5 research outputs found

    Photometric stereo for strong specular highlights

    Full text link
    Photometric stereo (PS) is a fundamental technique in computer vision known to produce 3-D shape with high accuracy. The setting of PS is defined by using several input images of a static scene taken from one and the same camera position but under varying illumination. The vast majority of studies in this 3-D reconstruction method assume orthographic projection for the camera model. In addition, they mainly consider the Lambertian reflectance model as the way that light scatters at surfaces. So, providing reliable PS results from real world objects still remains a challenging task. We address 3-D reconstruction by PS using a more realistic set of assumptions combining for the first time the complete Blinn-Phong reflectance model and perspective projection. To this end, we will compare two different methods of incorporating the perspective projection into our model. Experiments are performed on both synthetic and real world images. Note that our real-world experiments do not benefit from laboratory conditions. The results show the high potential of our method even for complex real world applications such as medical endoscopy images which may include high amounts of specular highlights

    Key characteristics of specular stereo.

    Get PDF
    Because specular reflection is view-dependent, shiny surfaces behave radically differently from matte, textured surfaces when viewed with two eyes. As a result, specular reflections pose substantial problems for binocular stereopsis. Here we use a combination of computer graphics and geometrical analysis to characterize the key respects in which specular stereo differs from standard stereo, to identify how and why the human visual system fails to reconstruct depths correctly from specular reflections. We describe rendering of stereoscopic images of specular surfaces in which the disparity information can be varied parametrically and independently of monocular appearance. Using the generated surfaces and images, we explain how stereo correspondence can be established with known and unknown surface geometry. We show that even with known geometry, stereo matching for specular surfaces is nontrivial because points in one eye may have zero, one, or multiple matches in the other eye. Matching features typically yield skew (nonintersecting) rays, leading to substantial ortho-epipolar components to the disparities, which makes deriving depth values from matches nontrivial. We suggest that the human visual system may base its depth estimates solely on the epipolar components of disparities while treating the ortho-epipolar components as a measure of the underlying reliability of the disparity signals. Reconstructing virtual surfaces according to these principles reveals that they are piece-wise smooth with very large discontinuities close to inflection points on the physical surface. Together, these distinctive characteristics lead to cues that the visual system could use to diagnose specular reflections from binocular information.The work was funded by the Wellcome Trust (grants 08459/Z/07/Z & 095183/Z/10/Z) and the EU Marie Curie Initial Training Network “PRISM” (FP7-PEOPLE-2012-ITN, Agreement: 316746).This is the author accepted manuscript. The final version is available from ARVO via http://dx.doi.org/10.1167/14.14.1

    Computational Model for Human 3D Shape Perception From a Single Specular Image

    Get PDF
    In natural conditions the human visual system can estimate the 3D shape of specular objects even from a single image. Although previous studies suggested that the orientation field plays a key role for 3D shape perception from specular reflections, its computational plausibility, and possible mechanisms have not been investigated. In this study, to complement the orientation field information, we first add prior knowledge that objects are illuminated from above and utilize the vertical polarity of the intensity gradient. Then we construct an algorithm that incorporates these two image cues to estimate 3D shapes from a single specular image. We evaluated the algorithm with glossy and mirrored surfaces and found that 3D shapes can be recovered with a high correlation coefficient of around 0.8 with true surface shapes. Moreover, under a specific condition, the algorithm's errors resembled those made by human observers. These findings show that the combination of the orientation field and the vertical polarity of the intensity gradient is computationally sufficient and probably reproduces essential representations used in human shape perception from specular reflections

    Material Recognition Meets 3D Reconstruction : Novel Tools for Efficient, Automatic Acquisition Systems

    Get PDF
    For decades, the accurate acquisition of geometry and reflectance properties has represented one of the major objectives in computer vision and computer graphics with many applications in industry, entertainment and cultural heritage. Reproducing even the finest details of surface geometry and surface reflectance has become a ubiquitous prerequisite in visual prototyping, advertisement or digital preservation of objects. However, today's acquisition methods are typically designed for only a rather small range of material types. Furthermore, there is still a lack of accurate reconstruction methods for objects with a more complex surface reflectance behavior beyond diffuse reflectance. In addition to accurate acquisition techniques, the demand for creating large quantities of digital contents also pushes the focus towards fully automatic and highly efficient solutions that allow for masses of objects to be acquired as fast as possible. This thesis is dedicated to the investigation of basic components that allow an efficient, automatic acquisition process. We argue that such an efficient, automatic acquisition can be realized when material recognition "meets" 3D reconstruction and we will demonstrate that reliably recognizing the materials of the considered object allows a more efficient geometry acquisition. Therefore, the main objectives of this thesis are given by the development of novel, robust geometry acquisition techniques for surface materials beyond diffuse surface reflectance, and the development of novel, robust techniques for material recognition. In the context of 3D geometry acquisition, we introduce an improvement of structured light systems, which are capable of robustly acquiring objects ranging from diffuse surface reflectance to even specular surface reflectance with a sufficient diffuse component. We demonstrate that the resolution of the reconstruction can be increased significantly for multi-camera, multi-projector structured light systems by using overlappings of patterns that have been projected under different projector poses. As the reconstructions obtained by applying such triangulation-based techniques still contain high-frequency noise due to inaccurately localized correspondences established for images acquired under different viewpoints, we furthermore introduce a novel geometry acquisition technique that complements the structured light system with additional photometric normals and results in significantly more accurate reconstructions. In addition, we also present a novel method to acquire the 3D shape of mirroring objects with complex surface geometry. The aforementioned investigations on 3D reconstruction are accompanied by the development of novel tools for reliable material recognition which can be used in an initial step to recognize the present surface materials and, hence, to efficiently select the subsequently applied appropriate acquisition techniques based on these classified materials. In the scope of this thesis, we therefore focus on material recognition for scenarios with controlled illumination as given in lab environments as well as scenarios with natural illumination that are given in photographs of typical daily life scenes. Finally, based on the techniques developed in this thesis, we provide novel concepts towards efficient, automatic acquisition systems
    corecore