562 research outputs found

    Green Cellular Networks: A Survey, Some Research Issues and Challenges

    Full text link
    Energy efficiency in cellular networks is a growing concern for cellular operators to not only maintain profitability, but also to reduce the overall environment effects. This emerging trend of achieving energy efficiency in cellular networks is motivating the standardization authorities and network operators to continuously explore future technologies in order to bring improvements in the entire network infrastructure. In this article, we present a brief survey of methods to improve the power efficiency of cellular networks, explore some research issues and challenges and suggest some techniques to enable an energy efficient or "green" cellular network. Since base stations consume a maximum portion of the total energy used in a cellular system, we will first provide a comprehensive survey on techniques to obtain energy savings in base stations. Next, we discuss how heterogeneous network deployment based on micro, pico and femto-cells can be used to achieve this goal. Since cognitive radio and cooperative relaying are undisputed future technologies in this regard, we propose a research vision to make these technologies more energy efficient. Lastly, we explore some broader perspectives in realizing a "green" cellular network technologyComment: 16 pages, 5 figures, 2 table

    Resource Allocation in Wireless Networks with RF Energy Harvesting and Transfer

    Full text link
    Radio frequency (RF) energy harvesting and transfer techniques have recently become alternative methods to power the next generation of wireless networks. As this emerging technology enables proactive replenishment of wireless devices, it is advantageous in supporting applications with quality-of-service (QoS) requirement. This article focuses on the resource allocation issues in wireless networks with RF energy harvesting capability, referred to as RF energy harvesting networks (RF-EHNs). First, we present an overview of the RF-EHNs, followed by a review of a variety of issues regarding resource allocation. Then, we present a case study of designing in the receiver operation policy, which is of paramount importance in the RF-EHNs. We focus on QoS support and service differentiation, which have not been addressed by previous literatures. Furthermore, we outline some open research directions.Comment: To appear in IEEE Networ

    Comprehensive survey on quality of service provisioning approaches in cognitive radio networks : part one

    Get PDF
    Much interest in Cognitive Radio Networks (CRNs) has been raised recently by enabling unlicensed (secondary) users to utilize the unused portions of the licensed spectrum. CRN utilization of residual spectrum bands of Primary (licensed) Networks (PNs) must avoid harmful interference to the users of PNs and other overlapping CRNs. The coexisting of CRNs depends on four components: Spectrum Sensing, Spectrum Decision, Spectrum Sharing, and Spectrum Mobility. Various approaches have been proposed to improve Quality of Service (QoS) provisioning in CRNs within fluctuating spectrum availability. However, CRN implementation poses many technical challenges due to a sporadic usage of licensed spectrum bands, which will be increased after deploying CRNs. Unlike traditional surveys of CRNs, this paper addresses QoS provisioning approaches of CRN components and provides an up-to-date comprehensive survey of the recent improvement in these approaches. Major features of the open research challenges of each approach are investigated. Due to the extensive nature of the topic, this paper is the first part of the survey which investigates QoS approaches on spectrum sensing and decision components respectively. The remaining approaches of spectrum sharing and mobility components will be investigated in the next part

    Spectrum Efficient Cognitive Radio Sensor Network for IoT with Low Energy Consumption

    Get PDF
    Cognitive Radio Sensor Networks (CRSNs) have emerged as a promising solution for efficient utilization of the limited frequency spectrum. One of the key challenges in CRSNs is achieving spectrum efficiency by avoiding interference and maximizing the use of the available spectrum. Particle Swarm Optimization (PSO) techniques have been widely used to optimize the spectrum allocation and improve the spectrum efficiency of CRSNs. In this paper the study provides an overview of the research on spectrum efficiency in CRSNs using PSO techniques and also discussed the key parameters that affect the spectrum efficiency, such as the swarm size, sensor's threshold and maximum number of iterations and highlights the importance of identifying the optimal combination of these parameters. This paper also emphasizes the need for further research and development in this area to improve the efficiency and effectiveness of PSO-based optimization techniques for CRSNs and to adapt them to various real-world scenarios. Achieving spectrum efficiency in CRSNs is critical for enabling effective wireless communication systems and improving the overall utilization of the available frequency spectrum
    • …
    corecore