and   and   are determined 

arbitrarily such that the mixing attenuations and residues are also different. The    function is firstly treated where 

the original signals differ i.e.   (    )     (    ) . Hence, the    function of Scenario III provides    

    |   (    )    (    )|
 
 which is the same as Scenario II. Since the mixing attenuations   (  ) and   (  ) 

correspond respectively to   ( )  and   ( ) , thus     (    )      (    )  and    ( )    ( ) . By following 

similar line of the    function in Scenario II, we then have 

       |     (    )       (    )|
 
            (54) 

For    , the    and    functions in Scenario III render a non-zero value. Hence, this mixture can be separated by 

the minimum-selecting function. 

 

5  RESULTS AND ANALYSIS 

A. Experiment Setup 

The proposed method is demonstrated by separating real-audio sources. The real-audio sources which are 

inherently non-stationary include vocal and music signals. All experiments are conducted using a PC with Intel® 

Core™ i7-6700 CPU@3.4GHz, 8GB RAM. and 4 GB RAM. MATLAB is used as the programming platform. 

The TF representation is computed by using the STFT of 1024-point Hanning window with 50% overlap. The 

experiments consist of 7 type of mixtures are generated i.e. male speech + female speech, male speech + jazz, 

male speech + drum, male speech + piano, jazz + drum, jazz + drum, and drum + piano. The male speech, female 

speech and music sources are selected from the RWC database and 3 linear instantaneous stereo mixtures of 3 

sources taken from the Signal Separation Evaluation Campaign (SiSEC 2016) “Underdetermined speech and 

music mixtures” task development dataset [39]. Three audio datasets have been considered and are described as: 

1) wdrums, a linear instantaneous stereo mixture (with positive mixing coefficients) of 2 drum sources and 1 bass 

line. 2) nodrums, a linear instantaneous stereo mixture (with positive mixing coefficients) of 1 rhythmic acoustic 

guitar, 1 electric lead guitar and 1 bass line. Both mixtures are 10 seconds-long and sampled at 16 kHz. The 

instantaneous mixing is characterized by static positive gains. We applied a STFT with sine bell of length 64 ms 

(1024 samples) leading to      . 3) Shannonsongs Sunrise, a linear instantaneous stereo mixture of         

musical sources (drums, lead vocals and piano) created using 3.12 seconds-excerpts of original separated tracks 

mailto:CPU@3.4GHz
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from the song “Sunrise” by S. Hurley and down sampled to 16 kHz. MATLAB routines for computing these 

criteria are obtained from the SiSEC’08 webpage [39]. The proposed method will be compared with 1) the other 

SCBSS method as the sparse nonnegative matrix 2-dimensional factorization (SNMF2D) [17] and the 

single-channel independent component analysis (SCICA) [32]. The SNMF2D parameters are set as follows [10]: 

number of factors is 2, sparsity weight of 1.1, number of phase shift and time shift is 31 and 7, respectively for 

music. As for speech, both shifts are set to 4. The TF domain used in SNMF2D is based on the log-frequency 

spectrogram. Cost function of SNMF2D is based on the Kullback-Leibler divergence. As for the SCICA, the 

number of block is 10 with time delay set to unity. We have evaluated our separation performance by measuring 

the distortion between original source and the estimated one according to the signal-to-distortion ratio (SDR), 

signal-to-interference ratio (SIR) and source-to-artifacts ratio (SAR) i.e. 

            (‖       ‖
 

‖                     ‖
 

⁄ ) ,             (‖       ‖
 

‖       ‖
 

⁄ ) , and 

            (‖                      ‖
 

‖      ‖
 

⁄ )  where        ,       , and        represent the 

interference from other sources, noise and artifact signals.  

 

B. Impact of weight ( ) and time-delay ( ) parameters on matrix factorization and source separation 

 

The imitated stereo mixture is formulated via determining the weight   and the time-delay   parameters. The 

weight   parameter acts as a controlling factor to maintain the difference of the sources’ AR coefficients and to 

control the amount of the residues   (     ). The impact of determination of values for   and   parameters will 

be investigated on the type of sources in this section. A set of experiments has been conducted to determine the   

and   pairs by using wdrums, nodrums and Shannonsongs Sunrise mixtures. A finite range of 16 pairs of   and    

is selected to be [-4, 4] (excluding    ) and [1, 2] as: 

   {
(    ) (    ) (    ) (    ) (   ) (   ) (   ) (   ) 
(    ) (    ) (    ) (    ) (   ) (   ) (   ) (   )

}. The reason is in the extreme case of    , 

which leads to   ( )    ( ) where the imitated stereo mixture cannot be formulated. In practice, the AR 

coefficients of sources are generally unknown. However, if one knows the source category then   and   can be 

chosen from   . Hence, this enables the algorithm to estimate   and   for the specific type of sources. 

 

Fig. 2 shows the separation results in terms of the SDR for the mixtures of wdrums, nodrums and Shannonsongs 

Sunrise. As the results, it can be seen that when (   )  (   ) will yield the best possible SDR overlaps with all 
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the three categories at 13.63 dB, 7.85 dB, and 6.46 dB, respectively. This is not surprising since speech and music 

are mainly characterized by the initial few AR coefficients and these coefficients tend to vary for different 

sources. For each type of mixtures with 5% from highest SDR, the recommended pairs of         ranges are 

{(1,-2), (2,-2)} for wdrums mixture, (2,-1) for nodrums mixture, and {(2,-2), (2,-3)} for Shannonsongs Sunrise 

mixture. The results indicate that only the low order AR coefficients i.e.    , are beneficial for separation.  

 

Fig. 2: Separation results of the proposed method by using different weight ( ) and time-delay ( ) parameters. 

 

C. Impact of     on separation performance 

In this section, the impact of     will be investigated. In practice, the actual statistics for computing the prior on   

(   ) given in (33) is unknown. In this case, the selection of    will depend on the type of sources and require 

estimation. Hence, we investigate the effects of     in conjunction with the pruning method on the separation 

performance. Firstly, we estimate  ̂    ̂ 
   ̂ 

   ̂    using  ̂      
     and  ̂ 

    ‖  ‖
 

⁄  for      . We 

then compare the estimated  ̂   with manual setting. The following two cases are considered: Case 1) with 

pruning and     is varied from 0, 0.05, 0.1,…, 1.0 Case 2) without pruning and     is varied from 0, 0.05, 0.1,…, 

1.0. The wdrums, nodrums and Shannonsongs Sunrise datasets have been used for the above cases. 
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(a) 

 

(b) 

 

(c) 

Fig.3: SDR results as a function of    .(a) wdrums. (b) nodrums. (c) Shannonsongs Sunrise. 

Fig. 3 shows that the separation result with the pruning method yielded a total average improvement of 1.17dB 

over the separation method without pruning. The average SDR improvement can be summarized as follows: 1) 

0.96 dB per source for wdrums mixture; 2) 1.26 dB per source for nodrums mixture; and 3) 1.29 dB per source for 

Shannonsongs Sunrise mixture. The results have also clearly indicated that the best performance of wdrums 

mixture is obtained when     ranges from 0.33 to 0.64 (within 2% from highest SDR) with the highest average 

SDR is 13.71 dB. The  ̂   rendered from data estimation is 0.47 which very closely approaches the optimum SDR, 

which is at      0.52. As for nodrums mixture, the best performance is obtained when     ranges from 0.17 to 

0.72 with the highest average SDR is 7.85 dB where the  ̂   is 0.39 and the optimum SDR is at      0.34. In the 
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case of Shannonsongs Sunrise, the best range of     is from 0.13 to 0.46 which yields the best performance with 

the highest average SDR of 5.84 dB where the  ̂   is 0.23 and the optimum SDR is at      0.21. From the above 

findings, we can conclude that for music mixtures, the best performance is obtained when     ranges from 0.17 to 

0.72 and in the case of music and vocal mixture, the best performance is obtained when     ranges from 0.13 to 

0.46. On the contrary, it is noted that when     is set either too low or high, the separation performance tends to 

degrade. It is also worth pointing out that the separation results are rather coarse when the factorization is 

non-regularized (i.e., without prior on  ) and without pruning. Here, we can see that the average SDR of without 

prior on   and without pruning is the lowest among the three methods across      .  

 

By incorporating regularization (i.e., using       and pruning), the performance increases significantly for all 

types of mixture. This is clearly evident in Figs.3 (a) - (c) where the average SDR result for separation three 

mixtures scales up to 9.1 dB while for the case of without regularization the average SDR result is only 7.6 dB. 

This amounts to a significant 1.5 dB performance improvement using the proposed regularization than that 

without regularization. Thanks to the modified Gaussian prior, this correlation is explicitly modeled by     in the 

proposed method. This enables the estimated basis vectors    and    to take advantage of the correlation in 

learning the real basis directly from the mixed pattern. This explains the reason as to why that the proposed 

method with pruning and with prior on   shows better performance than the proposed method with pruning and 

without prior on  . Therefore, the analysis have unanimously indicated the importance of selecting the correct 

number of components and of incorporating the correlation     between the different basis vectors in order to 

arrive at the optimal performance of feature extraction. 

 

D. Comparison Proposed Method with Other SCBSS Methods 

 

In this section, Audio sources can be characterized as non-stationary AR processes since their AR coefficients 

vary with time. We have generated the mixtures of two sources which select from male speech, female speech, 

jazz, piano and drum. Both sources are mixed with equal power to generate the mixture. Examples of original 

signals, the mixture and the separated signals are respectively shown in Fig. 4. Visually, the estimated sources 

resemble closely to the original sources.  
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1)  Single Channel Sources  

 
 

Fig.4: Original sources, single channel mixture, and estimated sources of music mixture between jazz and drum 

using the proposed method with     and    . 

 

The separation performance based on 3 mixture types of the proposed method was compared with the 

state-of-the-art of the SCBSS methods: i.e. Hilbert-SD, SCICA, EMD-ICA, SNMF2D, the imitated-stereo 

mixture using the degenerate unmixing estimation technique (DUET) method [45] that presented in Fig. 5. The 

proposed method yields the outstanding performance over the comparison methods with the total average SDR 

improvement at 6.62 dB per source, 6.12 dB per source, and 2.86 dB per source for music mixtures, speech and 

music mixtures, and speech mixtures, respectively. The reason is based on the optimal part-based factorization of 

the proposed method. The factorization is unique under certain conditions (e.g., adaptive sparse and nonnegative 

component), making it unnecessary to impose constrains in the form of statistical independence between original 
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sources. Furthermore, the proposed method can automatically detect the optimal number of components of the 

individual source, thus leading to more robust separation results among the comparison methods. 

 

Fig.5: Comparison of average SDR performance on mixture of two audio sources with Hilbert-SD, SCICA, 

EMD-ICA, SNMF2D, imitated-stereo mixture using DUET, and the proposed method with     and    . 

 

2)  Real Stereo signal (left channel only) 

 

In this evaluation, three stereo signals wdrums, nodrums and Shannonsongs Sunrise are used to demonstrate the 

effectiveness of the proposed method in dealing with having one signal from left channel of stereo signals.  ( ) is 

a “left channel mixture” of stereo signal, and   ( ) is a imitated stereo mixture which was generated from (3). Fig. 

6 shows the three original sources, the single channel mixture and the separated sources using the proposed 

method with     and    . From the plots, it is visually evident that the mixture has been clearly separated in 

comparison with the original sources.  
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Fig. 6: Original sources, single channel mixture, and estimated sources of Shannonsongs Sunrise mixture using 

the proposed method with      and    . 

 

The performance evaluation of the proposed method was illustrated in Fig.7 by comparing with the 

imitated-stereo mixture using DUET, SNMF2D, EMD-ICA, SCICA, and Hilbert-SD methods. 
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Fig. 7: Comparison of average SDR performance on mixture of two audio sources with the proposed method with 

    and    , imitated-stereo mixture using DUET, SNMF2D, EMD-ICA, SCICA, and Hilbert-SD. 

 

Table I presents the comparison of the proposed method and the existing well-known SCBSS methods. The 

proposed imitated-stereo method yields an outstanding performance over the DUET, SNMF2D, EMD-ICA, 

SCICA, and Hilbert-SD with a total average improvement 5.82 dB per source. In terms of percentage, the average 

performance improvement of the proposed method against the comparison methods are 92.9%, 140.3%, 242.1%, 

497.0% and 311.1%, respectively.  

 

Table I: Comparison of average SDR, SIR and SAR performance on three mixtures of three audio sources 

between Hilbert-SD, SCICA, EMD-ICA, SNMF2D, imitated-stereo mixture using DUET and the proposed 

method with     and     . 

 

Mixtures Methods SDR SIR SAR 

wdrums 

(Hi-hat/drums/bass) 

Proposed  method 13.63 37.95 13.65 

DUET 6.90 18.45 8.72 

SNMF2D 4.62 11.90 6.45 

EMD-ICA 5.11 13.55 5.12 

SCICA 3.47 12.28 4.04 

Hilbert-SD 3.27 10.98 3.53 
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nodrums 

(bass/lead G 

/rhythmic G) 

Proposed  method 8.85 31.85 8.84 

DUET 5.19 14.71 5.43 

SNMF2D 4.45 12.15 6.13 

EMD-ICA 2.79 14.12 1.97 

SCICA 1.43 13.50 2.57 

Hilbert-SD 3.62 13.04 5.22 

Shannonsongs 

Sunrise 

(drum/vocal/piano) 

Proposed  method 3.79 12.83 3.85 

DUET 1.53 7.36 1.47 

SNMF2D 1.86 6.24 2.14 

EMD-ICA -0.22 4.48 -0.96 

SCICA -0.50 3.31 -0.62 

Hilbert-SD 1.27 7.13 1.45 

 

The proposed method yields the best separation performance for all recovered sources. The performance of 

SCICA method depends on the statistical independence between the sources. As this condition is relaxed, the 

separation performance progressively deteriorates. EMD-ICA method works similarly to SCICA but the mixed 

signal is firstly pre-processed by the empirical mode decomposition (EMD), which acts as a filterbank whose 

cut-off frequencies are determined by the signal itself. The EMD enables the mixed signal to be coarsely separated 

and thus extenuate the amount of mixing before to feeding the outputs to the ICA stage for finer separation. 

However, the EMD cannot effectively separate the mixture if both original sources share the same frequency 

bands. The NMF2D method extracts the time and frequency features of each the audio source and works well 

when the frequency bases are invariant. However, the obtained frequency bases are not enough to dynamically 

capture the underlying time-varying spectral patterns of the sources especially with speech. The performance of 

the Hilbert-SD method relies on the derived frequency independent basis vectors which are stationary over time. 

Therefore, good separation results can be obtained only if the basis vectors corresponding to individual source are 

statistical independent within the processing window. Thus, if the frequency features of the sources are too similar, 

it becomes difficult to obtain the independent basis vectors. This explains the reason Table I shows a relatively 

poorer performance when separating mixture that contains speech sources. On the other hand, since our proposed 

method generates two channels mixture from a single recording by using the imitated-stereo technique, it benefits 

from the sources’ temporal correlation diversity. As long as the selected AR coefficient pertaining to each source 

is distinct, the mixture will be separable and the sources can be estimated using the time-frequency Wiener filter in 

Step 6 of the proposed method.  
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The benchmark methods can be classified according to their executing processes: First is time-frequency (TF) 

execution and second is time-series execution. On one hand, the TF execution consists of the proposed method, 

DUET, SNMF2D, Hilbert-SD. On another hand, the time-series execution is SCICA and EMD-ICA. General 

speaking, the complexity of TF execution is commonly higher than the time-series execution. Hence, the proposed 

method has higher complexity than SCICA and EMD-ICA. The computational complexity of the TF execution 

class has been elucidated. 

 

The proposed method is based on NTF approach which is a form of factorization in 3 dimensions as:        

where  ,   , and   denote number of frequency bands, number of time-index and number of mixtures, 

respectively. The computational complexity of the proposed method is dominated by iterating parameter update 

( ). The complexity of the proposed method can be express as:                             . Secondly, 

the DUET method transforms the TF matrix of the mixtures into a power weighted histogram and the remaining 

steps are then performed in one-go. Thus, the complexity of the DUET method can be expressed as:         

    . The SNMF2D is based on 2 dimensional matrix factorization of a sole mixture corresponding to the 

number of iterative. The complexity of the SNMF2D is formed as:                  . Finally, the 

Hilbert-SD is used which combines the Hilbert transformation with the iterative EMD decomposition. The 

complexity of the Hilbert-SD can be written as:                      . Hence, the comparison of 

complexity is shown in Table II. 

 

Table II: Comparison of complexity ration of DUET, SNMF2D, and Hilbert-SD to the proposed method. 

Complexity Ratio DUET SNMF2D Hilbert-SD 

Proposed Method 

 

    

 
    

      

 
    

      

 

 

The proposed method is augmented with high computational complexity among the benchmark methods. Future 

work will investigate the feasibility of the proposed method in alternative TF domains with adaptive sparseness. 
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6  CONCLUSION 

A novel single channel blind source separation based on NTF is proposed. The NTF separability of the imitated 

stereo mixture was derived and proved that the proposed method is able to discover the original sound from a sole 

mixture. The conventional NTF was extended by applying the modified Gaussian prior to extract the correlation 

between different basis vectors. The modified Gaussian prior is modelled by     that allows the proposed matrix 

factorization to capture the features of these patterns more efficiently. Additionally, the proposed algorithm can 

automatically detect the optimal number of latent components of the individual source, thus enabling the spectral 

dictionary and temporal codes of the individual source to be estimated more efficiently. Experiments have been 

conducted successfully to separate real-audio mixtures. Results show that the separating performance of the 

proposed method yields the outstanding performance over the state-of-the-art BSS methods. However, in the case 

of computational complexity, the proposed method is highest among the other comparison methods. Due to, the 

proposed method performs iterative parameters updating and computes the nonnegative matrix decomposition 

given by two imitated channels. While the DUET method discovers the original signals in one-go by using the 

Wiener masking and the conventional NMF performs by a single channel. Therefore, in the future work, the 

performance improvement of the proposed method is aimed to reduce the computational time. 
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