3,938 research outputs found

    Machine learning and energy efficient cognitive radio

    Get PDF
    With an explosion of wireless mobile devices and services, system designers are facing a challenge of spectrum scarcity and high energy consumption. Cognitive radio (CR) is a promising solution for fulfilling the growing demand of radio spectrum using dynamic spectrum access. It has the ability of sensing, allocating, sharing and adapting to the radio environment. In this thesis, an analytical performance evaluation of the machine learning and energy efficient cognitive radio systems has been investigated while taking some realistic conditions into account. Firstly, bio-inspired techniques, including re y algorithm (FFA), fish school search (FSS) and particle swarm optimization (PSO), have been utilized in this thesis to evaluate the optimal weighting vectors for cooperative spectrum sensing (CSS) and spectrum allocation in the cognitive radio systems. This evaluation is performed for more realistic signals that suffer from the non-linear distortions, caused by the power amplifiers. The thesis then takes the investigation further by analysing the spectrum occupancy in the cognitive radio systems using different machine learning techniques. Four machine learning algorithms, including naive bayesian classifier (NBC), decision trees (DT), support vector machine (SVM) and hidden markov model (HMM) have been studied to find the best technique with the highest classification accuracy (CA). A detailed comparison of the supervised and unsupervised algorithms in terms of the computational time and classification accuracy has been presented. In addition to this, the thesis investigates the energy efficient cognitive radio systems because energy harvesting enables the perpetual operation of the wireless networks without the need of battery change. In particular, energy can be harvested from the radio waves in the radio frequency spectrum. For ensuring reliable performance, energy prediction has been proposed as a key component for optimizing the energy harvesting because it equips the harvesting nodes with adaptation to the energy availability. Two machine learning techniques, linear regression (LR) and decision trees (DT) have been utilized to predict the harvested energy using real-time power measurements in the radio spectrum. Furthermore, the conventional energy harvesting cognitive radios do not assume any energy harvesting capability at the primary users (PUs). However, this is not the case when primary users are wirelessly powered. In this thesis, a novel framework has been proposed where PUs possess the energy harvesting capabilities and can get benefit from the presence of the secondary user (SU) without any predetermined agreement. The performances of the wireless powered PUs and the SU has also been analysed. Numerical results have been presented to show the accuracy of the analysis. First, it has been observed that bio-inspired techniques outperform the conventional algorithms used for collaborative spectrum sensing and allocation. Second, it has been noticed that SVM is the best algorithm among all the supervised and unsupervised classifiers. Based on this, a new SVM algorithm has been proposed by combining SVM with FFA. It has also been observed that SVM+FFA outperform all other machine leaning classifiers Third, it has been noticed in the energy predictive modelling framework that LR outperforms DT by achieving smaller prediction error. It has also been shown that optimal time and frequency attained using energy predictive model can be used for defining the scheduling policies of the harvesting nodes. Last, it has been shown that wirelessly powered PUs having energy harvesting capabilities can attain energy gain from the transmission of SU and SU can attain the throughput gain from the extra transmission time allocated for energy harvesting PUs

    RF-Powered Cognitive Radio Networks: Technical Challenges and Limitations

    Full text link
    The increasing demand for spectral and energy efficient communication networks has spurred a great interest in energy harvesting (EH) cognitive radio networks (CRNs). Such a revolutionary technology represents a paradigm shift in the development of wireless networks, as it can simultaneously enable the efficient use of the available spectrum and the exploitation of radio frequency (RF) energy in order to reduce the reliance on traditional energy sources. This is mainly triggered by the recent advancements in microelectronics that puts forward RF energy harvesting as a plausible technique in the near future. On the other hand, it is suggested that the operation of a network relying on harvested energy needs to be redesigned to allow the network to reliably function in the long term. To this end, the aim of this survey paper is to provide a comprehensive overview of the recent development and the challenges regarding the operation of CRNs powered by RF energy. In addition, the potential open issues that might be considered for the future research are also discussed in this paper.Comment: 8 pages, 2 figures, 1 table, Accepted in IEEE Communications Magazin

    Sensing Throughput Optimization in Fading Cognitive Multiple Access Channels With Energy Harvesting Secondary Transmitters

    Get PDF
    The paper investigates the problem of maximizing expected sum throughput in a fading multiple access cognitive radio network when secondary user (SU) transmitters have energy harvesting capability, and perform cooperative spectrum sensing. We formulate the problem as maximization of sum-capacity of the cognitive multiple access network over a finite time horizon subject to a time averaged interference constraint at the primary user (PU) and almost sure energy causality constraints at the SUs. The problem is a mixed integer non-linear program with respect to two decision variables namely spectrum access decision and spectrum sensing decision, and the continuous variables sensing time and transmission power. In general, this problem is known to be NP hard. For optimization over these two decision variables, we use an exhaustive search policy when the length of the time horizon is small, and a heuristic policy for longer horizons. For given values of the decision variables, the problem simplifies into a joint optimization on SU \textit{transmission power} and \textit{sensing time}, which is non-convex in nature. We solve the resulting optimization problem as an alternating convex optimization problem for both non-causal and causal channel state information and harvested energy information patterns at the SU base station (SBS) or fusion center (FC). We present an analytic solution for the non-causal scenario with infinite battery capacity for a general finite horizon problem.We formulate the problem with causal information and finite battery capacity as a stochastic control problem and solve it using the technique of dynamic programming. Numerical results are presented to illustrate the performance of the various algorithms
    • …
    corecore