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Abstract

With an explosion of wireless mobile devices and services, system designers

are facing a challenge of spectrum scarcity and high energy consumption. Cogni-

tive radio (CR) is a promising solution for fulfilling the growing demand of radio

spectrum using dynamic spectrum access. It has the ability of sensing, allocating,

sharing and adapting to the radio environment. In this thesis, an analytical per-

formance evaluation of the machine learning and energy efficient cognitive radio

systems has been investigated while taking some realistic conditions into account.

Firstly, bio-inspired techniques, including firefly algorithm (FFA), fish school search

(FSS) and particle swarm optimization (PSO), have been utilized in this thesis to

evaluate the optimal weighting vectors for cooperative spectrum sensing (CSS) and

spectrum allocation in the cognitive radio systems. This evaluation is performed

for more realistic signals that suffer from the non-linear distortions, caused by the

power amplifiers. The thesis then takes the investigation further by analysing the

spectrum occupancy in the cognitive radio systems using different machine learning

techniques. Four machine learning algorithms, including naive bayesian classifier

(NBC), decision trees (DT), support vector machine (SVM) and hidden markov

model (HMM) have been studied to find the best technique with the highest classi-

fication accuracy (CA). A detailed comparison of the supervised and unsupervised

algorithms in terms of the computational time and classification accuracy has been

presented. In addition to this, the thesis investigates the energy efficient cogni-

tive radio systems because energy harvesting enables the perpetual operation of the

ix



wireless networks without the need of battery change. In particular, energy can

be harvested from the radio waves in the radio frequency spectrum. For ensuring

reliable performance, energy prediction has been proposed as a key component for

optimizing the energy harvesting because it equips the harvesting nodes with adap-

tation to the energy availability. Two machine learning techniques, linear regression

(LR) and decision trees (DT) have been utilized to predict the harvested energy

using real-time power measurements in the radio spectrum. Furthermore, the con-

ventional energy harvesting cognitive radios do not assume any energy harvesting

capability at the primary users (PUs). However, this is not the case when primary

users are wirelessly powered. In this thesis, a novel framework has been proposed

where PUs possess the energy harvesting capabilities and can get benefit from the

presence of the secondary user (SU) without any predetermined agreement. The

performances of the wireless powered PUs and the SU has also been analysed.

Numerical results have been presented to show the accuracy of the analysis.

First, it has been observed that bio-inspired techniques outperform the conventional

algorithms used for collaborative spectrum sensing and allocation. Second, it has

been noticed that SVM is the best algorithm among all the supervised and unsu-

pervised classifiers. Based on this, a new SVM algorithm has been proposed by

combining SVM with FFA. It has also been observed that SVM+FFA outperform

all other machine leaning classifiers. Third, it has been noticed in the energy predic-

tive modelling framework that LR outperforms DT by achieving smaller prediction

error. It has also been shown that optimal time and frequency attained using energy

predictive model can be used for defining the scheduling policies of the harvesting

nodes. Last, it has been shown that wirelessly powered PUs having energy har-

vesting capabilities can attain energy gain from the transmission of SU and SU can

attain the throughput gain from the extra transmission time allocated for energy

harvesting PUs.
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Chapter 1

Introduction

1.1 Introduction

With the explosive development of wireless products and mobile internet ap-

plications, the demand of radio frequency (RF) spectrum has been constantly

increasing. The vast majority of the frequency spectrum is restricted to

licensed-only access under the current policies defined by the spectrum regu-

lating government bodies, such as the office of communications (Ofcom) and

the federal communications commission (FCC) in United kingdom and United

States, respectively. The wireless service providers can purchase the license

to exclusively utilize a band of certain frequencies within a large geographic

region. Under the current policies, the license holders have the right to use

the licensed spectrum only and it is forbidden to utilize the other spectrum

frequencies regardless of their occupancy status.

Due to the mentioned government regulations, the spectrum scarcity

is becoming a critical issue. On the contrary, recent spectrum occupancy

measurement studies are illustrating a different story about the spectrum uti-

lization. Interestingly, the spectrum policy task force (SPTF) within the FCC

has reported that localised temporal and geographic spectrum utilisation effi-
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Figure 1.1: A bar chart illustrating the spectrum occupancy measurements evaluated
between 30 MHz to 3 GHz for seven different locations in the United States. Adapted
from [2].

ciency ranges between 15% to 85% [1]. Following this, the spectrum occupancy

measurements were done in different counties in order to attain a clear pic-

ture of the actual spectrum utilization in the urban environment. The main

objective of all these studies was to find those spectrum bands that have low

occupancy and have more chances to be reused for other purposes.

A measurement study was done in [2], where the average spectrum

utilization of each frequency band between 30 MHz to 3 GHz is analysed

for seven different locations in the United States as shown in Fig. 1.1. It

was observed in Fig. 1.2 that majority of the cities have attained average

occupancy less than 25%.

In [3], a similar measurement campaign was done in Germany. It was

observed that spectrum is nearly 100 % utilized between 20 MHz - 3 GHz

and sparsely utilized between 3 GHz -6 GHz for outdoor locations. However,
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Figure 1.2: Overall spectrum occupancy measured at seven different locations in the
United States. Adapted from [2].

the spectrum occupancy for indoor locations is around 32% between 20 MHz

- 3 GHz. Another measurement study took place in Singapore in [4] for the

frequency bands between 80 MHz - 5.85 GHz, where it was found that GSM

900 is the busiest band. It was also noticed that radar bands and ISM bands

have low spectrum occupancy and contain abundant spectrum opportunities.

A survey of the spectral usage was also conducted in Kansas, USA [5].

The measurements were done between 9 kHz - 1 GHz as shown in Fig. 1.3.

It was observed that majority of the spectrum is sparsely utilized. The white

spaces in Fig. 1.3 can be reused to increase the spectrum utilization. Another

study was performed in the outdoor environment at Barcelona between 75

MHz - 3 GHz for two days. The average spectrum occupancy was observed

to be 22.57 % between 75 MHz - 3 GHz. It was also observed that cellular

bands: GSM 900 and UMTS have very low utilization of about 2.86 % [6].

In all these studies, it was concluded that spectrum scarcity is caused

due to two reasons (a) static spectrum allocation policies defined by the regu-

latory bodies and (b) the inefficient utilization by the license holders. In order

to bridge the gap between spectrum underutilization and spectrum scarcity, a

novel, adaptable and efficient communication paradigm called cognitive radio,
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Figure 1.3: The relationship between the average power (dBm) and the frequency
range between 9 kHz - 1 GHz using the spectrum occupancy measurements attained
at Lawrence, Kansas, USA. Adapted from [5].

was proposed by Mitola [7]. A complete overview of the CR technology is

presented in Section 1.2.

1.2 Cognitive Radio

In Mitola’s proposed CR network, there is a primary user (PU) who has license

(permission) to work in a certain spectrum and a secondary user (SU) who

has no spectrum license. CR enables the SU to build transmission links using

vacant PU channels such that there is minimum interference between primary

and secondary users. It is the vital technology that allows using the spectrum
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in a dynamic manner. Cognitive radio (CR) is formally defined in [8] as:

Cognitive radio is an intelligent wireless communication system that is

aware of its surrounding environment (i.e., outside world), learns from the en-

vironment and adapt its internal states according to the statistical variations in

the incoming RF stimuli in real-time, with two primary objectives in mind (a)

highly reliable communications whenever and wherever needed and (b) efficient

utilization of the radio spectrum.

There are two main characteristics of CR that can be derived from this

definition:

• Cognitive capability: refers to the ability of radio technology to attain

information from the radio environment.

• Reconfigurability: refers to the dynamic programming of the radio ac-

cording to the environmental conditions [9].

The cognitive capability and reconfigurability together are responsible for at-

taining self-healing and adaptable cognitive network architecture. It is further

explained in Section 1.2.1.

1.2.1 Overview of cognitive radio networks

In this section a brief overview of the cognition cycle, cognitive radio net-

work (CRN) topologies, spectrum sharing modes and the spectrum access

techniques is presented.

Cognition Cycle

There are four main functionalities of CR that must be performed continuously

in order to ensure the maximum protection to PU activities. The tasks in a

cognition cycle are shown in Fig. 1.4 and explained as
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• Spectrum sensing: refers to the detection of unused spectrum spaces

without creating harmful interference to the primary users. Spectrum

sensing classifies the spectrum space either as

– white space, one which is completely empty, except for noise. The

white spaces are also referred as spectrum holes in literature

– gray space, one which is partially occupied by interfering signals

– black space, one which is fully occupied by the communication sig-

nals, interfering signals and the noise.

• Spectrum allocation: refers to the selection of the best available spectrum

channels according to the user communication needs.

• Spectrum mobility: refers to fulfilling the user requirements for providing

seamless communication while switching the spectrum channels.

• Spectrum sharing: refers to those scheduling methods that ensure fair

spectrum allocation among coexisting users.

Network topologies of cognitive radio

Cognitive radio networks can have centralized or distributed topology. The

centralized topology is the one, where a central node coordinates spectrum

sensing, allocation and management among all other nodes. On the contrary

in distributed topology, the nodes communicate with each other in an adhoc

manner. The CRN network topologies can be chosen according to the desired

application as each topology has its own advantages and disadvantages. The

distributed topology has more computational complexity per node but has less

infrastructure costs. However the computational load on each node is lesser
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Figure 1.4: Architecture of the cognitive radio networks that comprises of a cognition
cycle, network topology, spectrum sharing and spectrum access modes. Adapted
from [10]
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in the case of centralized topology but it incurs more infrastructure costs as

each node shares its sensing results to the central controller [11].

Spectrum Sharing modes

Using either distributed or centralized topology, the results of the spectrum

sensing schemes are severely degraded in reality due to multipath fading and

shadowing. In order to improve the detection performance, cooperative spec-

trum sensing (CSS) is encouraged in literature [12], [13]. In cooperative spec-

trum sensing, the spectrum measurements are evaluated by a group of CRs

and the variability of the signal strength rely on various locations. In other

words, the probability that all users experience the same fade is very low which

eventually decreases the interference to PU. It is expected that the sensing re-

sults for a group of CRs would be better than individual sensing. On the other

hand, CSS has its own disadvantages as it is more complex than individual

sensing due to the increased control traffic between the nodes. Also, the delays

incurred due to combining results decreases the time for data transmission in

the case of CSS.

Spectrum access techniques

The main objective of cognitive radio is to utilize the spectrum spaces using

dynamic spectrum access (DSA). DSA refers to the process of locating those

frequency bands and time slots, where CR can send/receive data without

causing any degradation to the performance of the PUs [14]. In order to cause

minimum interference to the PU, CR adopts one of the following spectrum

access techniques given as

• Interweave Access: it is often termed as the interference avoidance mode.

The SU finds spectrum holes using sophisticated spectrum sensing tech-
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Figure 1.5: Dynamic spectrum access in an interweave mode. Adapted from [1].

niques and uses them for data transmission. The SU should leave the

channel, when the PU reappears. The concurrent data transmission from

both SU and PU is not allowed. This leads to the forced termination of

the SU connection (if there is no other available channel for the SU).

This scheme is often named as opportunistic spectrum access (OSA) as

shown in Fig.1.5.

• Underlay Access: refers to a technique where SU shares the spectrum

with PU, as long as its signal remains below the interference temperature.

The acceptable interference temperature refers to the average power that

can be tolerated as an interference by the PU receiver [15], [16]. This term

was introduced by FCC for ’quantifying and managing interference’ [17]

and is given as

TL =
PL
kW

(1.1)
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where PL represents the average interfering power in bandwidth W, k

represents the Boltzmann constant and k = 1.38 ∗ 10−23J/K. If TL is

set for a specific frequency bandwidth W , then SU should ensure that

average interference power it generates remains below kWTL.

• Overlay Access: refers to a technique where SU has the knowledge of the

PU’s transmitted data sequence (message) and how the data sequence

is encoded (codebook). The knowledge of the PU’s codebook can be

exploited by SU in various ways to improve the performance of both SU

and PU. This access mode is often termed as CR enabled cooperative

relaying [18]. The difference between underlay and overlay modes is

illustrated in Fig.1.6 and the comparison of three spectrum sharing modes

is presented in Table 1.1.

Using the knowledge of spectrum access techniques, it can be concluded

that white spaces can be used for interweaving that let PUs to operate in

unused regions, black spaces for overlaying where signals are processed in a

manner that makes the quality of transmission unimpaired by the SU and grey

spaces for underlying where SU ensures to keep the interference towards PUs

at a tolerable level.

1.2.2 IEEE Standard: 802.22

Currently, several cognitive radio systems are being finalized by standardiza-

tion bodies around the world. In the United States, the IEEE standardization

committee has worked on IEEE 802.22, where CR system is dealt as a wireless

regional area network (WRAN). The WRAN architecture is proposed for very

high frequency (VHF) and ultra-high frequency (UHF) ranges between 54-869

MHz. The standard has been finalized in July 2011 and it was developed to
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Figure 1.6: Overaly and underlay spectrum sharing modes in cognitive radio.
Adapted from [5]
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access the unused bands in the TV white spaces, where PUs represent the

analogue digital TV channels and low power wireless microphone signals [19].

The operation of the secondary user in IEEE 802.22 WRAN is divided

into multiple consecutive super-frames in the time domain, where each super-

frame is further subdivided into multiple MAC frames. Each super-frame has

16 media access control (MAC) frames, where each MAC frame is of 10 ms

duration which is further subdivided into spectrum estimation and secondary

data transmission slot as shown in Fig. 1.7. The super frame structure is pro-

posed for ensuring PU protection and managing secondary data transmission

effectively [20].

IEEE 802.22 proposes centralized architecture, where each SU in the

WRAN senses the spectrum to analyse the presence of the PU and sends the

sensing results to the fusion centre (802.22 base stations). The fusion centre

accumulates all the sensing results from various secondary users and makes

a final decision regarding the presence/ absence of the PU. The final sensing

result will be sent to the SUs by the base station.

Though IEEE 802.22 has been proposed as the first CR based interna-

tional standard, there are many other IEEE standards such as IEEE 802.11,

IEEE 802.15 and IEEE 802.16 that include some degree of CR technology

for attaining dynamic spectrum access and coexistence. Many of these stan-

dards include dynamic frequency selection (DFS) and transmit power control

(TPC) for the purpose of facilitating spectrum sharing. There are many fea-

tures in IEEE 802.22 that are adopted from IEEE 802.16 and IEEE 802.16e

standards such as physical, MAC and quality of service (QoS) features. The

frame structure of IEEE 802.22 is also an extension of the IEEE 802.16 and

IEEE 802.16e frame structures [21]. A comparison of IEEE 802.22 standard

with other popular standards such as IEEE 802.11, IEEE 802.15 and IEEE

12



Figure 1.7: A Superframe structure having a duration of 160 ms, where each super-
frame has 16 frames and every individual frame consumes 10 ms. Adapted from [20].

802.16 is presented in Table 1.2.

1.2.3 Potential applications of cognitive radio

Although the most common application of CR is in the TV white spaces;

where CR enabled SUs opportunistically utilize the unused spectrum without

interfering with PUs of spectrum, namely TV transmitters. Apart from this,

they can be used for the following:

• Cognitive radios can possibly be used to provide ’data boost’ by oppor-

tunistically offloading the traffic of the existing PUs to the white spaces.

In this manner, CRs can help to alleviate high loads on the cellular net-

work and meet the quality of service (QoS) requirements of the delay

sensitive traffic like voice, streaming and video etc [23].

• The usage of wireless technologies like Bluetooth, Infrared and WiFi

has been increasing in every home and it has eliminated the need of

wired communication. The problem associated with majority of these

technologies is that they are not designed to operate in coherence with

each other and causes interference to the receivers, which are not part

of their network. A central controller is required for the coexistence

13



of several wireless technologies. A cognitive digital home can operate

on white spaces in the unlicensed bands to carry control information

between devices [24], [25]. A cognitive home can be the solution for all

the interference issues due to multiple competing technologies.

• CR can be used for vehicle to vehicle communication networks, where

each vehicle can have CR and form a peer to peer network with other

vehicles around. This configuration can be used for sending traffic alerts

and geographic applications services.
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Network type Industry standards Frequency Max data rate Range

PAN IEEE 802.15 2.4 GHz 10 Mb/s 20-50 m

LAN IEEE 802.11 a 5 GHz 54 Mb/s 20 m

LAN IEEE 802.11 b 2.4 GHz 11 Mb/s 33m

MAN IEEE 802.16 ¡ 2.4 GHz 54 Mb/s 1-2 km

RAN IEEE 802.22 54 - 862 MHz 6 - 31 Mb/s 30 km

Table 1.2: The comparison of IEEE 802.22 wireless radio access network (WRAN)
to the other popular wireless standards. Adapted from [22].

1.3 Thesis Outline

1.3.1 Research Motivation

Although cognitive radio networks have been extensively researched as a po-

tential candidate for mitigating the spectrum scarcity and increasing spectrum

utilization, there are still a lot of problems that need to be addressed.

First of all, in order to utilize the spectrum effectively with minimum

interference to PUs, the SU needs to sense the spectrum efficiently with less

chances of error. The reliable spectrum sensing is only guaranteed using the

conventional spectrum sensing techniques when signal-to-noise ratio (SNR) is

high, however the detection performance degrades, otherwise. For combating

this problem, the cooperative spectrum sensing is encouraged. In CSS, the

local sensing is performed at each SU and the individual results are sent to

the data fusion centre via common control channel [26]. A data fusion cen-

tre combines energy measurements from all cooperating cognitive radios to

make a final detection decision. In order for CSS to be operative, the lo-

cal measurements sensed by each radio should be weighted according to their

reliability during data combining. This is because; the received SNR value

at each radio can vary intensely due to path loss and shadowing in realis-
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tic scenarios. It was observed in [27] that CSS outperforms the standalone

energy detector. Similarly [28] derived optimal and sub-optimal weights for

a linear combination of measurements in the data fusion centre. A popular

weighted energy combining method using CSS is proposed in literature known

as ’weighted linear combining (WLC)’. This scheme determines the optimal

weighting vector using a heuristic technique proposed in [29] which minimizes

the probability of detection error. However there is still a need for investi-

gating self-managing, self-configuring energy based combining techniques that

can adapt according to the time varying nature of the wireless channels. For

that, the bio-inspired approaches, with appealing features like self-adaptation,

autonomy and collaborative decision making abilities, can be investigated to

address the complexity of the CSS systems. Furthermore, the optimal weights

attained for CSS in literature deals with the linear PU signals, however in

reality, the PU signal may suffer from non-linear distortions. Therefore, there

is a need to consider both linear and non-linear PU signals for CSS analy-

sis. Apart from spectrum sensing, there is a need to investigate spectrum

allocation method based on spectrum sensing results that can ensure conflict

free spectrum allocation. A common method used for spectrum allocation in

literature is color-sensitive graph coloring (CSGC) [30]. Three evolutionary

algorithms are presented in [31] that outperform CSGC by attaining higher

value of the spectrum allocation rewards compared to CSGC. However there

is a still a need to analyse the self-adaptable algorithms that can converge

quickly and can attain higher value of the spectrum allocation rewards at the

same time.

Secondly, many studies have been performed to understand the spec-

trum occupancy statistics. For instance, the statistical and spectral occupation

analysis of the spectrum measurements was presented in [32] in order to study
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the traffic density in all frequency bands. In [33], auto-regressive model was

used to predict the radio resource availability using occupancy measurements

in order to achieve uninterrupted transmission of the secondary users. Sim-

ilarly, in [34] - [36], the occupancy statistics were utilized to select the best

channels for control and data transmission purposes so that less time is re-

quired for switching transmission from one channel to the other for the case,

when the PU appears. All of the aforementioned works have evaluated the

spectrum occupancy models by using conventional probabilistic or statistical

tools. These tools are often limited to the assumptions required to derive their

theories. For example, one has to determine whether the value is a random

variable or a random process in order to use the probabilistic and statistical

tools. Therefore, there is a need to investigate spectrum occupancy using those

techniques that do not have prerequisites on data. The correct modelling of

the spectrum occupancy can yield to better spectrum sensing.

Furthermore, the energy consumption due to radio frequency (RF) de-

vices is increasing exponentially with an increase in the usage of wireless ap-

plications. It is reported that the energy consumption of the information

and communications technology (ICT) infrastructure is increasing 16 - 20 %

approximately per annum and generates about 2 % of the worldwide CO2

emissions [37], [38]. Therefore, it is important to optimize the energy effi-

ciency of the wireless networks as it will not only cut the overall cost of the

network but will also decrease the adverse effects on the environment. Energy

harvesting devices could be a potential source of energy. In particular, radio

frequency (RF) energy harvesting is an upcoming technology that allows am-

bient RF signals to be collected by an antenna and converted into DC power

using a rectifier [39]. For making CRN efficient, it was proposed in [40] to allow

secondary user to harvest energy using renewable energy sources. Powering
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mobile devices using harvested energy from ambient sources such as solar,

wind, and kinetic activities makes wireless networks not only environmentally

friendly but also self-sustaining. On the other hand, the amount of RF energy

that could be harvested changes with time and frequency. For example, there

are more mobile signals during the day than during the night time in commer-

cial areas. Thus, it is very important for RF energy harvesters to choose the

right operating time and frequency for harvesting maximum energy.

Last, but not least, energy harvesting in CRN is a hot research topic

and the majority of the literature investigates those energy harvesting CRN,

where the SU harvests energy from the nearby PU or transmits information,

if the PU is far away [41], [42]. There are also few studies that encourages

cooperation between PU and SU [43]- [45]. All these works assumed that

the PU does not have any energy harvesting capability. Therefore, there is a

need to investigate the framework where PU can also have energy harvesting

capability and can get benefit from the presence of SU.

1.3.2 Chapter Outlines

Motivated by the above observations, the performance of the cognitive radio

network is analyticity evaluated in this thesis, while taking several realistic

conditions into account. Numerical results and discussion are presented to

evaluate the performance of the algorithms. The introduction and conclusion

sections are presented in each chapter to provide readers with overall sum-

maries of the chapters. The thesis is organized as follows.

In Chapter 2, a comprehensive overview of the spectrum sensing al-

gorithms is presented. Then, a detailed description of the machine learning

(ML) framework and bio-inspired techniques is presented. Also, the previous

works that deploy machine learning and bio-inspired algorithms in the area of
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the cognitive radio network is illustrated. Finally, an overview of the energy

harvesting techniques and wireless energy transfer methods are discussed.

In Chapter 3, a collaborative spectrum sensing and allocation frame-

work using bio-inspired techniques is proposed which provides an optimal

weighting vector for the data fusion centre. Three bio-inspired algorithms:

firefly algorithms (FFA), fish school search (FSS) and particle swarm opti-

mization (PSO) are used in this chapter, where FFA and FSS have not been

used for both collaborative spectrum sensing and allocation before. In order to

analyse the practical CSS systems, both linear non- linear primary user signals

with interference and fading losses are considered. Furthermore, a spectrum

allocation approach based on the optimal weighting vector evaluated by the

data fusion centre is proposed that outperforms the conventional method in

literature by attaining higher value of the spectrum allocation awards.

In Chapter 4, the machine learning algorithms are utilized to investigate

and classify the spectrum measurements taken at the University of Warwick

in order to gain an insight of the spectrum occupancy. Machine learning

plays a vital role in the artificial intelligence (AI) field, where algorithms are

implemented to analyse data using past experiences. Machine learning refers

to a paradigm, where an algorithm learns from the inputs in a manner that its

expected future performance improves. The machine learning algorithms are

often heuristic, as they do not have any prerequisites or assumptions on data.

As a result, in many cases, they provide higher accuracy than conventional

probabilistic and statistical tools. Three supervised algorithms, naive Bayesian

classifier (NBC), decision trees (DT), support vector machine (SVM), and one

unsupervised algorithm, hidden markov model (HMM) are used in Chapter 4

to classify the occupancy status of the time slots. The classified occupancy

status is further utilized for evaluating the blocking probability. Furthermore,
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a new technique that combines SVM with fire fly algorithm (FFA) is also

proposed that outperforms all supervised and unsupervised algorithms.

In Chapter 5, the energy prediction framework is proposed for choosing

the optimal frequency and time for harvesting maximum energy. Most cur-

rent works assume a theoretical framework for analysing energy profile, where

majority of the models can be utilized for the management of energy efficient

networks using the given set of conditions. However none of the previous works

considered the real time measurements from practice to estimate the amount

of energy, that can be harvested using the prior knowledge. Two machine

learning techniques: linear regression (LR) and decision trees (DT), are em-

ployed in Chapter 5 to predict the optimal frequency and time for harvesting

the maximum energy using low and medium-efficiency harvesters.

In Chapter 6, the performance of an energy harvesting CRN is anal-

ysed, where it is assumed that PU is a wireless powered system with energy

harvesting capability. In wireless powered communication (WPC), the power

is sent first to the PU from an access point (AP) and further PU uses the

harvested power for sending the information. It is proposed in Chapter 6 that

SU sends data while PU is harvesting power from the AP. In this manner, PU

gets chance to harvest some energy from the SU data transmission as well.

Using this notion, PU gets benefit from the SU without allocating extra re-

sources. Also, SU coexists with the PU and changes its strategies in a manner

that bring advantages to the PU. The proposed strategy is compared with

the conventional energy harvesting CRN, where PU does not have any energy

harvesting capabilities. It is shown in Chapter 6 that proposed methodology

outperforms the conventional energy harvesting CRN.

Finally in Chapter 7, the research results and analysis are summarised.

Also, the future work directions and suggestions are presented.
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Chapter 2

Background and Literature

Review

2.1 Introduction

With an increasing usage of dynamic mobile applications, it is becoming im-

portant for wireless devices to learn from environment. Cognitive radio (CR)

is one of the pioneer technologies that propose to learn from surroundings.

Apart from the environment awareness, CR should have capability to remem-

ber, judge and analyse the given situation. This will help CR to forecast

the network resources by analysing network load, location and user’s mobil-

ity. Learning from previous experiences can make the decision process and

adjustment of transmission/ reception parameters faster in the CR systems.

An intelligent CR architecture has three important stages [46]:

• Perception: refers to the ability of sensing environment and acquiring

data. The fundamental block to attain environmental awareness in CR

systems is spectrum sensing. The aim of the spectrum sensing is to
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detect spectrum holes. An extensive overview of the spectrum sensing

techniques is presented in Section 2.1

• Learning : refer to those steps that help to extract knowledge using the

information acquired from the RF environment For example, the PU

status (presence/ absence) is learnt using the data attained from the

environment.

• Reasoning : that deals with the ability to use the knowledge for taking

actions according to the given policies and conditions. Spectrum alloca-

tion is an example of reasoning, where the frequency channel would be

allocated to SU after evaluating PU status. The machine learning and

bio-inspired intelligent algorithms are utilized in this thesis for learning

and reasoning. They are further explained in Section 2.2.

In order to acquire perception, learning and reasoning, a lot of compu-

tations are required to be done by CR that consumes energy. For making CRs

energy efficient, a novel energy harvesting approach is also presented in this

thesis. The overview of the energy harvesting cognitive radio networks and

the wireless energy transfer methods is presented in Section 2.3.

2.2 Perception

The process of getting awareness about the PU signals in a given geographical

area at a given time is referred as perception. This is a challenging task,

because the detection should be done at SUs independently without causing

any external interference to the PUs [23]. In the simplest form, the received

signal at SU (yi(j)) can be written as
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yi(j) = xi(j) + wi(j) (2.1)

where xi(j) represents the PU signal (x(t)=0, when PU is not transmitting)

and wi(j) represents the additive noise respectively. Specifically, it is assumed

that

wi(j) = gi(j) + f i(j) (2.2)

where gi(j) and f i(j) represents the white Gaussian noise and additive interfer-

ence, respectively. A single detector must decide between the two hypotheses

(2.3)yi(j) =


wi(j), H0,

xi(j) + wi(j), H1,

The spectrum sensing performance is measured using two parameters

• Probability of false alarm: Pfa = Pr(H1|H0), that refers to the prob-

ability when SU mistakenly detects the presence of PU, however it is

absent.

• Probability of detection: Pd = Pr(H1|H1), represents the probability

when SU detects the presence of PU correctly.

These two probabilities are not independent, however they are linked by a

function, which illustrates the detector performance, called as receiver operat-

ing characteristic (ROC). The ROC curve expresses the dependency between

Pfa and Pd for a given detector [47], [48]. Some authors also use, the proba-

bility of missed opportunity, Pmo = Pr(H1|H0) = Pfa and the probability of

mis-detection Pmd = Pr(H0|H1) = 1 − Pd, as the performance metric in the

literature. Using Pfa and Pd, three classes of spectrum sensing systems can be

defined given as:
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• conservative, if Pfa > 0.5 and Pmd < 0.5

• aggressive, if Pfa < 0.5 and Pmd < 0.5

• hostile, if Pfa < 0.5 and Pmd > 0.5.

A conservative system has small probability of interference with PU as it has

high value of Pfa, hence small spectrum utilization rate. An aggressive system

has high spectrum utilization rate and small probability of interference. A

hostile system has low value of Pfa, with a large probability of interference [23].

Depending on the system model and the sensing quality, the sensing algorithms

can be chosen. There are some sophisticated spectrum sensing methods used

in the literature discussed as follows:

2.2.1 Energy Detection

In this method, the energy of the received signal is compared with a decision

threshold (λ), determined by the noise level [49]. Let yi(j) represents the

received signal at the SU, the decision metric Y can be computed using N

received samples, given as

Y =
1

N

N−1∑
i=0

|yi(j)|2 (2.4)

where yn represents the received signal and it can be in time-domain or fre-

quency domain. The binary testing hypothesis using energy detection can be

formulated as

(2.5)status =


Y < λ, H0,

Y > λ, H1,

There is no fading assumed in this model except the additive noise that is

independent, circularly symmetric zero-mean complex Gaussian signal with
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variance E[|wi(j)|2]. The performance of the energy detector is dependent

on the estimation of noise variance in the model. This is because, the test

statistic (Y ) is compared with decision threshold, where decision threshold is

dependent on the observed signal model, hence on the noise variance.

Energy detector has low detection performance when the noise vari-

ance is unknown to the receiving node. An error on the estimate of the noise

variance affects the performance of the detector, which becomes vulnerable to

noise power inaccuracies. When the signal-to-noise ration is very low, it would

be hard to distinguish between the radio signal and noise signal, therefore the

prior knowledge of the noise power can be used to improve the detection per-

formance of the energy detector. If the noise power level is perfectly known at

the receiver, the energy detector can work with arbitrary values of probability

of detection and probability of false alarm, even in low SNR regimes, by using

a sufficiently long observation time.

In summary, it can be concluded that energy detection has low com-

putational complexity and works well if two prerequisites are already been

achieved (a) the noise must be statistically stationary and (b) noise variance

is known to the detector [50].

2.2.2 Coherent Detection

This method assumes that PU signal is fully known at the receiver. The prior

knowledge about the features of the primary signals (such as modulation type,

pulse shape, data rate or statistical properties) can be used for increasing

the performance of the spectrum sensing detection. Provided the received

signal is yi(j) = xi(j) + wi(j), the demodulation of the PU signal (xi(j))

can be coherently done once timing and carrier synchronization sequences are

attained. The optimal coherent detection consists of a filter matched to xi(j),
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for the case having no interference and having stationary Gaussian noise only.

However the filter consists of hxi(j), for the case when fading is present in the

model, where h represents the fading coefficient known at the receiver. The

maximum -likelihood of the received signal obtained after sampling is given as

Y =
1

N

N−1∑
i=0

yi(j)xi(j)∗ (2.6)

where xi(j)∗ represents the conjugate of xi(j) and N represents the total num-

ber of samples, where n = 0, 1, 2, .., N − 1. The SNR of the matched filter

output, is γ = P
σ2
w

, where σ2
w represents the average noise power and P rep-

resents the average signal power under the assumption that primary signal is

stationary and the sensing time N is long enough given as

P =
1

N

N−1∑
i=0

|xi(j)|2 (2.7)

This technique has better detection performance than energy detection and

consumes less time [51], [52]. However, it needs complete knowledge of the

PU signal, which is impractical in reality [53]. Also, the synchronisation be-

tween the PU signal and the detector is a prerequisite for good performance in

this technique because synchronisation errors can severely degrade the perfor-

mance. In order to detect different kinds of the PU signal, the correlation of

the received signal needs to be computed with different signal patterns, which

eventually will increase the implementation complexity and power consump-

tion.

2.2.3 Feature detection

In practical wireless communication systems, the transmitted signals have

some distinct features that can assist receiver to detect. These features could
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be evaluated by exploiting the second order statistics of the received signals,

where in special cases the signals show cyclostationary properties. Two feature

detection schemes are explained as follows:

Cyclostationary-based detection

In reality, coherent detection is difficult to implement because it is cumbersome

to attain the complete knowledge of the PU signal. However, some features of

the PU signal can be used for defining the test static. For example, modulated

signal can be distinguished from the noise because most of the modulated sig-

nals are not stationary, however they are cyclostationary. The cyclostatioarity

refers to the property, where the mean and the autocorrelation function are

the periodic functions of time [54]. In this scenario, the cyclic autocorrelation

function (CAF) of the received signal can be analysed. Generally, the CAF

is periodic for the data signals but aperiodic for the noise signals [55], [56].

Consider a linearly modulated signal xi(j) =
∑

n ang(t−nT0), where T0 repre-

sents the symbol period g(t) is the modulation pulse and an is assumed to be

independent and identically distributed wide sense stationary data sequence

with zero mean and autocorrelation, rn−m = E[ana
∗
m]. The autocorrelation

function for x(t) is given as

(2.8)Ax(t, τ) =
∑
n

∑
m

rn−mg(t+ τ − nT0)g∗(t− nT0)

As Ax(t, τ) in (2.8) is a periodic function of t with period T0, so it can be

represented using Fourier series as

Ax(t, τ) =
∑
n

Aαx(τ)e+j2παt, α =
n

T0

(2.9)
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where Fourier co-efficient (Aαx(τ)) is defined as

Aαx(τ) =
1

T0

∫ T0
2

−T0
2

Ax(t, τ)e−j2παtdt, α =
n

T0

(2.10)

The Fourier coefficient given in (2.10) represents the CAF of xi(j), where

α represents the cyclic frequency and α = 0 represents the autocorrelation

of xi(j). The cyclic spectral density (CSD) of x(t) is defined as the Fourier

transform of Aαx(τ):

Sαx (f) =

∫ ∞
−∞

Aαx(τ)e−j2πfτdτ (2.11)

The CAF can be used for detecting the presence of PU using Aαx(τ), provided

that SU knows the T0 of the PU signal. In contrast to the energy detector, the

CSD detector can differentiate the PU’s signal from the noise and the interfer-

ence signals. The computational complexity of this technique is higher than

energy detector because managing the cyclostationary features of all possible

PUs is a complex task.

Autocorrelation-based detection

Signal autocorrelation is computed in this method in order to differentiate

the signal from the noise. Let the received signal be represented as yi(j) =

xi(j) + wi(j), then the sample autocorrelation matrix of yi(j) is given as

Ay =
1

N

N−1∑
n=L−1

yi(j)[yi(j)]∗ (2.12)

When N → ∞, provided that signal is uncorrelated with noise and the noise

sequence is white Gaussian, Ay converges to autocorrelation of yn given as

Ay = Ax + σ2
wIL (2.13)
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where σ2
w represents the average noise power, Ax is the autocorrelation matrix

of the column vector xi(j) and IL represents the identity matrix. When there

is no PU signal then Ay = σ2
wIL. Different test statistics can be calculated

from the autocorrelation matrix. This technique has several algorithm options

depending on the test statistics choices that include: eigen value-ratio test,

maximum-eigenvalue test and minimum-eigenvalue ratio test. Each of them is

briefly discussed as follows:

• Eigen value-ratio test Assume ρmax and ρmin as the maximum and

minimum eigenvalues value of Ax, and µmax and µmin represent the max-

imum and minimum eigenvalues of Ay, respectively, given as

µmax = ρmax + σ2
w (2.14)

µmin = ρmin + σ2
w (2.15)

where µmax

µmin
= 1, represents the condition when there is no PU signal and

µmax

µmin
> 1, otherwise [57].

• Maximum-eigenvalue test Considering (2.14), if there is no PU signal

then ρmax = 0, otherwise PU is present. In other words, µmax > σ2
w, when

PU is present while µmax = σ2
w, otherwise [58].

• Minimum-eigenvalue ratio test This test statistic compares the en-

ergy of the signal (yn) with the minimum eigen value of Ay. If their

ratio exceeds a given threshold, then the primary signal is assumed to be

present [59].

This method is robust to noise uncertainty and needs no synchronization [60].

The advantage of autocorrelation based detectors is that they do not require

a priori knowledge of the PU’s signal, channel and noise power. However the
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maximum eigen value detector can be used when noise variance is known [61].

The performance of the autocorrelation based detector is better than energy

detector when signal is correlated; however it matches energy detection when

the primary user is independent and identically distributed signal. Due to

autocorrelation computation, the complexity of this algorithm is higher than

energy detector.

The comparison of the detection schemes is presented in Table 2.1. Fol-

lowing the discussion, it can be concluded that the spectrum sensing technique

can be chosen according to the given scenario. Due to low computational com-

plexity, energy detection is chosen for the spectrum sensing in this thesis.

The complexity of the spectrum sensing receiver increases when wide-

band sensing is performed. For that case, the radio frequency components like

high resolution analogue to digital converters and high speed digital signal

processors with large operating bandwidth are required. Sensing frequency

that represent the number of times a cognitive radio should perform spectrum

sensing should be carefully adjusted. The optimum value depends on the ca-

pabilities of cognitive radio itself and the temporal characteristics of PUs in

the environment. The three spectrum sensing detectors differ each other in

terms of complexity and accuracy as shown in Figure 2.1 where it is clearly

observed that coherent detector is the most accurate detector with maximum

complexity. This is because coherent detector requires complete knowledge of

PU signal before deciding spectrum status [62].
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Figure 2.1: Comparison of spectrum sensing detectors in terms of complexity and
accuracy [62].
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Figure 2.2: Cognitive radio engine illustrating the relationship between the software
radio, the knowledge base, the learning and the reasoning engine. Adapted from [46].

2.3 Learning and Reasoning

An intelligent CR is composed of a software radio, knowledge base, learning

and reasoning engine as shown Fig. 2.2. The knowledge base of the cogni-

tive radio system stores the basic information like SNR, bit error rate, trans-

mit power, coding rate and symbol constellation. The main objective of the

learning engine is to evaluate the input state that will optimize the objective

function, where the objective function depicts the goal of the application that

could be the maximization of the throughput or the minimisation of the in-

terference. The learning is mandatory in those situations, where the effect of

changing inputs on outputs is not known. The channel statistics can be esti-

mated using a learning engine which can be used for making optimal decisions

using reasoning engine [63]- [64]. A comprehensive overview of the learning

and reasoning engine using machine learning and bio-inspired algorithms is

explained as follows.
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2.3.1 Bio-Inspired Intelligence

Traditionally, AI has been focussed to imitate the cognitive abilities of the

human brain. However in last few decades, there has been emergence of the

new AI methods inspired from the biological processes such as the immune

system, colonies of ants, bees and swarm of birds, to mention just a few [65].

The bio-inspired approaches, with appealing features such as self-adaptation,

self-organization and collaborative intelligence, have been extensively applied

to complex problems nowadays. The two most dominant classes of bio-inspired

algorithms are evolutionary algorithms and swarm based algorithms, explained

as follows:

• Evolutionary algorithms: These methods take inspiration from the fun-

damental biological principle: survival of the fittest and deletion of the

poor solutions from the population. Each iteration evaluates the ob-

jective function for all individuals in a population and compares them.

The fittest individuals are selected for the next iteration. The popular

example is genetic algorithm and its variants [66]

• Swarm Based Algorithms: These methods exploit the coordination prin-

ciples especially related to the distributed communication between in-

dividuals in nature. Each individual in this domain try to adjust its

position according to the location of the fittest individual in the pop-

ulation. Popular examples include bird flocking, ant colonies and fish

schooling [66].

An overview of the applications using evolutionary based algorithms and

swarm based algorithms in cognitive radio networks is presented as follows
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2.3.2 Bio-Inspired Cognitive radio

Inspired from the biological systems, a bio-inspired radio access scheme is pro-

posed in [67], where the behaviour of the flock of birds swarming in search for

food is simulated. Another technique, artificial bee colony (ABC) optimization

is utilized in [68], for evaluating the optimal spectrum allocation matrix. It

was observed in [68] that proposed method has outcomes near to the optimal

values, which are calculated using exhaustive search. Similarly in [69], ant

colony optimization is utilized for spectrum detection and allocation in multi-

radio environment. In [70], a co-operative spectrum sensing method using

particle swarm optimization (PSO) is presented that results in higher prob-

ability of detection compared to the previous spectrum sensing techniques.

Further in [31], genetic algorithm (GA), quantum genetic algorithm (QGA)

and PSO are utilized for the spectrum allocation. It was observed in [31] that

all bio-inspired algorithms perform better than the traditional technique used

for spectrum allocation in the literature (color sensitive graph algorithm) and

specifically PSO outperforms both GA and QGA. A comparison between ABC

and GA is presented in [71] for the optimal spectrum allocation and it was

observed that ABC performs better than GA.

Although both evolutionary based algorithms and swarm based algo-

rithms have been extensively applied in the cognitive radio network but there

are still some complex problems that could be solved and optimized by ex-

ploiting the bio inspired algorithms. In this thesis, three bio-inspired tech-

niques: particle swarm optimization, fire fly algorithm and fish school search

are utilized for optimizing the collaborative spectrum sensing and allocation

in Chapter 3. Both particle swarm optimization and fire fly algorithm are

swarm based algorithms. They both exploit and explore the problem space to

get the best optimal configuration for attaining spectrum sensing results with
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highest probability of detection and for achieving fair spectrum allocation.

However fish school search is a hybrid algorithm, that inherits some charac-

teristic from both swarm based and evolutionary based algorithms. Both fire

fly algorithm and fish school search are not utlized for addressing CSS before.

It is observed in Chapter 3 that proposed algorithms performs better than

PSO (conventional swarm based scheme known in literature for achieving the

best spectrum sensing results in [70] and the best spectrum allocation results

in [31].)

2.3.3 Machine Learning

Machine learning is a pioneer field of the artificial intelligence, where algo-

rithms are implemented to analyse the data (input examples) based on the

previous experiences. There are three ways to learn from the input examples:

supervised learning, unsupervised learning and reinforcement learning [72] as

shown in Fig. 2.2 and explained as follows:

Supervised learning

In this method, a part of the data samples is used for training the objective

function. During training phase, a target value corresponding to each input

sample is directly mapped as an output. The main objective of the supervised

learning is to predict the future input-output observations with minimum error

by finding a deterministic function which maps any input to an output. The

recognition of the handwritten letters or digits is a popular example of the

supervised learning [72].

Supervised learning is of two types: classification and regression. In

classification, the output space can have discrete values. For example, the

presence/absence of the cancerous cells can be detected using classification.
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On the other hand, the learning problem is categorized as regression if the

output space is formed by the values of the continuous variables [73]. For

example, the prediction of shares in the stock exchange market is a regression

problem.

Unsupervised learning

In this method, the input samples are not associated with the target values.

The dataset for unsupervised learning could be a set of clusters or a probability

density stating that how likely it is to observe a certain object in the future.

For example, image and text segmentation can be solved using unsupervised

learning. These learning techniques can also be used for the dimensionality

reduction (transforming high dimensional data into low dimension space en-

suring that the original information of the data is preserved) [74].

Reinforcement learning

In reinforcement learning, there is not an optimal output for a given input

however the algorithm identifies an action that maximises the reward. In this

scenario, the algorithm learns itself what needs to be done. Learning to play

chess is an example reinforcement learning [76].

An overview of the machine learning based cognitive radio networks is

presented as follows.

2.3.4 Machine Learning Cognitive Radio

Conventional spectrum sensing techniques need ample time to attain satis-

factory performance and are computationally complex as well. On the other

hand, machine learning is an effective tool for attaining promising results for

dynamic spectrum access in CRN because ML techniques are adaptive to the
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Figure 2.3: Three methods of learning from data in machine learning (a) supervised
learning (b) unsupervised learning and (c) reinforcement learning. Adapted from
[75].
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changing radio environment. The same ML technique can be used for analysing

the data of different days and locations [77].

Recently, ML has been extensively used in CRN for analysing the his-

toric data to predict future outcomes. In [77], k-means clustering, Gaus-

sian mixture model (GMM), support vector machine (SVM) and weighted

k-nearest-neighbour (KNN) are utilized for the pattern classification in the

collaborative spectrum sensing framework. The performance of each classifi-

cation technique is quantified in terms of the average training time, the sam-

ple classification delay and the ROC curve. In [78], a ML based collaborative

multi-band spectrum sensing policy for CRs is proposed that provides high

throughput for the SUs, reduces miss detections and improves the energy effi-

ciency in the system. Similarly in [79], the ML algorithms are utilized for the

classification of the signal from different MAC protocols. In [80], an exten-

sive discussion is presented on the application of kernel based learning (KBL)

methods to the statistical signal processing in CRNs.

Though machine learning has been applied for improving the perfor-

mance of cognitive radio networks but there exists some problems that can be

addressed using ML. In this thesis, ML is used for analysing spectrum occu-

pancy using the real time data acquired at the University for Warwick. The

spectrum occupancy is not analysed using ML algorithms before. The ma-

chine learning framework for spectrum occupancy classification is presented in

Chapter 4, where ML algorithms are also compared with a statistical approach

in the literature used for analysing occupancy. Also, a novel energy predictive

modelling framework using machine learning algorithms is presented in Chap-

ter 5, which has not been proposed before. Two supervised algorithms: linear

regression and decision trees are utilized for predicting those time slots and

frequency bins where more energy can be harvested. The proposed approach
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is also compared with the conventional prediction scheme in the literature.

2.4 Energy harvesting cognitive radio networks

Nowdays, energy harvesting has become a hot research topic for the next

generation wireless communications systems. This is because energy cost paid

by the operators for running their access networks is becoming a significant

factor of their operational expenditures (OPEX) [81].

An extensive research has been done on energy saving hardware, energy

friendly software applications and energy aware network architecture etc. As

CR is a promising approach for increasing the spectrum efficiency using the

concept of opportunistic spectrum access, there is a need to address the energy

harvesting capacilities in CRN as well [82]. The deployment of energy harvest-

ing capabilities in CR can provide a way to utilize the limited transmission

power efficiently.

An energy harvesting CRN is proposed in [83], where SU harvests energy

using renewable energy sources (solar, wind, and kinetic activities). Harvesting

energy from the renewable sources not only makes wireless networks environ-

mentally friendly but also self-sustaining. Apart from the renewable sources,

radio frequency (RF) energy harvesting is also proposed for CRN in [84]- [86]

briefly explained as follows.

2.4.1 RF Energy harvesting

The key component for converting radio waves into electrical energy in a RF

energy harvester is rectenna, comprised of an antenna and a RF to DC con-

verter. In addition to transmitting and receiving data, the wireless interface

of the cognitive radio device can be reused for energy harvesting which will

save cost and reduce implementation complexity [87]. A general overview of
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Figure 2.4: The relationship of cognition cycle with the components of RF powered
cognitve radio network device. Adapted from [87]

the cognitive radio with RF energy harvesting features is presented in Fig 2.4.

This includes wireless transceiver, spectrum analyser, knowledge extraction

unit, decision making unit, analogue to digital converter, power controller,

power management unit and a RF energy harvester. It is clearly depicted in

Fig 2.4 that cognition cycle (as mentioned in Section 1.2) is achieved using

observe, learn, orient, decide and plan modules. The cognition cycle along

with a RF harvester and energy storage unit composes RF energy harvesting

CR.
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The output power of a RF harvester is typically in the micro watt to

milli watt range which depends on number of factors such as distance and out-

put power of the source. Table 2.2 summarizes the experimental measurements

of the RF energy harvested from various RF energy sources [87]. Though the

amount of energy that can be harvested using RF is very small, it can be used

to provide the energy to the low power devices such as temperature sensors,

hearing aids, and wristwatches. The advantage of RF energy harvesting is

that it does not depend on nature, and hence it provides relatively predictable

energy supply.

In conventional RF energy harvesting CRN approaches, SUs harvest

RF energy from the transmission of nearby PUs opportunistically, store the

harvested energy in batteries and uses it for transmitting the data, when pri-

mary user is passive. Therefore, SUs must not only identify spectrum spaces

for the data transmission but it should also search the occupied spectrum to

harvest the maximum energy [88].

Source source power Frequency Distance Harvested Energy
Isotropic
RF
transmitter

4W 902-928 MHz 15m 5.5 µW

Isotropic
RF
transmitter

1.78W 868 MHz 25m 2.3 µW

Isotropic
RF
transmitter

1.78W 868 MHz 27m 2 µW

TX91501
Powercaster
Transmitter

3W 915 MHz 5m 189 µW

KING-TV
tower

960kW 674-680 MHz 4.1km 60 µW

Table 2.2: Experimental data of RF energy harvesting. Adapted from [87].

In this thesis, an energy harvesting approach is proposed that considers
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the idea of using wireless power transfer (WPT). There has been an increasing

research interest in wireless power transfer methods as it can increase the life-

time of the power limited network. A brief overview about WPT is presented

as follows.

2.4.2 Wireless power transfer methods

The concept of WPT was coined by Nikola Tesla in 1890, where it was sug-

gested to transmit energy from the power source to the destination using a

wireless medium. By using WPT, the cost for planning and installing power

cables can be saved but one of the main challenges to implement WPT is its

low energy transfer efficiency. Recently the research in WPT is motivated due

to the widespread use of low-power devices that can be charged wirelessly [89].

The WPT using RF signals has recently attracted considerable atten-

tion due to two reasons: (a) it is a deterministic power transfer method (b) the

information and power can be transferred simultaneously as RF signal. The

WPT methods are categorized into two main types according to the transfer

model and protocol (a) simultaneous wireless information and power transmit

(SWIPT), where data and power signals are sent at the same time (b) wireless

powered communication (WPC). In WPC, power signal is transferred first to

the receiver and then harvested power is utlized by the receiver to transmit

the information, thus it is also named energy harvesting communication as

shown in Fig. 2.5. The information and power transfer is related more closely

in WPC compared to SWIPT because the harvested power can affect the in-

formation rate [90], [91] where energy is sent first and then harvested power is

used for sending the data signals.

In this thesis, a novel RF energy harvesting CRN is presented where PUs

are wirelessly powered and have energy harvesting capabilities. In proposed
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Figure 2.5: Wireless powered communication. Adapted from [91].

framework PUs are employing harvest-then-transmit protocol, where power is

transmitted first and then the harvested power is used for sending information.

The detailed framework is explained in Chapter 6.
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Chapter 3

Bio-Inspired Cognitive Radios

3.1 Introduction

In collaborative spectrum sensing with energy detection, a data fusion cen-

tre combines energy measurements from all cooperating cognitive radios to

make a final detection decision. The energy measurements from each cogni-

tive radio are weighted for making final decision. As mentioned in Chapter

1, it was observed in [27] that cooperative spectrum sensing (CSS) outper-

forms the standalone energy detector. Reference [28] derived optimal and

sub-optimal weights for a linear combination of measurements in the data fu-

sion centre. More works on spectrum sensing can be found in [29] and the

references therein.

After spectrum sensing, spectrum allocation is often performed to al-

locate the detected channels. A common method for spectrum allocation in

literature is CSGC [30]. However, a bio-inspired technique, particle swarm op-

timization has outperformed CSGC in [31] by attaining higher value of spec-

trum allocation rewards. There is still a need to analyse those algorithms

that can converge faster than PSO and can ensure higher spectrum alloca-

tion rewards. In this chapter, a cooperative spectrum sensing and allocation
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framework is proposed using bio-inspired techniques, which not only provides

an optimal weighting vector for the data fusion centre but also ensures conflict

free spectrum allocation. The contributions of this chapter are summarized as

follows:

• Three bio-inspired algorithms: firefly algorithm (FFA), fish school search

(FSS) and particle swarm optimization (PSO) are used in this chapter,

where FFA and FSS have not been used for collaborative spectrum sens-

ing and allocation before. It will be shown in Section 3.4 that firefly

and fish school search algorithm outperforms conventional schemes used

earlier for collaborative spectrum sensing and allocation scenarios.

• In previous works, linear primary user signals were considered for CSS.

However in reality, primary user signals may suffer from non-linear dis-

tortions, that is, if the power amplifier does not have enough gain, the

input of the power amplifier at the primary user will be non-linearly

distorted. In this case, the linear weights of the measurements as used

in [28] may not be optimal any more. In order to address this, both linear

and non-linear primary input signals with interference and fading losses

are considered in this chapter.

• For CSS, the optimal weighting vector in the data fusion centre is com-

puted using the popular algorithm ’weighted linear combining (WLC)’

[28], and numerical results in Section 3.4 will show that the bio-inspired

algorithms outperforms the WLC method.

• A cooperative spectrum allocation approach has also been proposed,

which is dependent on the optimal ’weighting vector’ evaluated by the

data fusion centre using spectrum sensing results. The relationship be-

tween the optimal ’weighting vector’ computed during cooperative spec-
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trum sensing and the spectrum allocation module is not presented before.

The rest of the chapter is organized as follows. System model is pre-

sented in Section 3.2. The description of the spectrum sensing and spectrum

allocation models using bio-inspired techniques is presented in Section 3.3.

Numerical results and discussions are presented in Section 3.4. Finally, con-

clusions are given in Section 3.5.

3.2 System Model

Following the binary hypothesis test in Section 2.1, the received signal rd(m)

is formulated as

H0 : rd(m) = zd(m) (3.1)

H1 : rd(m) = Gds(m) + zd(m). (3.2)

In (3.1) and (3.2), d = 1, 2, ...D and m = 1, 2, ...M , where D is the total num-

ber of radios and M is the total number of samples at each cognitive radio.

Also, s(m), Gd and zd(m) represent the primary signal, the channel gain and

the zero-mean additive white Gaussian noise with variance σ2
zd

, respectively.

In order to model the real time scenario, the fading is introduced in the system

where fading represents the fluctuation in the magnitude of the trasnmited sig-

nals due to variaiton in the propogation media. Both flat fading and frequency

selective fading channels are considered. The frequency selectivity assumes the

tapped delay line model given in [92]. Furthermore, RF power amplifiers (PA)

are used in transmitters for converting the low power signal into higher power

signal. The main objective of using PA are power efficiency, heat dissipation

and input-output impedance matching. In this system, it is assumed that the

primary signal s(m) is a non-linear signal where the non-linearity is induced by
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passing the signal through the PA at the primary user transmitter. Typically,

the non-linear behaviour can be characterised due to amplitude compression

(amplitude to amplitude (AM/AM)) or phase distortion (amplitude to phase

(AM/PM)), and in some types of PAs both of these effect the system [93].

Two models are considered in this system that model PA non-linearity given

as:

• Memory less Polynomial Model : As explained in [93], a strictly memory-

less PA can be described in pass band as a non-linear function that maps

the real valued input to the real valued output. This memory-less non

linearity can be approximated using a power series given as

s(m) =
P∑
p=1

bp[I(m)]p (3.3)

where bp are the real-valued coefficients, I(m) is the pass-band PA input

and s(m) is the pass band PA output signal in (3.3) that will be sampled

by cognitive radio.

• High Power Amplifier (HPA) Model : The nonlinear HPA model in the

transmitter represents the nonlinear distortion imposed on the signal. A

useful nonlinear HPA model is the Saleh model [94, 95]. Utilizing the

Saleh model, the output of the HPA, s(m), is given by

s(m) =
I(m)A(rs)e

jφ(rs)

rs
. (3.4)

In (3.4), A(rs) is an odd function of rs, with a leading term representing

AM/AM conversion and φ(rs) is an even function of rs, with a quadratic

leading term representing AM/PM conversion. As AM/AM conversion
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Figure 3.1: Comparison of high power amplifier model and memory less polynomial
model.

is only considered in this thesis, φ(rs) is not taken into account. In (3.4),

rs = |I(m)| and A(rs) = eArs
1+fAr2s

, where eA and fA are constants [95].

It is shown in Fig. 3.1 that both high power amplifier model and mem-

ory less polynomial model affects the magnitude of original signal by different

amounts. This is because the functions responsible for bringing non-linearities

in both models are different. For spectrum sensing, the dth cognitive radio

calculates its received signal energy using Ed =
∑M−1

m=0 |rd(m)|2 and sends it

to the fusion centre. The fusion centre evaluates an output for decision as

ydd =
∑D−1

d=0 wdEd = wTE, where E = [E1, E2, ...ED] and w = [w1, w2, ...wD]T

represents the weighting vector. Following [96], the probability of detection

(Pd) is derived as

Pd = Q(
Q−1(Pf )

√
wTX1w−MEsG

T
dw√

wTX2w
) (3.5)

where Q(x) =
∫∞
x

1√
2π
e−t

2/2dt , Pf is the probability of false alarm, X1 =
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2Mdiag2(σzd), X2 = 2Mdiag2(σzd) + 4Esdiag(Gd), Es =
∑M−1

m=0 |s(m)|2, σzd =

[σ2
z1
, σ2

z2
, ..σ2

zD
], Gd = [|G1|2, |G2|2...|GD|2] and diag() represents the diagonal

matrices.

It is evident in (3.5) that Pd resulting from CSS can be optimized by

optimizing the weighting vector w. Therefore Pd is a function of w, or f(w) =

Pd(w).

Three bio-inspired techniques are used in this chapter for optimizing

w, where w represents the position of bio-creature in the proposed system.

The motivation of using bio-inspired algorithms comes from ’foraging’, where

every bio-creature tries to detect the best location of food with the help of

their mates. In this work, the concept of the ’high food concentration’ in bio-

creatures is assumed as the ’high value of Pd’ in CRN and the ’positions of

bio-creatures’ are assumed as the ’weighting vector’. The optimal weighting

vector refers to the specific location where bio-creatures finds the maximum

food concentration. The bio-creatures (fire flies, fishes and birds) are referred

as particles in further explanation.

A slow changing spectrum access of primary users is assumed in this

model, where particle m represents a sample sensed by cognitive radios. A

particle m has a specific position in D dimensions, where dimensions are as-

sumed equal to the number of CRs. The analogies between CRN and bio-

inspired techniques are illustrated in Table 3.1. Each optimal weighting vec-

tor w = [w1, w2, ...wD]T has D dimensions, where the value of each dimension,

say wD, represents the weight assigned to dth CR as shown in Fig. 3.2. The

weight for each CR determines its priority over the other, so it is named as

’priority weight’. It is evident that the change in particle’s position will conse-

quently affects the priority weights of all CRs in the system. During spectrum

sensing, the fusion centre evaluates the optimal position of the particle that
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yields highest Pd. Once optimal w is known by CR, the spectrum allocation

is performed by the fusion centre as shown in Fig. 3.2. During spectrum

allocation, it is proposed that the frequency channels will be allocated accord-

ing to the value of ’priority weights’ in optimal w. Let w1 and w2 be two

values of priority weights belonging to CR1 and CR2 respectively in optimal

w = [w1, w2, ...wD]T , where w1 > w2, which shows that priority will be given to

CR1 compared to CR2. Spectrum allocation is explained in detail in Section

3.3.2.

The probability of detection (Pd) in (3.5) will be used as an objective

function for the evaluation of both bio-inspired spectrum sensing and allocation

metrics. In the literature, the optimal value of w was determined in three ways:

equal gain combining (EGC), weighted linear combining (WLC) and optimal

combining (OC) [28]. In these techniques, it was observed that WLC and OC

outperform the EGC method because their received energy measurements are

’weighted’ as shown in [ [28], Eq.5] and [ [28], Eq.7]. To determine the optimal

weighting vector in the WLC method, a heuristic technique was proposed

in [96] that minimizes the probability of detection error as

wwlc =
γd

1 + 2γd
(3.6)

where γd = Es|Gd|2
σ2
zd

is signal to noise ratio and wwlc represents the weight for

each dth radio respectively. Though WLC outperforms EGC, the proposed

bio-inspired algorithms will perform better for the case of both linear and

non-linear signals as will be explained in Section 3.4.
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CRN Bio-Inspired Techniques
Number of samples
sensed by CR

Number of particles

Number of CRs
Number of dimensions of the
position of mth particle

Fitness Function: Pd Fitness function: food concentration

Optimal weighting vector
Best position of particle
with maximum value of fitness function

Table 3.1: Analogies between CRN framework and proposed bio-inspired techniques.

3.3 Proposed Algorithms and Methodology

Three bio-inspired meta-heuristic algorithms are used for the collaborative

spectrum sensing and allocation in this approach, where meta-heuristic algo-

rithms are iterative search processes that efficiently perform the exploration

and exploitation in the solution space for efficiently finding the near optimal

solutions. In this context, three types of bio-inspired meta-heuristics: PSO,

FSS and FFA were devised to find the optimal solutions of noisy non-linear

continuous mathematical models. FFA is potentially more powerful in solv-

ing noisy non-linear optimization problems. The FFA not only includes the

self-improving process with the current space, but it also includes the improve-

ment in its own space from the previous stages. In [97], it was evaluated using

benchmark functions that FFA outperforms the PSO in noisy situations. PSO

is a powerful optimization tool but sometimes it cannot tackle dynamic op-

timization problems. It occurs because the entire swarm often increases the

exploitation around a good region of the search space, reducing the overall

diversity.

3.3.1 Spectrum Sensing

Let wk
m = [wkm1, w

k
m2, ..w

k
mD], where wk

m represents the mth particle during

iteration k in D dimensions and m = 1, 2, ..M , where M represents the total
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number of particles. The optimized wk
m is evaluated using three bio-inspired

techniques in this approach where first two steps are common in each algo-

rithms given as

Step 1: Set k = 0, and generate initial positions of particles as wk
mεa, where a

is a uniform random variable between [0,1].

Step 2: Evaluate the fitness of each particle (Pd(w
k
m)) using objective function

in (3.5).

Step 3: This step is specific for each technique and explained below.

Firefly Algorithm

(a) If (Pd(w
k
2) > Pd(w

k
1)), then an update in wk

1 occur as follows [99]:

wk+1
1 = wk

1 + βe−γr
2
f (wk

2 −wk
1) + α(rand− 0.5) (3.7)

where rf represents the Euclidean distance between wk
1 and wk

2, α represents

the attractiveness between particles at initial stage, β is a positive constant, γ

is the absorption co-efficient of the medium and rand is the uniform random

number generator. The third term α(rand − 0.5) is added for randomization

with α being the randomization parameter [99].

(b) After comparison of the fitness of all M particles, the particle with the

highest fitness is selected; which represents the optimal weighting vector of

the kth iteration.

Fish School Search

(a) If (Pd[w
k
m] > Pd[w

k−1
m ] , then wk

m is updated as [100]

wk
m =

Pd[w
k
m]− Pd[wk−1

m ]

max|Pd[wk
m]− Pd[wk−1

m ]|
(3.8a)

54



(b) After all particles have moved individually, a weighted average of individual

movements based on the instantaneous success of all particles is computed and

added to current particle position given as [100]

wk
m = wk−1

m +

∑M
m=1 ∆wmPd[w

k
m]− Pd[wk−1

m ]∑M
m=1 Pd[w

k
m]− Pd[wk−1

m ]
(3.8b)

where ∆wm = wk
m−wk−1

m shows the displacement of particle due to individual

movement in step (a). This step ensures that those particles who had successful

individual movements influence the search direction more than other ones. (c)

The successful particles produce their successor, where successful particle is

determined by computing the maximum ratio of weight over distance for all

particles. This process is called as breeding.

Particle Swarm Optimization

(a) Initialize the particle’s velocity vkm ε [−vmax,+vmax], where vmax and vmin

represents the maximum and minimum value of velocity.

(b) The local best particle (wk
l ) is evaluated in each iteration, who has the

highest fitness compared to others. Similarly, the global best particle (wk
g) is

selected in each iteration, who possess the maximum fitness value among all

local best particles. The update in wk
m and vkm given as [101]

vkm = c1v
k−1
m + c2ζ(wk−1

l −wk−1
m ) + c3η(wk−1

g −wk−1
m ) (3.9)

wk
m = wk−1

m + vkm (3.10)

where ζ and η are uniform random variables between 0 and 1, c1, c2 and

c3 are positive constants which are selected by the practitioner to control

the behaviour and efficiency of the PSO . The selection of the parameters is

explained in detail in Section 3.4.1.
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Step 4: If it reaches maximum generation, terminate the spectrum sensing

algorithm and assign the optimal w to the spectrum allocation module; else,

go to step 2.

In summary, the three technique discussed so far are partial search

algorithms that may provide a good solution to the optimization problem.

There is a distinct property in each of them that makes them different from

each other. For example, PSO has exploration capability and emphasises

on global search, where exploration depicts a phenomenon where large space

is searched for finding promising solutions. This step brings diversification

by avoiding local optimum traps. However FFA has more of exploitation

capabilities along with exploration, where exploitation depicts a search method

that is performed to improve the solutions that are already at hand. By

having exploitation capability, FFA outperforms PSO in noisy situations even

with faster speed and performs better when objective function has multiple

peaks. The third algorithm, FSS, has breeding operator that let successful

particles to go through the evolution process. The breeding operation ensures

the survival of the fittest particles in the population. All three approaches

have been utilized for several applications in literature, for example PSO for

vehicle routing problem and anomaly detection. However FFA has been used

for feature selection and antenna design while FSS for parameter estimation

and function optimization respectively.

3.3.2 Spectrum Allocation

As discussed in Section 1.2.1, spectrum allocation refers to the selection of the

best available spectrum channel according to the user communication needs.

The main objective of spectrum allocation is to avoid conflict between users

and treat them on fair basis. The conflict between users can occur when two
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users try to utilize one channel at the same time. In this scenario, there is

a need for a criteria that can give precedence to one user over another. The

optimal value of weighting vector (w = [w1, w2, ..wD]), evaluated using FFA,

FSS and PSO in Section 3.3.1 plays a vital role for the conflict free spectrum

allocation that gives precedence to one user over another. For example, when

two users try to access the same channel, then the value of w of one user is

compared with another and the user having larger value of w will be allowed

to transmit. This is because, Pd increases proportionally with an increase in

the value of w. This means maximum PU protection can be guaranteed by a

user having larger value of w because larger value of w ensures higher value

of Pd. The proposed spectrum allocation criteria not only resolves the conflict

between two users by using optimal w but also ensure maximum protection

to PU.

The spectrum allocation of cognitive radio can be explained with chan-

nel availability matrix, channel reward matrix and conflict free assignment

matrix. It is assumed that D cognitive radios needs to communicate and U

idle channels can be used, where d = [1, 2, ...D] and u = [1, 2, ..U ]. As CRs

sense M channels, so it is assumed that U out of M channels are vacant. The

concerned matrices are defined as:

• Channel Availability matrix (L):

L = ld,u ∈ [0, 1], that is D by U matrix, where ld,u = 1, if channel u can be

utilized by cognitive user d otherwise ld,u = 0.

• Conflict Free Channel Assignment matrix (A):

The conflict free channel assignment matrix A = ad,u ∈ [0, 1]D∗U , is a D by U

matrix where ad,u = 1, if channel u is assigned to user d or ad,u = 0 otherwise.
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For conflict free assignment, assignment precedence matrix (C) is pro-

posed, that is D by U matrix. Each row in C is given as

Cd = wd ∗ Ld,u (3.11)

where each row d in L is multiplied with corresponding component of optimal

w as shown in Fig. 3.2. During sensing, for example; if wd > wd+1, then

more precedence is given by the fusion centre to the dth radio. Similarly in

spectrum allocation, if two radio users try to access the same channel, then

the conflict is resolved by assigning the channel to the specific radio user, who

has higher value of wd.

• Channel Reward Matrix (T):

The channel reward matrix T = td,u is a D by U matrix where td,u represents

the reward attained by user d for utilizing channel u. The reward attained by

user d for utilizing channel u is rd that is given by

rd =
U∑
u=1

ad,u ∗ td,u (3.12)

By following the above model, the spectrum allocation problem can be de-

fined as the optimization problem that is dependent on the optimization of

rd. Following [31], the objective functions considered in this model for opti-

mized spectrum allocation are (a) Maximum proportional fair reward (MPF):

MPF = (
∏D

d=1 rd + 10−6)1/D , (b) Maximum Sum Reward (MSR) MSR =∑D
d=1 rd and (c) Max-Min-reward (MMR): MMR = min1<=d<=Drd. The per-

formance analysis is given in Section 3.4.
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Figure 3.2: A cooperative spectrum sensing and allocation framework.

3.4 Numerical Results and Discussion

3.4.1 Parameter selection for Bio-Inspired Algorithms

The convergence speed and optimization accuracy of the bio-inspired algo-

rithms is affected by the choice of parameters [102]. For FFA, β represents the

attractiveness and for most cases β = 1 and αε[0, 1]. The parameter γ charac-

terizes the variation of the attractiveness, and its value is crucially important

in determining the convergence speed and behaviour of the FFA. Thus, in most

applications, it typically varies from 0.01 to 100 [99]. Following the constraints

in [99], α = 1, β = 1 and γ = 1.3 are chosen. The parameters c2 and c3 are

the learning parameters or acceleration constants in PSO. A traditional way

of improving the PSO method is by manually changing its behavioural param-

eters. The standard version of PSO with the learning parameters c2 ≈ c3 ≈ 2

are used [103]. Various studies have been reported in the literature [104], [105]

regarding the choice of the inertia weight (c1) and the velocity boundaries in

PSO, which is believed to influence the degree of exploration versus exploita-
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tion. After conducting extensive survey and experiments, it is recommended

in [106] that c1ε[−2, 2] and vkmε[−4, 4] for optimization experiments. Follow-

ing [106], c1 = 1 and vkm = [−2, 2] are chosen. Following [94], eA = 1 and

fA = 0.25 are chosen, for high power amplifier model (model1). The sum

of coefficients of memory less polynomial model (model2) are assumed to be

unity, so bp coefficients are assumed as 0.4, 0.2 and 0.4, where P = 3. For

the initial analysis, the number of particles are assumed as M = 15 and the

number of radios as D = 7, where the received SNR of each radio is in range

of [0,−5] dB given as : 0, - 0.75, - 1.5, - 2.25, - 3, - 3.75 and - 4.5 dB. The

effect of using different values of SNR and D are analysed in Section 3.4.4 and

3.4.5 respectively.

3.4.2 Comparison of PSO, FFA and FSS

Non-linear signals

In order to compare the convergence performances of the bio-inspired algo-

rithms, the relationship between the ’number of iterations’ and the maximum

value of ’Pd’ is demonstrated in Fig.3.3, by setting Pf = 0.1. A rectangular

pulse is considered in Fig.3.3(a) as the input pulse and undergoes non-linear

distortion using model1 and model2, while Fig.3.3(b) deals with cosine pulse.

The results have shown that FFA outperformed PSO and FSS for both non-

linear models. The maximum value of Pd attained by PSO, FFA and FSS

for rectangular pulse using model1 is 0.9709, 0.9749, 0.9623 and using model2

is 0.8528, 0.8632, 0.8565 respectively. However the maximum value of Pd at-

tained by PSO, FFA and FSS for cosine pulse using model 1 is 0.9424, 0.9760,

0.9615 and using model 2 is: 0.8491, 0.8602, 0.8555 respectively. It is observed

that model 1 outperformed model2 for both input pulses. The difference in

performance of model1 and model2 is due to the nature of non-linear functions
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involved in the system.

Linear Signals

Both rectangular and cosine pulses without non-linearities are considered in

Fig.3.4. It was observed that FFA algorithm outperforms PSO and FSS again.

The maximum value of Pd attained by PSO, FFA and FSS for the rectangular

pulse is: 0.9722, 0.9754 and 0.9630, while the maximum Pd value attained by

PSO, FFA and FSS for cosine pulse is: 0.9259, 0.9432 and 0.9234 respectively.

It was observed that the value of Pd for linear signals is higher than non-

linear signals. The non-linear distortions induced by model1 and model2 are

responsible for the Pd degradation in non-linear signals.

3.4.3 Comparison of Bio-Inspired Algorithms with WLC

The convergence of bio-inspired algorithms is examined for fixed values of Pf

in Fig.3.3 and Fig.3.4. However, in real scenarios, Pf can change anytime so

the effect of a changing value of the Pf on Pd is plotted as the ROC curve in

Fig. 3.5 and Fig. 3.6 respectively. The probability of detection is affected by

the probability of false alarm. This is illustrated using two state hypothesis

in Section 2.2. In Fig. 3.5 and Fig. 3.6, the value of Pf is changed in each

iteration by setting its Pf = 0.01 in the first iteration and incremented with

a value of Pf = 0.01 in each iteration. The performance of WLC is compared

with bio-inspired techniques and the results have shown that all three bio-

inspired algorithms outperform the WLC method for both model1 and model2.
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Figure 3.3: Using Pf = 0.1, the convergence rate of (a) rectangular pulse using
model1 (M1) and model2 (M2) (b) cosine pulse using model1 (M1) and model2
(M2).
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Figure 3.5: Comparison of bio-inspired algorithms with WLC using model1 by con-
sidering rectangular and cosine pulses for different values of Pf .
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Figure 3.6: Comparison of bio-inspired algorithms with WLC using model2 by con-
sidering rectangular and cosine pulses for different values of Pf .
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3.4.4 Effect of SNR

In the above subsections, different values of SNR for each radio are used while

keeping the SNR for an individual radio constant for all simulation runs. How-

ever in real time, SNR changes according to the radio environment. There are

possibilities to receive SNR as low as −10 dB that can directly affects the

probability of detection. Therefore, the effect of different SNR sets is demon-

strated in Fig. 3.7(a), where SNR set1 is assumed to be the same as mentioned

in Section 3.4.1. SNR set2 is assumed as : - 5.25, - 6, - 6.25, - 7, - 7.75, - 8.5

and - 9.25 dB. It was observed that performance of SNR set2 is low compared

to SNR set1. This is because SNR set2 ranges between [- 5, - 10] dB, while

SNR set1 ranges between [0, - 5] dB. As Pd is directly proportional to SNR,

so an increase in the value of Pd increases the value of SNR for each radio.

3.4.5 Effect of the number of radios

The effect of increasing the number of CRs fromD = 7 toD = 14 is analysed in

Fig.3.7(b). By increasing D, the dimensions of the particle’s position actually

increases, which eventually results in better performance. It was observed in

Fig.3.7(b), that FFA and FSS outperforms WLC for both cases, D = 7 and

D = 14. Though increase in number of radios, increases the mean Pd value

for all algorithms; however it results an increase in the computational time

and memory as well. Using MATLAB on a system with Core i7 processor and

8GB RAM, it was observed that the occupied memory and execution time for

D = 7 is 964 MB and 15.9 sec respectively, however the occupied memory and

execution time for D = 14 is 975 MB and 20.6 sec, respectively.
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Figure 3.7: (a) Effect of different values of SNR on the value of Pd (b) Effect of
changing the number of radios on the value of Pd.
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3.4.6 Effect of Modulation, Interference and Fading

The modulation is an important module of transmitter that takes place before

sending data to the receiver. In the proposed approach, it is assumed that

input data is modulated first and then amplified using PA that induces further

non-linearities. The modulated non-linearly amplified output is sent to the

channel, where the magnitude of the transmitted is degraded due to fading and

interference. It is assumed that Gaussian noise is present always. The effect

of different modulation schemes, channel fading and interference is discussed

as follows.

Two modulation schemes: 64 QAM and QPSK are considered for analysing

the case, when I(m) is fed into non-linear amplifier as modulated input. The

result is shown in Fig. 3.8(a) using rectangular input pulse. It was observed

in Fig. 3.8(a), that modulated rectangular pulse using QPSK attains higher

Pd than 64 QAM. The FFA has outperformed other algorithms but there is

11% decrease in the value of its Pd compared to the non-linear model2 without

modulation in Section 3.4.2.

Furthermore, external interference is introduced to the non-linear model

modulated using QPSK and 64 QAM following the approach in [92]. The in-

terference represents the noise faced by each CR caused due to PUs. It is

observed in Fig. 3.8(b), that the value of Pd decreases more with the intro-

duction of interference. The degradation in the value of Pd occurs because

rd(m) faces both white Gaussian noise and interference in the channel. It is

again observed that FFA has outperformed other schemes but interference de-

grades the performance of FFA 10% more compared to non-linear modulated

model mentioned above.

Fig. 3.9 analyses the effect of frequency selective fading channels us-

ing the non-linear modulated model with interference, mentioned above. The
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Figure 3.8: Effect on the value of Pd using (a) different modulation schemes (QPSK
and 64 QAM) (b) modulation schemes (QPSK and 64 QAM) plus interference
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Figure 3.9: Average values of non-linear frequency selective faded model modulated
using QPSK with k = 250

channel impulse response (Gd) is modelled as T time delayed taps with inde-

pendent Rayleigh fading gains following [107], for 250 iterations. The QPSK is

considered as the modulation scheme. The mean Pd values attained by PSO,

FFA FSS, WLC is 0.5519, 0.6704, 0.6506, 0.5615 respectively. With the in-

troduction of fading, the performance of FFA is decreased 7% more compared

to the non-linear modulated model mentioned above. Also the execution time

increases, when fading is considered. The time required for 250 iterations is 1

hour (3545.35 sec).
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Figure 3.10: Spectrum allocation rewards using rectangular pulse and model2.

3.4.7 Spectrum allocation functions

As discussed in Section 3.3.2, the spectrum allocation is performed to optimize

three objective functions: MSR, MMR and MPF, where MSR maximizes the

utilization without considering fairness while MMR maximizes the reward for

user with least allocated spectrum and MPF assigns resources to the user with

fairness. The three objective functions are plotted in Fig.3.10 using model2,

where rectangular pulse is used as input primary signal. The mean MSR

attained by PSO, FFA and FSS is 1.6641, 20.2950 and 9.8550 respectively,

while MMR is 0.1104, 0.8632 and 0.5628 respectively, and MPF is 0.8678,

1.1987 and 1.0831 respectively. It was observed that FFA outperformed FSS

and PSO for all three objective functions.

The detailed comparison of linear model, non-linear model, modulated
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non-linear model and modulated non-linear faded model is presented in Table

3.2 where it was observed that FFA outperforms PSO and fish school by at-

taining higher value of Pd for all models. It was also observed that FFA attain

maximum MPF reward compared to other two algorithms. Furthermore, the

computational time required by each model increases as one moves from left to

to right in the table and its value is maximum for the non-linear faded model.
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3.5 Conclusion

A framework for collaborative spectrum sensing and allocation using used bio-

inspired techniques in cognitive radios is presented in this chapter. Both linear

and non-linear signals have been considered. It was observed that the non-

linearities induced using high power amplifier model degrades the performance

of spectrum sensing more compared to the memory less polynomial model.

It was observed that all bio-inspired techniques performed equally well

in the presence of Gaussian noise and outperformed the conventional spec-

trum sensing weighting method: WLC. Bio-inspired techniques performed

better because they are the iterative search processes which efficiently find

near optimal solutions using exploration and exploitation principles. How-

ever, it was observed that bio-based solutions and WLC are affected by the

change in SNR values. The increase in noise, interference and fading degrades

the performance of all algorithms. PSO is affected more compared to FFA,

because FFA is potentially more powerful in solving noisy non-linear optimiza-

tion problems compared to PSO. Similarly FSS auto-regulates its exploitation

and exploration capabilities compared to PSO, so it was concluded that FSS

performs better in noisy conditions compared to PSO but its performance is

worse than FFA. A precedence based spectrum allocation framework based

on spectrum sensing weighting vector is also presented. It was noticed that

bio-inspired techniques not only helps to attain higher value of probability of

detection but also ensure conflict free spectrum allocation.
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Chapter 4

Machine Learning Cognitive

Radios

4.1 Introduction

Various spectrum measurement campaigns covering a wide range of frequencies

have been performed all over the world in order to evaluate the spectrum

utilization [108]. These spectrum measurement studies have found significant

amount of unused frequency bands in the case of normal usage due to the static

spectrum regulations. This has led researchers to understand the spectrum

occupancy characteristics in depth for exploiting the free spectrum.

Many studies have been performed to understand the occupancy statis-

tics. As mentioned in Chapter 1, the statistical and spectral occupation anal-

ysis of the measurements was presented in [32] in order to study the traffic

density in all frequency bands. In [33], auto-regressive model was used to pre-

dict the radio resource availability using occupancy measurements in order to

achieve uninterrupted transmission of secondary users. In [34], the occupancy

statistics were utilized to select the best channels for control and data transmis-
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sion purposes, so that less time is required for switching transmission from one

channel to the other in the case when the PU appears. Further, in [109], [110],

the bandwidth efficiency was maximized by controlling the transmission power

of cognitive radio using spectrum occupancy measurements.

In [111], different time series models were used to categorize the specific

occupancy patterns in the spectrum measurements. In [112], a novel time-

varying statistical model for spectrum occupancy is proposed that uses real

time wireless frequency measurements for predicting the arrival rate of PUs

in each frequency bin by assuming the Poisson distribution for the arrival

rates of PUs and the exponential distribution for the idle durations. All of the

aforementioned works have evaluated the spectrum occupancy models by using

conventional probabilistic or statistical tools. These tools are often limited

due to the assumptions required to derive their theories. For example, one

has to determine whether the value is a random variable or a random process

in order to use the probabilistic and statistical tools. On the other hand,

machine learning (ML) is a very powerful tool that has received increasing

attention recently [113]. The machine learning algorithms are often heuristic,

as they don’t have any prerequisites or assumptions on data. As a result,

in many cases, they provide higher accuracy than conventional probabilistic

and statistical tools. There are very few works on the use of ML in spectrum

occupancy. The ML works related to cognitive radio in [114]- [118] discussed

cooperative spectrum sensing and spectrum occupancy variation. However,

in this chapter, a comprehensive investigation on the use of ML for analysing

spectrum occupancy is presented. The contributions of this chapter can be

summarized as follows:

• The use of ML algorithms in spectrum occupancy study is proposed.

Both supervised and unsupervised algorithms are used. In [114], [115],
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ML was used for cooperative spectrum sensing. However in proposed

work, ML is used for spectrum occupancy modelling that may be used in

all CR operations, including spectrum management, spectrum decision

and spectrum sensing.

• Three supervised ML algorithms: naive Bayesian classifier (NBC), deci-

sion trees (DT), support vector machine (SVM) and one unsupervised

algorithm, hidden markov model (HMM) has been used to classify the

occupancy status of time slots. The classified occupancy status is further

utilized for evaluating the blocking probability.

• A new technique that combines SVM with fire fly algorithm (FFA) is

proposed in this work that outperforms all supervised and unsupervised

algorithms.

The rest of the chapter is organized as follows: Section 4.2 explains the system

model that includes the details of the SU model, the PU model and the machine

learning framework. Section 4.3 discusses the supervised and unsupervised

algorithms. Section 4.4 presents the numerical results and discussion. Finally

conclusions are presented in Section 4.5.

4.2 System Model

4.2.1 Measurement setup and data

The data was measured using RFeye evaluation system at University of War-

wick as shown in Figure. 4.1. The system is portable carry case having om-

nidirectional antenna whose frequency ranges from 800 MHz to 6 GHz. This

system has wideband reception with a universal power adapter. The receiver

noise figure (NF) varies with the frequency, for example NF is 8 dB for 10 MHz
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- 3 GHz while it is 11 dB for the frequency range from 3 GHz-6 GHz. More de-

tails about the equipment can be found in [120]. The RFeye evaluation system

was placed in a lab ,that is located on fourth floor of School of Engineering

at University of Warwick. Due to plug and play capability of RFeye, a USB

was connected to the equipment where power measurements were stored. The

data was measured indoor for approximately four months (6th Feb-18th June

2013) from 880 MHz to 2500 MHz.

The range 880 MHz to 2500 MHz has eight main radio frequency bands

that are: 880-915 MHz, 925-960 MHz, 1900-1920 MHz, 1920-1980 MHz, 1710-

1785 MHz, 1805-1880 MHz, 2110-2170 MHz and 2400-2500 MHz. The number

of the frequency bins in each band varies. A frequency bin is a frequency chan-

nel having a specific bandwidth. For example, the band 925-960 MHz contains

192 frequency bins, each occupying a bandwidth of 0.18 MHz, while the band

1710-1785 MHz contains 448 frequency bins, each occupying a bandwidth of

0.167 MHz. The dataset for each band is arranged in a two dimensional ma-

trix (yi(j)), where i = 1, 2, .., n and j = 1, 2, .., k. Each row i of matrix yi(j)

represents a time slot that contains the data of k frequency bins; while each

column j of matrix yi(j) represents a frequency bin that contains the power

of n time slots. As the data for four months is measured which constitute 131

days (N = 188917 minutes), therefore the number of rows in each band are

188917 while the number of columns varies according to the number of the

frequency bins in a particular band. The total number of frequency bins (k)

for each band and their corresponding bandwidth is given in Table 4.1.

4.2.2 SU Model

In a network of licensed users, SU is allowed to access the licensed band without

causing any harmful interference to the PU. Let yi(j) be the sample sensed
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(a)

(b)

Figure 4.1: (a) RFeye evaluation system (b) RFeye battery and monitor.

Band (MHz) k

Bandwidth
of each
frequency
bin
(MHz)

880 -915 192 0.18

925 -960 192 0.18

1710 -1785 448 0.16

1805 -1880 448 0.16

1900 -1920 128 0.15

1920 -1980 384 0.15

2110 -2170 384 0.15

2400-2500 640 0.15

Table 4.1: UK cellular frequency bands measured at University of Warwick from
Feb - June 2013.
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at the ith time slot in the jth frequency bin. Following binary hypothesis in

Section 2.2, one has

yi(j) = xi(j) + wi(j) (4.1a)

or yi(j) = wi(j) (4.1b)

where xi(j) represents the received PU signal and wi(j) represents the additive

white Gaussian noise (AWGN) with zero mean and variance σ2
w. Using energy

detector, the received signal energy (Y ) is computed as: Y = 1
n

∑n−1
i=0 |yi(j)|2.

The received signal energy is compared with a decision threshold (λ) to attain

the spectrum status. The spectrum status (Si(j)) is given as

Si(j) =


1, Y > λ

0, Y < λ.

(4.2)

The selection of λ is very important because small values of λ will

cause false alarms while large values will miss spectrum opportunities. The

computation of λ is explained in [119]. In the proposed approach, the threshold

is dynamic and its selection is discussed in Section 4.4.1. Using (Si(j)), the

occupancy for the ith time slot (OCi) is defined as

OCi =

∑k
j=1 S

i(j)

k
. (4.3)

In order to clearly illustrate the concept of OCi, a example of a three-

minute interval for the band 880 - 890 MHz having 9 frequency bins is shown in

Fig.4.2. Each bin in Fig.4.2 occupies 1 MHz. For each frequency bin, Si(j) is

decided. Once Si(j) is evaluated, the occupancy OCi is calculated using (4.3).

It is observed that more frequency bins are occupied for the first minute than

for the second and third minutes, that imply SU has less chance to transmit
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in the first minute. Following the discussion above, it is required to set the

criteria for quantifying the transmission chance based on the occupancies.

4.2.3 PU Model

In proposed approach, the status of PU (P i) for the ith time slot can be de-

cided using the following rules:

(4.4)P i =



(Condition 1) : 1, OCi > Uoc

(Condition 2) : 1, Loc <= OCi <= Uoc

AND coni <= B

(Condition 3) : 0, Loc <= OCi <= Uoc

AND coni > B

(Condition 4) : 0, OCi < Loc

where Uoc and Loc represent the maximum and minimum values of the oc-

cupancy for all n time slots, coni represents the number of consecutive free

frequency bins in the ith time slot and B represents the maximum value of

coni, when PU is considered present. Each condition is explained as follows:

1. Condition 1 and Condition 4: The values of Uoc and Loc vary with

the frequency band, the day and the threshold. For fixed frequency band and

day, Uoc and Loc are evaluated using different thresholds in Section 4.4.2. In

order to guarantee the PU protection and ensure SU transmission, when the

values of OCi lie in the range between Loc and Uoc, further criterion is applied.

2. Condition 2 and Condition 3: It is difficult to apply Condition 1 and

Condition 4, when Loc <= OCi <= Uoc, so coni is evaluated for each time

slot. If coni > B for Loc <= OCi <= Uoc , there exists at least B consecutive

free frequency bins in the ith time slot; thus SU can transmit and vice versa
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Figure 4.2: Occupancy for different time slots between 880 -890 MHz using k = 9
and n = 3.

when coni <= B. The value of B is selected to provide PU protection. This

will be explained in Section 4.4.2.

4.2.4 Machine learning framework for SU and PU Model

ML algorithms learn the target function that maps the input variables to

output variables in the best manner given as output = f(input). The function

f needs to be learnt from data using different ML schemes. This is difficult

problem to learn function from the data and that’s the main motivation behind

existence of various ML methods. When a function (f) is learnt, it means

function (f) has been estimated using the data. The estimation can have

errors as it represents the hypothetical mapping from output given input. In

the proposed approach, a classifier is constructed to estimate P i using Si,

where Si = [Si(1), Si(2), ..Si(k)] represents the input (feature vector) and P i

represents the output labels (the corresponding response to the feature vector).

The proposed system can be given as P i = f(Si), where function (f) is learnt

with the help of supervised and unsupervised ML algorithms. There are two

steps for constructing a classifier using supervised algorithms:
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Training

During training phase, the input feature vector is mapped against the output

labels so that function (f) can be learnt. In the proposed approach, Sitrain =

[Si(1)train, S
i(2)train, ..., S

i(k)train]T denote the training spectrum status (input

feature vector) and P i
train represent the output label for the ith time slot,

respectively, where i = 1, 2, ..n1 and n1 represents the number of training time

slots fed into the classifier. Once the classifier is successfully trained, which

means it has learnt function (f) using the data then it is ready to receive the

test vector for making estimation.

Testing

The testing phase is performed to quantize that how accurate the function (f)

has been estimated. For that, the new feature vectors are fed into the machine

learning system without any output labels. It should be noted that testing

is performed for estimating the output labels of the new feature vectors. In

the proposed system, Sitest = [Si(1)test, S
i(2)test..., S

i(k)test]
T denote the testing

spectrum status and P i
test represent the actual testing PU status for the ith

time slot, respectively, where i = n1+1, n1+2, ..n2 and n2 represents the length

of the testing sequence. It is assumed that n = n1 + n2. The value P i
test is

not used during the testing but as a reference for computing the classification

error.

Classification Accuracy (CA)

Let P i
eval denote the PU status determined by the classifier for the ith time

slot. The classifier categorizes the testing vector Sitest as the ’occupied class’

(i.e., P i
eval = 1) or ’unoccupied class’ (i.e., P i

eval = 0). Therefore, the PU status

is correctly determined, when P i
eval= P i

test, giving CAi = 1. The mis-detection
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occurs when P i
eval = 0 and P i

test = 1, while false alarm occurs when P i
eval = 1

and P i
test = 0, both giving CAi = 0.

4.2.5 Blocking Probability

Let Pi
eval be a vector evaluated by each classifier and define outsu as the mini-

mum value of consecutive free time slots required by SU for transmission. The

blocking probability measures the chance when SU cannot find outsu consecu-

tive free time slots for transmission given as [121]:

Pr(SUblocking) = 1− Pr(SUtransmit) (4.5a)

where

Pr(SUtransmit) =
C∑
c=1

Pr(FBc) (4.5b)

where FBc is the block of free consecutive time slots of length outsu, c =

{1, 2, ..C} and C represents the total number of free blocks in Pi
eval. The

probability for a free block starting at index, say r, in Pi
eval is evaluated using

the following equation

P (FBc) =
r+outsu∏
i=r

OCi (4.5c)

4.3 Proposed Algorithms

In the proposed approach, four machine learning algorithms are utilized to

predict the future PU status using the occupancies, which are a function of

time, frequency and threshold. Among four ML algorithms, three are super-

vised learning algorithms: NBC, DT and SVM, while one is an unsupervised

algorithm, HMM. The motivation to use four different algorithms is to find

the best machine learning algorithm for predicting the future status as each
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one has different characteristics.

4.3.1 Naive Bayesian Classifier

It is also called ’independent feature model’ because it does not take depen-

dency of the features into account. The feature vector for the ith time slot

in this model contains all the samples which are independent of each other,

since every feature represents a specific frequency bin. For example, the status

vector of the ith time slot is given as Si = [Si(1), Si(2), Si(3), .., Si(k)], where

Si(1) is independent of Si(2). However, the response variable in this approach

i.e. PU status (P i) is a dependent variable which is affected by each frequency

bin. The probability of Si belonging to the class P i evaluated using the Bayes

theorem is formally defined as [122]

Pr(P
i,Si) = Pr(P

i) ∗ Pr(Si|P i). (4.6)

When P i = 0, Si will be classified as ’idle’ class, while when P i = 1,

Si will be classified as ’occupied’ class. The goal is to find the class with the

largest posterior probability in the classification phase. The classification rule

is given as

classify(Ŝi) = argmaxSi{Pr(P i, (Ŝi)} (4.7)

where Ŝi = [ ˆSi(1), ˆSi(2)... ˆSi(k)]. NBC is sensitive to the choice of kernel and

the kernel selection will be further explained in Section 4.4.3.

4.3.2 Decision Trees

Decision trees are one of the most popular approaches used for classification

in machine learning, pattern recognition and data mining areas. The decision

tree consist of parent node/root (the node which has no incoming edges),
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decision nodes and leaves. Each decision node splits the data on the base of

defined criteria into two subspaces. Each leaf node is assigned to one of the

classes which represent the appropriate target value [123]. The decision trees

used in this approach are classification trees whose leaf represents the class

labels. Unlike NBC, it can handle feature interactions and dependencies. In

DT, the decision is made on each internal node, which is used as a basis for

dividing the data into further two subsets while leaf nodes represent the class

labels (in the case of classification trees) or the real numbers (in the case of

regression trees). Data comes in the form:

(Si, P i) = (Si(1), Si(2), Si(3).., Si(k), P i). (4.8)

where P i is the dependent variable representing the class label of the ith time

slot. The class labels P i are assigned by using one of the splitting criteria [124]

explained as follows

• Entropy: It is given by

Entropy(t) = −
Z∑

id=0

Pr(id|t) log2Pr(id|t). (4.9)

where Pr(id|t) denote the fraction of records belonging to class id at

a given node t and Z represents the total number of classes. In our

approach, Z = 1 i.e. id = [0, 1], where ’0’ represents the available class

and ’1’ represents the occupied class. The smaller entropy implies that

all records belong to the same class.

• Gini Diversity index (gdi): It a measure of node’s impurity and is given

by

gdi = 1−
∑
id

[Pr(id|t)]2 (4.10)
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For a pure node (one class), gdi will be zero. It will be discussed in

Section 4.4.3 that how splitting criteria affects the classification accuracy

of DT.

4.3.3 Support Vector Machines

SVM is a discriminative classifier with high accuracy. The phenomenon of

over fitting 1 often happens in DT, however SVM tends to be resistant to

over-fitting and can be used for online learning 2. There are two types of

classifiers in SVM: linear SVM for separable data 3 and non-linear SVM for

non-separable data.

The training feature and response vectors in our system is represented

as D = (P i,Si) where P i ∈ {0, 1}. Following the SVM [127], the two classes

are separated by defining a hyper plane H, represented as w.Si = ρ, where w

represent the normal vector and ρ represents the constant separating occupied

and idle classes given as:

P i = +1 when w.Si > ρ (Occupied class) (4.11a)

P i = 0 when w.Si < ρ (Idle class) (4.11b)

Two margins are defined on both sides of H to maximize the gap between

two classes. The length of the margins is controlled by a parameter called

box constraint Boxct. The parameter Boxct controls the relative weighting

between the goal of making the margin small and ensuring that each dataset

1It is a condition when the ML model fits the training set very well but fails to generalize to the
unseen examples [125].

2It is learning scenario in which training data is provided one example at a time, as opposed to
the batch mode in which all examples are available at once. [126].

3Two sets of points A and B are linearly separable if there exists n real numbers w1, w2, w3, .., wn,
such that every point ai ∈ A satisfies

∑n
i=1 wi.ai > ρ and every point bi ∈ B satisfies

∑n
i=1 wi.bi < ρ

, where ρ represents the constant separating two sets A and B [125].
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have functional margins of at least 1. The optimal value of Boxct is evaluated

using a bio-inspired technique i.e. FFA in this approach explained as follows

4.3.4 SVM with Fire Fly Algorithm

The performance of SVM model is dependant on the selection of parameters.

The problems like over-fitting can be avoided in SVM by optimally tuning the

parameters that will increase accuracy consequently. For selecting the optimal

parameters of SVM, a meta heuristic algorithm FFA is utilized. As discussed

in in Section 3.3, meta heuristic methods can reach a solution by iteratively

updating the candidate solution. Although the combination of SVM with

FFA increases the computational complexity on one hand, but on the other

hand it results an increase in classification accuracy. Due to its high accuracy,

this algorithm has been used in [128] for estimating wind speed distribution,

in [129] for global solar radiation prediction and in [130] for forecasting malaria

incidences. The SVM+FFA algorithm is explained as follows.

In FFA, let X be a group of fire flies, X = [l1, l2, ..lX ], initially located

at specific positions aX = [al1 , al2 , ..alX ]. Each fire fly moves and tries find a

brighter fire fly, which has more light intensity than its own. The objective

function f(x), used for evaluating the brightness of the fire fly in this approach

is the classification accuracy i. e. f(x) = CA(aX). When a fire fly, say l1 finds

another brighter fire fly l2 at another location having more intensity compared

to its own, it tends to move towards fire fly l2. The change in position is

determined as [131]

av+1
l1

= avl1 + β0e
−ψl1l2

r2l1l2 (avl2 − a
v
l1

) + α(rand− 0.5) (4.12)

where v represents the number of iterations, al1 and al2 represents the position

of fire fly l1 and l2 respectively, α, β0 and ψl1l2 are constants, rand is a uniformly

88



distributed random number and rl1l2 represents the Euclidean distance between

l1 and l2. For the proposed approach, the starting positions of the X fire

flies are initialized, where the position of each fire fly represents the value of

box constraints Boxct and the best position of the firefly will be selected for

evaluating the optimal value of Boxct, to be further used for classification. The

FFA runs for specific number of iterations to achieve convergence as defined

by the user. The pseudo code for FFA is given below.

Algorithm 1 Fire Fly Algorithm

while v < Maximum Iterations do
for l1 = 1 to X do

for l2 = 1 to l1 do
if CA(avl2) > CA(av2)
Fire Fly l1 will move towards firefly l2 using (4.12)
Calculate new solutions by computing CA for each fire fly

end for
end for
Compare the fireflies and evaluate the best one

end while

4.3.5 Hidden Markov Models

It is an unsupervised algorithm for modelling the time series data. The moti-

vation to use the unsupervised algorithm is that it does not need the training

phase. In HMM, the sequence of states can be recovered by an analysis of the

sequence of observations. The state alphabet set U and observations alphabet

set G are given as

U = (u1, u2, ...uN) (4.13)

G = (g1, g2, ...gM) (4.14)

where u1 and u2 represent the states when P i = 0 and P i = 1, respectively in

the proposed methodology. The observations g1 and g2 represents the value of

OCi corresponding to each P i state. The fixed state sequence (Q) of length T
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and corresponding observations O is represented as:

Q = q1, q2, .., qT (4.15)

O = o1, o2, .., oT (4.16)

HMM is formally defined as

λhmm = (Ch, Dh, π) (4.17)

where Ch is the transition array, Dh is the observation array and π is the

initial probability array. HMM has two main steps of execution in this model,

where in the first step, the sequence of observations O, transition probability

matrix Ch and the emission probability matrix Dh are utilized to find the

probability of observations O given hmm model λhmm shown as [133]

Pr(O|λhmm) =
∑
Q

Pr(O|Q, λhmm)Pr(Q|λhmm) (4.18)

where the probability of observations O for a specific state sequence Q is

defined as

Pr(O|Q, λhmm) =
T∏
t=1

Pr(ot|qt, λhmm) = gq1(o1) ∗ gq2(o2)....gqT (oT ) (4.19)

In the second step, the hidden state sequence that is most likely to

have produced an observation is decoded using Viterbi algorithm. The most

likely sequence of states QL generated using Viterbi algorithm is matched with

expected fixed state sequence Q to compute the classification accuracy. HMM

can be also be supervised by adding two extra steps of execution in the above

mentioned stepwise algorithm as follows:
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Step(a): Use initial guesses of Ch and Dh to compute Q and O, that are used

for computing Pr(O|λhmm) in forward algorithm

Step(b): Use O, Dh and Ch evaluated in step(a) to estimate the transition

probability matrix Ch′ and emission probability matrix Dh′ using maximum

likelihood estimation [134].

The Ch′ and Dh′ collectively form estimated HMM model (λe) that can be

further used for evaluating Pr(O|λe) and QL using forward algorithm and

Viterbi algorithm respectively. Though, the classification accuracy increases

by training HMM ahead however the complexity increases. For example, the

computational time required for classifying the data of one day using HMM

is 0.011s on Core i7, 8GB machine however it takes 0.1717s using trained

HMM. The computational time increases with an increase in the amount of

training data, therefore the complexity of supervised HMM will increase with

an increase in the amount of data to be classified. The main motivation for

using supervised HMM is to compare its performance with the other supervised

algorithms and find the best supervised algorithm for analysing the spectrum

occupancy.

4.4 Numerical Results and Discussion

In order to analyse the occupancy of the eight bands, the statistics of data

for all bands from 880 to 2500 MHz are presented in Section 4.4.1. The

classification criteria is explained in Section 4.4.2. The selection of the op-

timal parameters for each model is discussed in Section 4.4.3. In Section

4.4.4, the classification models with the optimal parameters are compared to

find the best classifier using CA as the selection criterion. CA is defined as:

CA = No. of correct classifications
Total number of test samples

.
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4.4.1 Statistics of Data

The CDF plot is shown in Fig.4.3 which gives the summarized view of all

power ranges for the eight bands. It can be observed from Fig.4.3 that the

eight bands can be categorized into two main groups. Group A includes 925

- 960 MHz, 1805 - 1800 MHz and 2110 - 2170 MHz while Group B has five

bands: 880 - 915 MHz, 1710 - 1785 MHz, 1900 - 1920 MHz, 1920 - 1980 MHz

and 2400 - 2500 MHz. The differences of Group A and Group B are explained

as follows:
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Figure 4.3: The CDFs for the eight bands between 880-2500 MHz.

Average Power

The average power in Group A and Group B bands is evaluated using data

of four months (Feb - June, 2013) and illustrated using histograms. The

histograms for two Group A bands: 925-960 MHz and 1805-1880 MHz are

shown in Fig 4.4(a) and Fig. 4.5(a) respectively, while the histograms for two

Group B bands: 880-915 MHz and 1710-1785 MHz are shown in Fig 4.6(a)

and Fig. 4.7(a) respectively. The data samples for 120 days are considered,

that is the total number of samples utilized for each histogram are 172800 min

(n= 120* 1440=172800, where 120 represents the number of days and 1440

represents the number of minutes in each day). It was observed that Group
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A bands have higher value of the average power than Group B bands. For

example, the average power for 925-960 MHz in Fig. 4.4(a) is higher than the

value of average power for 880-915 MHz in Fig.4.6(a). The similar behaviour is

observed for 1805-1880 MHz and 1710-1785 MHz in Fig.4.5 (a) and Fig. 4.7(a)

respectively. The average power for each day is also evaluated individually over

the period of 120 days in Fig 4.4(b)-Fig. 4.7(b) respectively, where n=1440

min (since the number of minutes in 1 day=24 * 60=1440) are utilized. It was

observed that the value of average power for each day is approximately same

as the total value of average power evaluated using n = 172800 min in the

histograms. The average power for all bands belonging to both Group A and

Group B is illustrated in Table 4.2.

Standard Deviation (σ)

The maximum standard deviation of the power measurements in each time

slot (σi) is also evaluated. It was observed in Fig 4.4(a) and 4.5(a) that Group

A bands have higher values of σi compared to Group B bands in Fig. 4.6(a)

and Fig.4.7(a) respectively. The σi is also evaluated for each day separately

in Fig. 4.4(b)-Fig. 4.7(b) using n=1440 min. It was observed in Fig. 4.4(b)-

Fig. 4.7(b) that σi for each day is approximately the same as over the period

of four months, however Group A bands have higher value of average σi than

Group B bands.
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Figure 4.4: (a) Histogram of 925-960 MHz using n = 172800 and k = 192. (b)

Mean received Power and σi of Band 925-960 MHz over the period of 120 days

using n = 1440 and k = 192.
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Figure 4.5: (a) Histogram of 1805-1880 MHz using n = 172800 and k = 448. (b)

Mean received Power and σi of Band 1805-1880 MHz over the period of 120 days

using n = 1440 and k = 448.
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Figure 4.6: (a) Histogram of 880-915 MHz using n = 172800 and k = 192. (b)

Mean received Power and σi of Band 880-915 MHz over the period of 120 days

using n = 1440 and k = 192.
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Figure 4.7: (a) Histogram of 1710-1785 MHz using n = 172800 and k = 448. (b)

Mean received Power and σi of Band 1710-1785 MHz over the period of 120 days

using n = 1440 and k = 448.
98



Occupancy VS Frequency

Due to stochastic noise and non-linearities, it is impossible to find the pure

periodic and stationary signal in the real time. However reasonably periodic

structures were noticed in some bands, when the relationship between oc-

cupancy and frequency is analysed. The occupancy for each frequency bin

(OCj) is given as (OCj =
∑n

i=1 S
i(j)

n
). It was observed that Group B bands can

be classified as periodic bands while Group A bands do not have this prop-

erty. Fig.4.8 and Fig. 4.9 illustrates the relationship between occupancy and

frequency channels for two aperiodic and periodic bands from Group A and

Group B respectively.

The periodicity may be caused by the usage pattern. For instance,

the periodicity in each band lies in their uplink/ downlink usage pattern. For

instance, the band 1710-1785 MHz is an uplink band, while the aperiodic band

1805-1880 MHz is the downlink. The uplink transmits data from the mobile

user to base station so that its activity is completely determined by mobile

user’s periodic usage pattern. On the other hand, the downlink transmits the

data from base station to the mobile user so that its activity is also affected

by control and broadcast channels, making it less or non-periodic.

Occupancy VS Threshold

The results in Fig. 4.8 and Fig. 4.9 are computed using λ evaluated from

otsu-thresholding method. The effect of setting a fixed threshold (λ = −76

dbm) on OCj is also analysed in Fig. 4.10 and Fig.4.11 respectively. The

fixed threshold has affected occupancy pattern in both aperiodic and periodic

bands. It was observed in Fig. 4.8(a) that average occupancy between k =

[250, 300] for Band 1805-1880 MHz is OCj = 0.5 reduces to average OCj = 0.3

in Fig. 4.10(a), when fixed threshold is used. It was also observed in Fig.
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4.11, that occupancy patterns for both periodic bands are adversely affected

with λ = −76 dBm, compared to Fig 4.9 when λ was evaluated using otsu’s

thresholding method. This is because the value of average power for periodic

bands: 880-915 MHz and 1710-1785 MHz is around -101.06 dBm and -106.02

dBm, respectively. By setting a higher value of fixed threshold than the average

power, allows less number of signals to be sensed as primary signals, which

eventually decreases the percentage occupancy.

From this, it was concluded that threshold selection plays an important

role for analysing occupancy. Therefore, the minimum and the maximum val-

ues of the power for each band are considered and tested using seven values of

thresholds in this range. It was noticed for all bands that occupancy mono-

tonically decreases when the value of threshold increases. These results have

proved that larger value of threshold will classify less samples as occupied.

The effect of different threshold levels on mean occupancy for one band from

Group A (1805-1880 MHz) and Group B (880-915 MHz) is shown in Fig. 4.12.

100



0 50 100 150 200 250 300 350 400 450
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Frequency Channels

O
cc

up
an

cy

Occupancy for band 1805−1880

 

 
6th Feb−8th March
9th March−9th April
10th April−10th May
11th May−12th June

(a)

0 20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Frequency

O
cc

up
an

cy
 

Occupancy for band 925−960

 

 
6th Feb−8th March
9th March−9th April
10th April−10th May
11th May−12th June

(b)

Figure 4.8: Occupancy VS spectrum frequency for aperiodic bands (a) 1805-1880
MHz (b) 925-960 MHz.
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Figure 4.9: Occupancy VS spectrum frequency for periodic bands (a) 1710-1785
MHz (b) 880-915 MHz
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Figure 4.10: Occupancy VS spectrum frequency for aperiodic bands using -76dBm
(a) 1805-1880 MHz (b) 925-960 MHz.
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Figure 4.11: Occupancy VS spectrum frequency for periodic bands using -76dBm
(a) 1710-1785 MHz (b) 880-915 MHz.
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Figure 4.12: Effect of different threshold levels on mean occupancy for (a) 880-915

MHz (b) 1805-1880 MHz.
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Occupancy VS Time

The main motivation of calculating occupancy w.r.t time as it can help to

predict future variations in occupancy for each day. The occupancy in each

ith time slot is calculated using (4.3), given as (OCi =
∑k

j=1 S
i(j)

k
), which

determines the occupancy for each minute. The occupancy of each day is

evaluated by determining the occupancy of each minute in 24 hours of the

day and then taking average of them. In Fig. 4.13, the occupancy for each

day is evaluated for the Band 880-915 MHz and Band 925-960 MHz over the

period of 120 days. It was observed that average occupancy for Band 880-

915 MHz is 57%, while it is 46% for the Band 925-960 MHz. The average

occupancy for Band 925-960 MHz is smaller in value than Band 880-915 MHz

because it was also observed that occupancy of 925-960 MHz decreases from

18th March (40th day) to 7th May (80th day). The occupancy for Band 925-

960 MHz shows periodic patterns on weekly basis while Band 880-915 does

not represent any specific pattern.

The statistics of frequency bands has been presented in Table 4.2. It

was observed that that frequency bands can be categorized into two groups (A

and B) on the basis of mean power, standard deviation and their periodicity.

The average occupancy for each frequency bin (OCj) is compared with the

average occupancy in each time slot (OCi) for all eight frequency bands. It

was observed in Table 4.2 that OCj is greater than OCi for all bands.
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Figure 4.13: Occupany VS time using k = 192 and n = 172800 (a) 880-915 MHz

(b) 925-960 MHz.
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4.4.2 Classification Criteria

Following the discussion in Section 4.2.3, this subsection studies the choice of

Uoc, Loc, con
i and B.

Optimal Occupancy Range [Loc, Uoc]

The data of Day1 (1-1440 min), Day 2 (1441-2448 min) and Day 5 (7200-8640

min) for Band 880-915 MHz is analysed in this section by setting four different

values of threshold: λ = [−102,−104,−106,−108] dBm . The parameters Uoc

and Loc will be selected by Ms, which represents the occupancy split that

divides the data into occupied and idle classes. It varies from 0.1 to 0.9 with

a step size of 0.1. It is observed in Fig. 4.14, that the value of CA depends on

day and the value of threshold.

The actual value of OCi always lies in a certain range, [Ls, Us], where

Ls represents the lowest value of OCi and Us represents the maximum value of

OCi. When Ls <= Ms <= Us, two groups of classes P i = 0 (available class)

and P i = 1 (occupied class) can be classified correctly. When Ms > Us or

Ms < Ls, all the samples will be classified as one class because OCi is a closed

set whose values do not lie outside the range [Ls, Us]. This explains why CA =

1 for [Loc, Uoc] = [0.1, 0.2] and [Loc, Uoc] = [0.65, 0.9] respectively, in Fig. 4.14

when λ = −102 dBm is used for Day 1 data. However CA < 1 for [Loc, Uoc] =

[0.2, 0.65]. Thus, the classification cannot be performed when Ms > Us or

Ms < Ls. Therefore optimal occupancy range is [Loc, Uoc] = [0.2, 0.65] for

CA < 1. It was also observed in Fig. 4.14 using Day 1 data that there are

four different choices of thresholds available for the case when CA < 1. In the

proposed approach, the specific value of threshold is selected that contains the

largest number of values between Loc and Uoc. Following this, λ = −102 dBm

for Day1, Day2 and Day5 is selected as the optimal threshold which ensures
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the maximum amount of samples between Loc and Uoc. Furthermore, the Loc

and Uoc for three days can be selected using knowledge of optimal threshold,

for instance [Loc, Uoc] = [0.2, 0.65] for Day 1, [Loc, Uoc] = [0.4, 0.85] for Day2

and [Loc, Uoc] = [0.2, 0.80] for Day 5 are selected respectively. The optimal

values of λ, Uoc and Loc are further used for finding B for each day.

Optimal Free Consecutive Slots (B)

As discussed in Section 4.2.3, the PU status (P i) can be evaluated for Condi-

tion 1 and Condition 4 using Loc and Uoc, where Loc and Uoc represents the op-

timal occupancy range as discussed above. However when Loc <= OCi <= Uoc

for Condition 2 and Condition 3, then it is difficult to evaluate P i without de-

termining the value of B. For evaluating B, several values of coni are assumed

in Fig. 4.15 and the specific value of coni that ensures highest CA, will be

selected as the optimal value. The relationship between CA and coni is shown

in Fig. 4.15 using the optimal occupancy range ([Uoc, Loc]) and the threshold

evaluated using Fig. 4.14. For the proposed case, coni = 40 is selected as B,

because it ensures the highest CA for all three days.
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Figure 4.14: Selection of optimal threshold (λ) and optimal splitting range

([Uoc, Loc]) for determining the classification criteria of three days data.
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Figure 4.15: Selection of optimal number of free frequency slots using optimal split-

ting threshold and optimal occupancy range attained using Fig. 4.14.

4.4.3 Parameter Selection

The selection of parameters for the supervised models affects the performance

of the classifiers. Considering the classification criteria in Section 4.4.2, the

parameter selection for each algorithm is discussed as follows

NBC

As discussed in Section 4.3.1 that NBC is sensitive to the kernel selection,

therefore four different kernel functions: normal, epanechnikov, triangular and

uniform are used in order to select the best NBC kernel for classification in

Fig. 4.16 for Band 880-915 MHz. It was observed in Fig. 4.16 that normal
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kernel has outperformed all other kernel functions. The Gaussian kernel has

attained the highest classification accuracy and it can be utilized for further

analysis using NBC.
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Figure 4.16: Effect of different kernel functions on classification accuracy using NBC

Decision Trees

The performance of decision trees also depend upon the splitting criteria. The

criteria for splitting DT can be one of the following [124]:

The performance of DT is affected by the splitting criteria chosen for

the analysis. The effect of using two different splitting criteria: entropy and

gini diversity index (as explained in Section 4.3.2) is illustrated for DT in

Fig.4.17. The minimum number of observation per node is varied between 1

to 50. It was observed in Fig.4.17 that gdi attains higher classification accu-
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racy, when observation per node between 1 to 37 are considered and entropy

outperforms gdi, when observation per node increases from 38 to 50. It was

also observed that size of tree changes when minimum number of observation

per node changes. With the decrease in number of minimum observations per

node, the size of decision tree expands.
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Figure 4.17: Effect of changing splitting criteria on classification accuracy, when the

number of observations per leaf node ε [1,50].

SVM

In SVM, kernel selection is the most important task that affects the classifica-

tion accuracy depending on the nature of the problem. Five kernel functions:

polynomial, Gaussian, radial basis function, multi perceptron and linear are

utilized in order to select the best kernel for classification using SVM. It was
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Figure 4.18: Effect of different kernel functions on classification accuracy using SVM

observed in Fig. 4.18 that linear kernel has attained the highest classification

accuracy compared to others, when data of one month of Band 880 -915 MHz

is analysed. This is because linear SVM performs best for two class case sys-

tem and there are mainly two classes in the proposed system that needs to

be separated: occupied and available classes. In general, the RBF kernel is

a reasonable first choice for classification problems. RBF kernel nonlinearly

maps samples into a higher dimensional space so it, unlike the linear kernel,

can handle the case when the relation between class labels and attributes is

nonlinear.
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SVM with fire fly algorithm

The performance of SVM can be improved by optimizing the performance of

the kernel function. The performance of the kernel is directly affected by the

change in the value of the box constraints Boxct (as explained in Section 4.3.4).

Five different values of Boxct are considered in Fig. 4.19 using linear kernel. It

was observed in Fig. 4.19 that change in value of box constraints has brought

change in the performance of the linear kernel. In proposed approach, FFA is

utilized to find the optimal value of Boxct.
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Figure 4.19: Effect of different values of box constraints on classification accuracy.
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4.4.4 Model Performance Comparison

Following the discussion above, the performance of the ML algorithms is com-

pared in this section using one month data of Band 880-915 MHz. The pa-

rameter selection tests (as discussed above in Section 4.4.3) can be utilized for

selecting the optimal variables for each classifier. The optimal splitting range,

optimal threshold and B will be selected corresponding to the data of each

day as explained in Section 4.4.2.

Supervised vs Unsupervised Algorithms

The performance comparison of HMM, trained HMM, SVM, DT and NBC is

illustrated in Fig.4.20 for 30 days using k=192. Each iteration represents 1

day. It was observed that trained HMM performed better than HMM, but

worse than DT, NBC and SVM. The mean CA attained by trained HMM,

HMM, SVM, DT and NBC is 0.6816, 0.4887, 0.8528, 0.8392, 0.7970 while the

computational time consumed for each iteration using trained HMM, HMM,

SVM, DT and NBC is 0.0205, 0.09066, 0.0135, 0.0163, 0.0095 seconds, re-

spectively. Thus, SVM is the best in this case with highest CA and shortest

time.

SVM with Fire Fly Algorithm

So far, the best overall performance is attained using the SVM technique.

The performance of SVM is affected by the value of Boxct. The optimized

value of Boxct is evaluated after running FFA for specific number of iterations

using α = 1, β0 = 2 and ψl1l2 = 1.3. The optimal value the box constraints

is selected and further used in SVM classification. Fig. 4.21(a) depicts that

’SVM+FFA’ performs better than the conventional SVM in most of the cases.

The mean CA attained by SVM+FFA, SVM, DT, NBC and HMM is 0.8728,
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Figure 4.20: Performance Comparison using k = 192.

0.8499, 0.7970, 0.8392 and 0.4822, respectively.

Comparison with Statistical/ Probabilistic Model

In this section, the proposed ML classification framework is compared with

the model in [112]. The inputs of this model are the statistical parameters

extracted from the real time measurements. The outputs obtained from this

model are the transmission times tON and tOFF , where tON and tOFF represents

the busy and idle duration respectively. Based on tON and tOFF , the model

predicts the PUs occupancy for the testing data matrix.

Following [112], the PU occupancy of the testing data matrix is pre-

dicted using data of one day (n = 1440 and k = 192) of Band 880-915 MHz.

In order to compare the statistical model with the proposed approach, the

occupancy (OCi) evaluated using the statistical model is transformed to PU
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status labels (P i
eval), following the criteria explained in Section 4.2.4. This is

because, the validation in the proposed approach is performed using CA, where

P i
eval is checked against the value of P i

test. It was observed in Fig. 4.21(a), that

ML algorithms have attained higher value of CA than statistical model. The

mean CA for the statistical model is only 0.45, much lower than average value

of CA attained by DT, NBC, SVM and SVM +FFA.

Blocking Probability

The blocking probability is computed using SVM+FFA, SVM, DT, NBC,

HMM and the statistical model [112] in Fig. 4.21(b). It is further compared

with the expected Pr(SUblocking) to compute the difference between evaluated

and expected values. It is evident in Fig. 4.21(b), that SVM+FFA has pre-

dicted the Pr(SUblocking) with minimum difference and is very close to the

expected one. The expected blocking probability is 0.9191 in Fig. 4.21(b)

while the predicted Pr(SUblocking) using SVM+FFA, SVM, NBC, DT, HMM

and statistical model is 0.9264, 0.9322, 0.9638, 0.9577, 1 and 1, respectively.

The Pr(SUblocking) for HMM and statistical model is always 1, which implies

that both HMM and statistical model have failed to find a single block of

consecutive free time slots having length outsu.

Supervised vs Unsupervised Algorithms using different Training/ Testing

Data vectors

The detailed comparison of supervised and unsupervised algorithms is pre-

sented in Table 4.3 using the mean classification accuracy (CA) and mean

computational time as the performance metric for different sizes of training

and testing data. It was observed that computation time for all supervised al-

gorithms increases with an increase in the size of the training data. SVM+FFA
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Figure 4.21: (a) Performance comparison of ML algorithms: SVM, DT, NBC, HMM,
’SVM+FFA’ and statistical model [112] using k = 192 for 30 days. (b) Comparison
of expected and evalauted P (SUblocking) using SVM, DT, NBC, HMM, ’SVM+FFA’
and statistical model [112] using k = 192 for 30 days.
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has attained the highest CA but with the longest computation time in most

cases.

4.5 Conclusion

The spectrum measurements have been used to evaluate the spectral oppor-

tunities for cognitive radio. Insightful relationships between the spectrum oc-

cupancy and its parameters: time, frequency channels and decision threshold

have been derived. The occupancy has been modelled as a function of these

three parameters. The occupancy model has been further used for classifica-

tion of the idle and busy channels using the supervised and the unsupervised

algorithms. It has been shown from the results that SVM is the best classifi-

cation algorithm which has attained the highest classification accuracy. The

performance of SVM has been further improved by using fire fly algorithm.
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Number of Iterations/ Number of days =5

Training data, Testing data Technique Mean CA

Mean Compu-
tational
Time(s)

15 %, 85 %

DT 0.7612 0.0132
SVM 0.8945 0.0128

SVM + FFA 0.9034 3.0412
HMM 0.4925 0.0241
NBC 0.8714 0.0084

23 %, 77 %

DT 0.8034 0.0178
SVM 0.9124 0.0129

SVM + FFA 0.9148 3.5701
HMM 0.4903 0.0343
NBC 0.8960 0.0090

30 %, 70 %

DT 0.8028 0.0198
SVM 0.9143 0.0153

SVM + FFA 0.9189 3.8947
HMM 0.4841 0.0191
NBC 0.9064 0.0098

Number of Iterations/ Number of days =10

Training data, Testing data Technique Mean CA

Mean Compu-
tational
Time(s)

15 %, 85 %

DT 0.7823 0.0140
SVM 0.8556 0.0117

SVM + FFA 0.8840 7.5390
HMM 0.4892 0.0260
NBC 0.8499 0.088

23 %, 77 %

DT 0.7923 0.0342
SVM 0.8928 0.0168

SVM + FFA 0.9097 9.9629
HMM 0.4893 0.0224
NBC 0.8828 0.0090

30 %, 70 %

DT 0.7924 0.3400
SVM 0.8894 0.0272

SVM + FFA 0.9148 12.7505
HMM 0.4855 0.0219
NBC 0.9158 0.0112

Table 4.3: Performance Comparison of five ML algorithms for several iterations
using different sizes of Training/Testing data.
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Chapter 5

Predictive Modelling for Energy

Harvesting

5.1 Introduction

The heterogeneous wireless devices and applications pose big challenges to

operators in terms of energy consumption. Energy harvesting devices could

be a potential source of energy. In particular, radio frequency (RF) energy

harvesting is a technology that allows ambient RF signals to be collected by

an antenna and converted into DC power using a rectifier [89]. Compared

with other natural sources of energy (solar, vibration, wind and acoustic), the

RF energy is more reliable as it does not depend on nature. Apart from its

controllable and deterministic nature, RF signals can be used for simultaneous

transmission of power and information [91] for far-field communication that

makes it better than magnetic induction schemes utilized for near-field trans-

missions. Thus, the adoption of RF energy harvesting technology is plausible.

On the other hand, the amount of RF energy that could be harvested

changes with time and frequency. For example, there are more mobile signals
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during the day than during the night time in the commercial areas. There is

also more RF power in the TV band than in the mobile band, due to the higher

TV transmission power. Thus, it is very important for RF energy harvesters

to choose the right operating time and frequency for attaining maximum en-

ergy as well as scheduling the transmission time and power for the efficient

communications.

To achieve this, energy prediction is a key component because it equips

the harvesting node with better knowledge of the energy availability in the

future. Most current works assume a theoretical model for energy as dis-

cussed in Chapter 1. For example, a queuing model is proposed in [135] that

analyses energy profile in solar powered wireless sensor network. This model

would be useful for designing the energy efficiency protocols while ensuring

QoS constraints. Similarly in [136], the performance of an energy harvest-

ing node is analysed as a function of energy profile and outage probability.

In [137], a Markov chain model is presented to illustrate energy renewal pro-

cess for replensiable sensors. Also the optimal transmission policies for man-

aging sensors with different energy budgets is presented. Similarly, in [138],

a weather-conditioned moving average (WCMA) method was used to model

energy in solar harvesting systems. In [139], exponentially weighted moving

average (EWMA) method was proposed to improve WCMA. All these models

can be utilized for the management of energy efficient networks. However,

none of them used real time measurements from practice. After in depth liter-

ature review, it was concluded that there has been no work on the predictive

modelling of the harvested RF energy using real data.

In this chapter, real-time power measurements taken at the University

of Warwick from 880 -2500 MHz (as discussed in Chapter 4) are used for

predicting the RF energy, that could be harvested. The main contributions of
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this chapter can be summarized as follows:

• A machine learning based predictive framework is presented that eval-

uates a specific time of the day and a frequency channel, where more

energy can be harvested. The amplitude probability distribution (APD)

is also evaluated for the harvested power that estimates the percentage

of attaining a specific amount of power in a frequency band.

• Two machine learning techniques: linear regression (LR) and decision

trees (DT), are employed for predicting the harvested energy by consid-

ering low and medium-efficiency RF energy harvesters Numerical results

show that LR outperforms DT by attaining minimum 85% prediction

accuracy.

• The performance comparison of LR is also evaluated with a conventional

prediction scheme in literature: moving average method. It was observed

that LR outperformed moving average method as well.

The remainder of the chapter is organized as follows. Section 5.2 introduces

the system model including the details of RF energy harvesters, machine learn-

ing framework and APD. Section 5.3 discusses the methodology that how to

utilize linear regression and decision trees for predicting the harvested power.

Numerical results are presented in Section 5.4. Finally, concluding remarks

are given in Section 5.5.

5.2 System Model

5.2.1 RF Energy Harvesters

The key component for converting radio waves into electrical energy in an en-

ergy harvester is a rectenna, comprised of an antenna and a RF-DC converter.
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The DC output power of RF energy harvester is typically in the micro watt

to milli watt range, depending on a number of factors, such as the distance,

power conversion efficiency (PCE) and the input power of the source [140].

The efficiency of a harvester greatly depends on the design of the rectenna.

The PCE is the most critical parameter for a rectanna. It depends on the

circuit topology, diode-device parameters and the input RF amplitude. Given

PCE (η), the harvested power is calculated as:

H i,j = η ∗ P i,j. (5.1)

where P i,j represents the input power incident at the RF energy harvester in

the ith time slot of the jth frequency bin and H i,j represents the harvested

power. The input power P i,j represents the same data matrix yi(j) ( as dis-

cussed in Section 4.2.1), where i = 1, 2, .., n and j = 1, 2, .., k.

5.2.2 Machine learning framework

Supervised ML is considered in this chapter, where feature vectors are trained

corresponding to their defined target labels to attain the trained model. The

trained model is further tested using the unseen testing feature vector. The

proposed approach in this work is a regression problem, where the target label

H i,m (represents the harvested power of the m-th frequency bin in the i-th time

slot) is predicted using the feature vector: Hi,m−1:m−q = [H i,m−1, .., H i,m−q]T

(represents the harvested power of q frequency bins). In this approach, m

represents the frequency bin to be predicted and q represents the number of

frequency bins used before m to estimate the power of the m-th frequency bin.

The parameter q is a subset of k and it represents the length of training and

testing feature vectors.
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5.2.3 Amplitude Probability Distribution (APD)

The probability of occurrence of a specific amount of harvested power level

is evaluated using amplitude probability distribution (APD) in our approach

[141]. The APD is given as:

APD(Hthres, j) = Pr(H
i,j < Hthres) =

1

n

n∑
i=1

F ij (5.2)

where Hthres represents the specific threshold for which the probability of oc-

currence is calculated and F ij represents the status of the ith time slot in the

jth frequency bin, given as as [141]

F ij =


1, H i,j > Hthres

0, H i,j < Hthres.

Using APD, one can find out what amount of energy is most likely to be

harvested.

5.3 Proposed Methodology

5.3.1 Linear Regression

The LR model for the training phase of the i-th time slot is given as:

(5.3)

H i,m
train = b0 + bm−1H

i,m−1
train + bm−2H

i,m−2
train + ...+ bm−qH

i,m−q
train

= b0 +

m−q∑
j=m−1

bjH
i,j
train

Equation (5.3) can written as

(5.4)H i,m
train = b0 + [bm−1, bm−2, .., bm−q]

THi,m−1:m−q
train

where Hi,m−1:m−q
train represents the i-th training feature vector, H i,m

train rep-

resents the target label and bm−1, bm−2, .., bm−q represents the trained model
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parameters. The trained model is further tested to predict the target label of

the unseen testing feature vector Hi,m−1:m−q
test .

5.3.2 Decision Trees

Decision trees work on divide-and-conquer algorithm. It divides the data into

subsets, builds a tree for each of them and then combines those subtrees into

a single tree [142]. Data comes in the form

(5.5)(Hi,m−1:m−q
train , H i,m

train) = (H i,m−1
train , H

i,m−2
train , H

i,m−3
train , .., H

i,m−q
train , H

i,m
train).

The data space (Hi,m−1:m−q
train ) is partitioned into smaller regions (leaves) to

make the interactions more manageable. The choice of partition is guided by

a least squares error criterion . Binary trees consider two way splits at each

tree node. The best split at each node t is the split s that maximizes

4E(s, t) = E(t)− PLE(tL)− PRE(tR) (5.6)

where E(t) is the mean squared error at node t, PL and PR represents the

proportions of the instances that fall to the left and right branch of the node t

respectively, E(tL) and E(tR) are the errors of the left and right branches [143].

Once the DT model is trained, it is further tested to predict the target label

of the unseen testing feature vector.

The prediction error of LR/ DT model for the i-th time slot is given as

RMSE =

√∑N
i=1(H i,m

test − Ĥ
i,m
test)

2

N
(5.7)

where Ĥ i,m
test represents the predicted target label of them-th frequency bin eval-

uated using LR/ DT trained model and H i,m
test represents the expected target

label of the harvested power. The normalized RMSE (NRMSE) is evaluated
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in this approach given as

NRMSE =
RMSE

max(H i,m
test)−min(H i,m

test)
. (5.8)

5.4 Numerical Results and Discussion

For evaluating the proposed prediction framework, n = 100 time instants of

the Band 880-915 MHz are considered, where n = 100 represents the data of

around two hours. The data normalization is performed for standardizing the

range of all feature vectors using the relation x′ = x−x̄
σ

, where x, x′, x̄ and σ

represents the original value, normalized value, mean and standard deviation

of the feature vector. Using n = 100 and k = 192, it was observed in Fig. 5.1

that the input power of the band 880-915 MHz varies between [0.2167, 6.2695]

mW after normalization. It was also observed from Fig. 5.1 that average input

power of the Band 880-915 MHz is P i,j = 1.0436 mW. As the input power is

represented as a function of time and frequency in Fig. 5.1, the peak power at

specific frequency bin and time slot can also be extracted from the Fig.5.1. It

was observed that peak input power for Band 880-915 MHz can be extracted

using frequency bin k = 912 MHz and time slot n = 60.

The input power reaching harvester is dependant on many factors such

as frequency, distance and source power. As discussed in Section 2.4.1, that

harvested energy attained using isotropic RF transmitter with a source power

of 1.78W for frequency 868 MHz at a distance of 25m produces 2.3 µW. How-

ever the harvested power decreases to 2µW, when distance is increased to 27m

using the same source power and frequency. This shows that harvested power

decreases when distance between RF energy harvester and source transmit-

ter increases. Th Friis equation for free space loss [144] also endorses this

observation, where the power density decreases at the rate of 1
d2

and d rep-
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Figure 5.1: Input Power(mW) after normalization using n = 100 and k = 192 of
Band 880-915 MHz.

resents the distance. Therefore, it can be concluded that harvested power is

directly affected by the distance. The harvested power for the proposed model

is explained below.

5.4.1 Harvested Power

For harvesting, energy, two types of harvesters are used in this approach as

shown in Fig. 5.2, where low efficiency harvester (LEH) exhibits a maximum

η of 29% at P i,j = 0.1 mW [145], while medium efficiency harvester (MEH)

produces a maximum η of 45% at P i,j = 0.1 mW [146]. Both harvesters are

130



different because each one of them exhibits a different value of PCE for the

same input power. As discussed in Section 6.2.1, PCE is the most critical pa-

rameter of an harvester and depends on the circuit topology and diode-device

parameters. It was observed in Fig. 5.2 that the PCE for both harvestors

decreases when RF input power increases. It was observed in Fig. 5.3(a),

that maximum harvested power attained using LEH is H i,j = 0.13 mW (

H i,j = 2.3% ∗ 6.2695, following (5.1) ) and using MEH, it is H i,j = 0.69 mW

( H i,j = 11% ∗ 6.2695) in Fig. 5.3(b). It was also observed from Fig. 5.3

that average harvested power using LEH and MEH is H i,j = 0.0774 mW and

H i,j = 0.3342 mW respectively.

5.4.2 Amplitude Probability Distribution

The APD of the harvested power is evaluated by setting 13 different values

of Hthres ranging between Hthres = [0.01, 0.13] mW using LEH in Fig. 5.4(a)

and Hthres = [0.1, 0.7] mW using MEH in Fig. 5.4(b). It was observed in

Fig. 5.4(a) that probability of harvesting power level greater than H i,j =

0.04 is 1. This can be illustrated by analysing the power samples in Fig.

5.3(a), where it is evident that minimum harvested power attained using low

efficiency harvester is H i,j = 0.04 mW. It was also observed in Fig. 5.4(a)

that probability reduces to 0.5, when Hthres = 0.07 mW is used for LEH.

This is because one half of the total harvested signals lies below the average

harvested power (H i,j = 0.07 mW) and the other half exists above the average

harvested power. The similar behaviour is observed for MEH in Fig. 5.4(b)

that probability reduces to 0.5, when Hthres = 0.33 mW is used ( since the

average harvested power is H i,j = 0.33 mW for MEH as mentioned in Section

5.4.1).
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Figure 5.3: Harvested power of Band 880-915 MHz using n = 100 and k = 192 for
(a) low efficiency harvester (b) medium efficiency harvester.
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Figure 5.4: Amplitude probability distribution of Band 880-915 MHz for n = 100
and k = 192 using (a) LEH (b) MEH.

134



5.4.3 Predictive Energy model

The harvested power is predicted in Fig. 5.5 for frequency bins between 896-

906 MHz using both LEH and MEH. It was observed that LR has outperformed

DT by attaining a smaller value of NRMSE for both LEH and MEH. The

maximum value of NRMSE attained by LR and DT using LEH is 0.15 and 0.2

respectively, which depicts that predictions are at least 85 % and 80% accurate

using LR and DT, respectively. It was observed that harvested power (Ĥ i,m
test)

attained by LR and DT for LEH is 0.118 mW and 0.116 mw, respectively,

while it is 0.6347 mW and 0.5655 mW, respectively, for the case of MEH.

Hence, it can be concluded that Ĥ i,m
test attained using LR is larger than DT.

So far, the proposed framework is tested using data of Band 880-915

MHz, that belongs to Group B (periodic group), therefore in this section, the

performance of the proposed predictive model is also evaluated using data of

an aperiodic band that belongs to Group A. For that, n = 100 time slots

of Band 2110-2170 MHz are used. It was observed in Fig. 5.6 that LR has

outperformed DT again by attaining the maximum NRMSE of 0.23 using LEH

and 0.2 using MEH respectively, however DT attained the maximum error of

0.24 for both LEH and MEH. It was observed that prediction error is increased

in case of Band 2110-2170 MHz compared to the Band 880-915 MHz. Perhaps,

this may have happened because 880-915 MHz is a periodic band, where the

pattern of the input power repeats periodically and can be predicted more

accurately. However Band 2110-2170 MHz is an aperiodic band, where input

power fluctuates without any defined pattern.

It was also observed in Fig. 5.6 that Ĥ i,m
test attained using both LEH and

MEH is higher than Band 880-915 MHz. This is because the harvesters used

for Band 2110-2170 MHz have higher PCE compared to the harvesters utilized

for Band 880-915 MHz in Fig. 5.2. The maximum harvested power attained
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Figure 5.5: The predicted harvested power Ĥ i,m
test and RMSE using DT and LR for

LEH and MEH between 896- 906 MHz.
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Figure 5.6: The predicted harvested power Ĥ i,m
test and RMSE using DT and LR for

LEH and MEH between 2140- 2160 MHz

by DT for Band 2110-2170 MHz is 0.43 mW using LEH ( H i,j = 22% ∗ 2.02,

where 2.02 mW is the maximum input power of Band 2110-2170 MHz and

22% is the η attained using [147]). Similarly the maximum harvested power

attained by DT is 0.909 mW using MEH ( H i,j = 45% ∗ 2.02, where η = 45%

is attained using [148]).

Each frequency bin in Fig. 5.5 and Fig. 5.6 contains n time slots,

therefore the predicted harvested power in a specific frequency bin eventually

means the prediction of the harvested power in n time slots of the selected
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frequency bin. In Fig. 5.7(a), Ĥ i,m
test is evaluated for two frequency bins of

Band 880-915 MHz: m = 897 MHz and m = 897.2 MHz using the period of

n = 100 time slots. The predicted harvested power is compared with the actual

harvested power and it was found that there is positive correlation between

actual and predicted value for both LEH and MEH. The Ĥ i,m
test attained at

m = 897 MHz and m = 897.2 MHz is 0.1049 mW and 0.1036 mW using LEH,

while it is 0.4919 mW and 0.4590 mW using MEH, respectively. These values

coincide with our results in Fig. 5.5 for m = 897 and m = 897.2 MHz. It

was observed in Fig. 5.7 that Ĥ i,m
test shows a spike at time slot i = 34 and

frequency bin j = 897 MHz in case of both LEH and MEH. This specific value

of time slot and frequency bin predicted by the proposed model determines

the specific point, where more power can be harvested. The proposed model

can plays a vital role for defining the adaptive transmission policies according

to the variation in prediction for the power variations.

.

5.4.4 Performance Comparison of LR and DT

The performance of LR and DT for two bands: 880-915 MHz and 2110-2170

MHz is compared using data of two days (6 -7 Feb, 2013), n = 500 time slots

and different sizes of the training data set (q) in Table 5.1. It was observed that

LR has outperformed DT in all cases by attaining smaller value of NRMSE,

however the computation time required by LR in the training phase is higher

than DT. The computational time is directly proportional to the size of train-

ing data set and it is inversely proportional to the value of NRMSE. It was

also observed that values of NRMSE and computational time vary with days.

This variation could be due to the change in environmental conditions at a

specific time of the day.
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Figure 5.7: The predicted harvested power Ĥ i,m
test for m = 897 MHz and m = 897.2

MHz attained using LEH and MEH.

Band, Day q LR: NRMSE, Time(s) DT: NRMSE, Time(s)

880-915, 6th Feb
35 0.1239, 0.8894 0.1606, 0.3830
30 0.1412, 0.7022 0.1715, 0.4978

880-915, 7th Feb
35 0.1214, 0.9278 0.1446, 0.6538
30 0.1388, 0.7364 0.1542, 0.4861

2110-2170, 6th Feb
35 0.1739, 0.8770 0.2171, 0.6396
30 0.1800, 0.7202 0.2195, 0.5042

2110-2170, 7th Feb
35 0.1624, 0.9441 0.2187, 0.6498
30 0.1766, 0.7535 0.2315, 0.5058

Table 5.1: Performance Comparison of LR and DT for different bands, days and
training data sets

.
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5.4.5 Performance Comparison of Moving Average Method and LR

As LR outperforms DT in the considered cases, the performance of LR is

compared in this section with a simple forecasting method in the literature i.e.

moving average (MA). In MA, the best predicted value for future is evaluated

by taking the average of everything that has happened up until now [149]. The

observation (m1) is predicted as the average of the last m1 − 1 observations,

where m1−1 is the moving average interval. In the proposed approach, the pa-

rameter m1−1 represents the number of frequency bins utilized for predicting

the power of frequency bin m1 in the i-th time slot given as:

Ĥ i,m1 =

∑m1−1
j=1 H i,j

m1 − 1
(5.9)

The parameter m1−1 in MA is interpreted as q in LR model. The performance

of LR and MA for two frequency bands: 880-915 MHz and 2110-2170 MHz is

compared as shown in Fig. 5.8. It was observed that LR has outperformed

MA by attaining smaller value of NRMSE for 11 different values of m1. The

stability of the proposed prediction framework is also validated by comparing

LR with MA, for the case when missing entries are introduced in the testing

data. An amount of 5% missing entries are introduced in the testing data set

and fed into the trained model. The predicted values from the LR trained

model are further compared with the predicted values evaluated using MA

method. It was observed that LR has outperformed MA again by attaining

smaller value of NRMSE, when missing entries are introduced. It was also

observed that NRMSE is increased by 8 − 10% using LR and MA schemes,

when compared with the case, when there are no missing entries in the testing

data set. This verifies the observation that error increases with an introduction

of noise in the system.
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Figure 5.8: Comparison of LR with MA using (a) 880-915 MHz (b) 2110-2170 MHz.
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5.5 Conclusion

In this chapter the prediction framework is proposed for evaluating the har-

vested power in frequency channels using two prediction schemes: LR and

DT. The results are verified using measurements of different frequency bands

for different days. It was observed that LR outperformed DT by attaining

smaller value of NRMSE. The minimum prediction accuracy determined by

the LR model is 85%. The proposed methodology plays a vital role for defining

the adaptive transmission policies because one can find the specific time and

frequency, where harvester can generate more power.
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Chapter 6

Energy Harvesting Cognitive

Radios

6.1 Introduction

Much recent research has been focussed on exploiting the energy harvesting

(EH) in cognitive radio networks (CRN) [150]. In [151], the energy harvesting

CRN was proposed, where SU harvests energy from the nearby PU or transmits

information if the PU is far away. In [152], the achievable throughput of the

secondary transmitter that harvests energy while opportunistically accessing

the PU licensed spectrum was analysed for improving the energy and spectral

efficiency of the CRN. Similarly, [153] focused on determining the optimal

spectrum sensing policy of SU, subject to an energy causality constraint and a

collision constraint. There are also a few studies which suggested cooperation

between PU and SU. For example, in [154], SU was proposed as a relay for

PU communication, where SU harvests energy first from the received primary

signals and then uses the harvested energy to forward the primary signals.

Similarly, in [155,156], SU cooperated with PU to boost the primary system’s
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performance.

All these works assume that PU does not have any energy harvesting

capability. However, if the PU is a wireless powered system [157], such assump-

tion is not valid any more. As discussed in Section 2.4.2, WPC is referred as

the energy harvesting communication. In this chapter, the performance of the

WPC enabled CRN is analysed, where the PU is a wireless powered system

with energy harvesting capability. Specifically, consider an access point (AP)

that transfers energy to all PUs in the downlink (DL) and while PUs harvest

energy from the AP, SUs also transmit data to increase its throughput. In the

proposed configuration, PU gets chance to harvest energy both from the AP

and SU data transmissions. Therefore considering the proposed methodology,

PU can take advantage from the cooperation with the SUs without prede-

termined agreement. The contribution of this chapter can be summarized as

follows:

• A wireless powered energy harvesting cognitive radio network is presented

in this thesis, where PU gets benefits due to existence of SU without

allocating extra resources. The idea of using WPC in energy harvesting

cognitive radio networks has not been presented before.

• A three state hypotheses for distinguishing PU statuses (absent, harvest-

ing energy and transmitting data) in WPC enabled CRN is presented.

Two decision thresholds have been utilized to differentiate three PU sta-

tuses.

• The proposed framework is also compared with the conventional energy

harvesting CRN in the literature, where SU is only allowed to harvest

energy, when PU is transmitting. Numerical results have shown that

proposed strategy outperforms the conventional strategy, where PUs can
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attain energy gain from the transmission of SU and SU can attain the

throughput gain from the extra transmission time allocated to PUs for

energy harvesting.

The rest of the chapter is organized as follows. Section 6.2 introduces

the system model that includes the details of the three state hypotheses in

wireless powered communication network. Section 6.3 discusses the proposed

and the conventional strategies in the literature. Numerical results are pre-

sented in Section 6.4. Finally concluding remarks are given in Section 6.5.

6.2 System Model

Consider a wireless powered primary network with one access point (AP) and

K PUs, denoted by PUi, i = 1, 2, .., K, as shown in Fig. 6.1. All PUs harvest

energy from the AP in the downlink (DL) during time duration τ0, and use

the harvested energy to transmit the information to the AP in the uplink (UL)

during τi [158], where τi represents the time duration allocated to the ith PU

for the UL transmission and τ0 +
∑K

i=1 τi = 1. It is assumed that all nodes

operate in half-duplex. A secondary network is also considered in the same

area, having one secondary user transmitter (SUTR) and one secondary user

receiver (SUR). The proposed framework works as follows:

(a) When the AP transfers energy to the PUs during τ0, SUTR transmits data

to the SUR. The main rationale behind this method is that AP transmits

wireless energy to all PUs in the network during a time slot τ0 and in order

to create equal opportunity for SU to use the network, it has been proposed

that SUTR sends data to the SUR during the same time slot τ0. Due to

simultaneous working of both SUTR and AP in τ0, PU faces interference from

SUTR transmission which is further perceived as an advantage by PU because
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it can harvest energy from SUTR interference. In this manner, SU and PU

both can get equal benefit during time slot τ0 because SUTR is able send data

to SUR that eventually increases throughput of SUTR and PU can harvest

energy. Furthermore, it has been assumed that PUs posses less energy than AP

because AP is serving as the central controller that provides wireless energy

to all PU terminals. that is further used by PUs for sending data back to AP.

(b) When the PUs are detected to send data to the AP during τ1, τ2, ..., τK ,

then SUTR tunes itself for energy harvesting. In this step, SUTR is not allowed

to send data to SUR. This is because maximum protection can be guaranteed

to PUs by minimizing interference due to SUTR transmissions.

(c) Also, define τfree as the time during which neither the AP is transferring

energy nor the PUs are sending data. The SUTR uses τfree for the data

transmission, when both the PUs and the AP are detected absent.

Assume that the primary network has different transmission powers for

energy and data transfer, where higher transmission power is assumed for the

data transfer than for the energy transfer. Define two decision threshold λ1

and λ2, to differentiate the information transmission from the energy transfer,

where λ2 > λ1. Let r(t) be the sample sensed by SUTR at time t. Using energy

detection, the received signal energy at SUTR is measured as:
∑M−1

t=0 |r(t)|2=

T (r), where M represents the total number of samples. The PUs are either

free or harvest energy or transmit information, denoted as H0, H1 and H2,

respectively. Then, the detection by SUTR is performed as
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Figure 6.1: A wireless powered cognitive radio framework having K primary users
(PUi, where i = 1, 2, ..,K), an access point (AP), a secondary user transmitter
(SUTR) and a secondary user receiver (SUR). The links in black color represent the
communication channels within a primary/ secondary network while the ones in red
color represent the communication channels between the primary and the secondary
network. The primary users PUi=1 and PUi=K are represented in the figure, where
i can have any value between 1 and K.
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(6.1)



T (r) < λ1 =⇒ PUs are detected free : H0

λ1 6 T (r) 6 λ2 =⇒

PUsare detected to harvest energy : H1

T (r) > λ2 =⇒

PUs are detected to transmit information : H2

Following the two state hypotheses in [159], the probability of detection and

probability of false alarms for three state hypotheses using (6.1) has been

derived as

Detection and false alarm probabilities in state H0

P (H2|H0) = P (T (r) > λ2|H0) =
Γ(u, λ2

2σ2 )

Γ(u)
(6.2)

(6.3)

P (H1|H0) = P (λ1 <= T (y) <= λ2|H0)

= P (T (y) <= λ2|H0)− P (T (y) <= λ1|H0)

= (1−
Γ(u, λ2

2σ2 )

Γ(u)
)− (1−

Γ(u, λ1
2σ2 )

Γ(u)
)

=
Γ(u, λ1

2σ2 )

Γ(u)
−

Γ(u, λ2
2σ2 )

Γ(u)

P (H0|H0) = 1− P (H1|H0)− P (H2|H0) (6.4)

Detection and false alarm probabilities in state H1

P (H2|H1) = P (T (y) > λ2|H1) = Qu(
√

2γ1,
√
λ2) (6.5)
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(6.6)

P (H1|H1) = P (λ1 <= T (y) <= λ2|H1)

= P (T (y) < λ2|H1)− P (T (y) <= λ1|H1)

= Qu(
√

2γ1,
√
λ1)−Qu(

√
2γ1,

√
λ2)

P (H0|H1) = 1− P (H1|H1)− P (H2|H1) (6.7)

Detection and false alarm probabilities in state H2

P (H2|H2) = P (T (y) > λ2|H2) = Qu(
√

2γ2,
√
λ2) (6.8)

(6.9)

P (H1|H2) = P (λ1 <= T (y) <= λ2)

= P (T (y) <= λ2|H2)− P (T (y) <= λ1|H2)

= Qu(
√

2γ2,
√
λ1)−Qu(

√
2γ2,

√
λ2)

P (H0|H2) = 1− P (H2|H2)− P (H1|H2) (6.10)

where Γ(., .), Qu(a, b), u, γ1 and γ2 represents the incomplete Gamma

function, the generalized Marcum Q-function, the time-bandwidth product

[159], the PU signal to noise ratio (SNR) in H1 and the PU SNR in H2,

respectively.

6.3 Analysis

In this section, the proposed methodology for energy harvesting in wireless

powered CRN is presented. Also the conventional strategy for energy harvest-

ing CRNs in literature is discussed.
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6.3.1 Proposed Strategy

The performance of the cognitive radios with wireless powered PUs is analysed

in this section, where the SUTR transmits data when PUs are detected to

harvest energy. In this case, SUTR transmits data when H0 and H1 are

detected and harvests energy when H2 is detected. This allows PUs to achieve

energy gain from the SUTR transmission too. Define Hq|Hj as one of the

possible conditions following the detection criteria in (6.1), whereHq represents

the channel status detected by the SUTR and Hj represents the actual channel

status and q, j = {0, 1, 2}. The received signal at the ith primary user (PUi)

in the DL is given as

(6.11)yPUi
=


(h̃i

√
Po

Lhi
)xa + (s̃i

√
Ps

Lsi
)xs + zi, H0|H1

(h̃i
√

Po

Lhi
)xa + (s̃i

√
Ps

Lsi
xs) + zi, H1|H1

(h̃i
√

Po

Lhi
)xa + zi, H2|H1

where yPUi
and zi represent the received signal and the noise at PUi, respec-

tively, P0 and Ps represents the transmitted power of the AP and the SUTR,

respectively, h̃i and s̃i are complex random variables between AP → PUi and

SUTR→ PUi with channel power gains hi = |h̃i|2 and si = |s̃i|2 respectively.

The same definition applies to all other channel power gains in the model.

Also in (6.11), Lhi and Lsi represents the path loss between AP → PUi and

SUTR→ PUi respectively, xa and xs represents the baseband signal transmit-

ted by AP and SUTR, respectively. It is assumed that xa is a complex random

signal, satisfying E[|xa|2] = 1, and the same applies to all other baseband sig-

nals considered in the model. The condition H0|H1 in (6.11) represents the

case, when the SUTR detects the channel status as H0 and sends data to the

SUR, while the actual channel status is H1. The same definition applies to all

other conditions considered in the model. Using (6.11), the expected harvested
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energy at PUi can be derived as

(6.12)E[PE] = ηiτo(
hiPo
Lhi

+
siPs
Lsi

)(1− P (H2|H1)) + ηiτo(
hiPo
Lhi

)P (H2|H1)

where ηi represents the energy harvesting efficiency at PUi and 0 < ηi < 1.

Once PUi has harvested the energy in the DL, it will transmit the information

to the AP in the UL during time slot τi. If the PUs are detected to send data to

the AP, the SUTR can harvest energy from the PU transmission. This means

that the SUTR harvests energy when H2 is detected. Thus, the received signal

at the SUTR for energy harvesting is given by

(6.13)ySUTR =


zTR, H2|H0

(ãs
√

Po

Las
xa) + zTR, H2|H1

(c̃i
√

Pi

Lci
xpi) + zTR, H2|H2

where zTR represents the noise at SUTR, xpi and Pi represents the baseband

signal and the power transmitted by PUi respectively, ãs and c̃i are complex

random variables between AP → SUTR and PUi → SUTR respectively with

channel power gains as = |ãs|2 and ci = |c̃i|2 respectively, Las and Lci rep-

resents the path loss between AP → SUTR and PUi → SUTR respectively.

Using (6.12), the expected value of Pi is given by, E[Pi] = ζiE[PE]
τi

, where ζ

represents a fixed portion of the harvested energy utilized for the UL informa-

tion transmission by each PUi and ζ ∈ (0, 1). The expected harvested energy

at the SUTR is given as

(6.14)E[SE] = ηsτ0
asP0

Las
P (H2|H1) + ηsτi

ciPi
Lci

P (H2|H2)

where ηs represents the energy harvesting efficiency of the SUTR. On

the other hand, the SUR receives data from the SUTR, when H0 or H1 are

detected. Thus, the received signal at SUR (ySUR), is given as
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(6.15)ySUR =



(s̃s
√

Ps

Lss
)xs + zs, H0|H0

(s̃s
√

Ps

Lss
)xs + zs, H1|H0

(s̃s
√

Ps

Lss
)xs + (h̃s

√
Po

Lhs
)xa + zs H0|H1

(s̃s
√

Ps

Lss
)xs + (h̃s

√
Po

Lhs
)xa + zs, H1|H1

(p̃si
√

Pi

Lpsi
)xpi + (s̃s

√
Ps

Lss
)xs + zs, H0|H2

(p̃si
√

Pi

Lpsi
)xpi + (s̃s

√
Ps

Lss
xs) + zs, H1|H2

where zs represents the noise at the SUR with variance σ2, ss, hs and psi

represents the channel gains between SUTR → SUR, AP → SUR and

PUi → SUR respectively, Lss, Lhs and Lpsi represents the path loss between

SUTR → SUR, AP → SUR and PUi → SUR respectively. The total ex-

pected throughput of SUR, can be derived as:

(6.16)

E[RSUR] = τfreelog2(1+
ssPs

Lss

σ2
)(1−P (H2|H0)) + τ0log2(1 +

ssPs

Lss

hsP0

Lhs
+ σ2

)(1

− P (H2|H1)) + τilog2(1 +
ssPs

Lss

psiPi

Lpsi
+ σ2

)(1− P (H2|H2))

6.3.2 Conventional Strategy

As discussed in Section 2.4.1, the conventional RF energy harvesting CRN

works in a manner that SUs not only identify spectrum spaces for the data

transmission but also searches the occupied spectrum to harvest maximum

energy. The conventional RF energy harvesting CRN works using two state

hypothesis, where PU is either present (H1) or its absent (H0). Therefore SU

gets chance to harvest energy only when PU is transmitting i.e. during H1

state. However, the proposed approach works using three state hypothesis,

where PU is present in two states: H1 and H2 while it is absent in one state
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i.e. H0. Therefore, following three state hypothesis, SU gets chance to harvest

energy from AP in both H1 and H2 states.

The conventional energy harvesting cognitive radio framework for the

proposed approach works in a manner that SUTR does not transmit any data

as along as PU activity is detected, or H1 and H2 are detected. This means

that PUs harvest energy when H1 is true and transmits data when H2 is true.

The SUTR harvests energy when either H1 or H2 is detected, while the SUR

only receives data from the SUTR, when H0 is detected. Following a similar

analysis, the received signal at PUi during DL for energy harvesting is given

as

(6.17)yPUi
=


(h̃i

√
P0

Lhi
)xa + (s̃i

√
Ps

Lsi
)xs + zi, H0|H1

(h̃i
√

Po

Lhi
)xa + zi, H1|H1

(h̃i
√

Po

Lhi
)xa + zi, H2|H1

Using (6.17), the energy harvested at PUi for conventional strategy is

given as

(6.18)E[PE] = ηiτ0(
hiP0

Lhi
+
siPs
Lsi

)P (H0|H1) + ηiτo(
hiP0

Lhi
)(1− P (H0|H1))

In this case, SUTR does not transmit in H1 and H2. It harvests energy

in both H1 and H2, therefore the received signal at SUTR, is given as

(6.19)ySUTR =



zTR, H2|H0

(ãs
√

P0

Las
)xa + zTR, H2|H1

(c̃i
√

Pi

Lci
)xpi + zTR, H2|H2

zTR, H1|H0

(ãs
√

P0

Las
)xa + zTR, H1|H1

(c̃i
√

Pi

Lci
)xpi + zTR, H1|H2
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The energy harvested by SUTR in H2 is given as

(6.20)
E[SE] = ηsτ0

asP0

Las
P (H2|H1) + ηsτi

ciPi
Lci

P (H2|H2)

+ ηsτo
asPo
Las

P (H1|H1) + ηsτi
ciPi
Lci

P (H1|H2)

which can be written as

(6.21)E[SE] = ηsτo
asP0

Las
(1− P (H0|H1)) + ηsτi

ciPi
Lci

(1− P (H0|H2))

In this case, SUR receives the data from SUTR in H0 only. The received

signal at SUR is given as

(6.22)ySUR =


(s̃s

√
Ps

Lss
)xs + zs, H0|H0

(s̃s
√

Ps

Lss
)xs + (h̃s

√
Po

Lhs
)xa + zs, H0|H1

(p̃si
√

Pi

Lpsi
)xpi + (s̃s

√
Ps

Lss
)xs + zs; H0|H2

Using (6.22), the expected throughput at SUR for the conventional strategy

is given as

(6.23)
E[RSUR] = τfreelog2(1 +

ssPs

Lss

σ2
)P (H0|H0) + τ0log2(1

+
ssPs

Lss

hsPo

Lhs
+ σ2

)P (H0|H1) + τilog2(1 +
ssPs

Lss

psiPi

Lpsi
+ σ2

)P (H0|H2)

6.4 Numerical Results and Discussion

In this section, the amount of energy harvested by PUi, the throughout gained

by the SUR and the energy harvested by the SUTR are compared for cognitive

radios using the new and conventional strategies. It is assumed that Ps = 5 dB,

ηi = ηs = 0.4. Also, hi = gi = ss = 3 dB, si = ci = 2 dB, as = sa = 1.4 dB,

psi = 1.3 dB and hs = 1.2 dB are set. As the distances between PUi → SUR,

AP → SUR, and AP → SUTR is comparatively larger than other nodes in

154



Fig. (6.1), therefore Las, Lsa, Lpsi and Lhs are assumed to be larger than other

links. It is assumed that Lhi = Lgi = Lss = −1.023 dB, Lsi = Lci = −1.5

dB, Las = Lsa = 0.484 dB, Lpsi = 0.773 dB and Lhs = 0.569 dB. Further,

γ1 = 1.12 dB, γ2 = 1.17 dB are set, where it is assumed that SNR in H2 is

higher than that in H1 for both strategies. Similarly λ2 is assumed to be larger

than λ1, therefore λ1 = 5 and λ2 = 8.

6.4.1 Effect of changing P0

Fig. 6.2 shows the relationship between E[PE] and P0 for both new and the

conventional strategies. Two scenarios are considered for both strategies: low

channel gain and high channel gain. The high channel gain scenario represents

the condition, where higher values of the channel gains are assumed for the

links: PUi ↔ SUTR (si, ci) and SUTR → SUR (ss) links, while the rest

of the parameters are kept same as before. It was observed that E[PE] in-

creases with an increase in the value of P0, as expected. It was also observed

that E[PE] increases with an increase in the value of channel gains between

PUi ↔ SUTR and SUTR→ SUR. The mean value of E[PE] attained using

the new and conventional strategies in the high channel gain scenario is 6.27

dB and 5.83 dB, respectively, while it is 4.22 dB and 3.89 dB, respectively in

the low channel gain scenario. It is concluded that the new strategy outper-

forms the conventional strategy for both high and low channel gain scenarios.

This is because PUi has the interference from the SUTR transmissions during

H1 in new strategy. This interference is dealt as an extra source of energy

by the SUTR. However, SUTR is not allowed to transmit during H1 in the

conventional strategy that effectively reduces the harvested energy at PUi.

Fig. 6.3 shows the relationship between E[RSUR] and P0 for the new

and conventional strategies using the same set of parameters as considered
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Figure 6.2: E[PE] Vs Po.
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above for Fig. 6.2. Two different values of Pi are considered in both high and

low channel gain scenarios using the new and conventional strategies, where

the first assumes that PUi utilizes the fixed transmission power in the UL i.

e. Pi = 3.3 dB, however the second assumes E[Pi] = ζE[PE]
τi

in (6.16) and

(6.23) respectively, where ζ = 1. It was observed in Fig. 6.3, that the average

throughput decreases with an increase in the value of P0. This is because,

E[RSUR] and P0 are inversely related to each other in (6.16) and (6.23). It was

also observed in both sub-plots that the new strategy outperforms the conven-

tional strategy for both high and low channel gain scenarios. The throughput

attained using E[Pi] = ζE[PE]
τi

in the second subplot is considerably smaller in

value compared to the case, when Pi = 3.3 dB is used in the first sub-plot. This

is because, the value of E[Pi] in the second sub-plot is attained using E[PE]

in Fig. 6.2, where it is clearly depicted that the value of E[PE] increases

exponentially between P0 = 5 dB to P0 = 20 dB using both the new and

conventional strategies. As E[RSUR] and E[Pi] are inversely related, therefore

increasing the value of E[PE] eventually decreases the value of E[RSUR].

Fig. 6.4 shows the relationship between E[SE] and P0 using the same

parameters as considered above for Fig. 6.3. Two different values of Pi are

assumed as considered above for Fig. 6.3. It is observed in both sub-plots, that

E[SE] increases with an increase in the value of P0. It is also observed that

conventional strategy outperforms new strategy in both sub-plots for both high

and low channel gain scenarios. This is because SUT gets chance to harvest

in both H1 and H2 in the conventional strategy. However SUT harvests only

during H2 in the new strategy.
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6.4.2 Effect of changing Ps

The relationship between E[PE] and Ps is analysed in Fig 6.5 by fixing the

value of P0 = 10 dB and using Ps = [−20, 20] dB. The remaining parameters

are assumed to be the same as in section 6.4.1. It was observed that E[PE]

increases with an increase in value of Ps. This is because E[PE] is directly to

Ps in (6.12) and (6.18). It was also observed that new strategy outperformed

the conventional strategy for both high and low channel gain scenarios. This is

because SUTR sends data to SUR during H1 in the new strategy that acts as

interference to PU . However PU harvests energy from the interference signals

and eventually attain energy gain.

The relationship between E[RSUR] and Ps is analysed in Fig. 6.6. It

was observed that the new strategy outperforms the conventional strategy for

both high and low channel gain scenarios. This is because SUR receives data

from the SUTR during both H0 and H1 states in the new strategy. However

SUTR is only allowed to transmit to the SUR during H0 in the conventional

strategy.

When SUTR transmits data to SUR, the throughput of the secondary

system can significantly be decreased due to the interference caused due to

the AP transmission. This effect is analysed using both new and conventional

strategies in high channel gain scenario using E[Pi] = E[PE]/τi, by considering

two conditions: with interference (where it is assumed that SUR receive the

signals from the AP in H1 along with SUTR) and without interference (where

it is assumed that SUR receive the signals from SUTR only in H1). It was

observed in Fig. 6.7, that maximum E[RSUR] attained using the new strategy

without interference is larger than the value of the E[RSUR] attained, when

interference is considered. Though AP transmission causes interference but it

is evident in Fig 6.7 that new strategy outperformed the conventional strategy
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Figure 6.5: E[PE] Vs Ps.

in both conditions.

The relationship between E[SE] and Ps is analysed in Fig. 6.8. It was

observed that conventional strategy outperforms the new strategy again in this

case. This is because SUTR harvests energy during both H1 and H2 in the

conventional strategy compared to the new strategy, where SUTR harvests

energy only in H2.

6.4.3 Effect of changing τi

The effect of changing τi is analysed by assuming one PU in the framework that

has time slot τ1 for the uplink transmission, which implies: τ0 +
∑K

i=1 τi = 1

would reduce to τ0 + τ1 = 1. The relationship between E[PE] and τ1 is

analysed in Fig.6.9 by assuming range of values of τ1, such as τ1 = [0, 1] for
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high and low channel gain scenarios. It was observed in Fig. 6.9 that E[PE]

decreases with an increase in the value of τ1. This is because E[PE] is directly

proportional to τ0 in (6.12) and (6.18) for the new and conventional strategies

respectively. The increase in the value of τ1 causes decrease in value of τ0

following τ0 + τ1 = 1, which implies that PU gets shorter duration to harvest

energy.

The relationship between E[RSUR] and τ1 is analysed in Fig. 6.10,

assuming a range of values of τ1 for high and low channel gain scenarios. It

was observed that the new strategy outperformed the conventional strategy

again. It was also observed in Fig. 6.10 that E[RSUR] increases with an

increase in the value of τ1. This is because E[Pi] decreases with an increase

in the value of τ1, following the relationship:E[Pi] = E[PE]/τi. As E[Pi] and

E[RSUR] are inversely related to each other in (6.16) and (6.23), so decrease

in the value of E[Pi] increases E[RSUR] eventually.

The relationship between E[SE] and τ1 investigated in Fig. 6.11, as-

suming a range of values of τ1 for high and low channel gain scenarios. It was

observed that conventional strategy outperformed the new strategy because

SUTR can harvest energy during both H1 and H2. It was observed that E[SE]

decrease with an increase in the value of τ1. This is because of two reasons:

(a) τ0 is directly proportional to E[SE] in (6.14) and (6.21) so decrease in τ0

decreases the value of E[SE] (b) Pi is also directly proportional to E[SE] in

(6.14) and (6.21). Therefore when the value of Pi decreases the value of E[SE]

decreases as well.

6.5 Conclusion

In this chapter, an energy harvesting cognitive radio network (CRN) is con-

sidered, where the primary users (PUs) are wirelessly powered with energy
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harvesting capability. A framework has been proposed, where PUs can get ad-

vantage from the presence of SU. The proposed framework is compared with

the conventional energy harvesting CRN. Numerical results have shown that

PU attains energy gain from the transmission of SU and SU attains throughput

gain from the energy harvesting capability of PUs.
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Chapter 7

Conclusions and Future Work

The work presented in this thesis has focussed on the performance analysis of

cognitive radio using machine learning and bio-inspired algorithms. Although

adaptation to the environment, self-organization and self-configuration inde-

pendently is very challenging task for any communication system, however

machine learning and bio-inspired algorithms have the ability to adapt ac-

cording to the changing environmental circumstances and are able to evolve

under new conditions. In this chapter, the main contributions and findings are

summarized. Also the potential research directions are provided. The rest of

the chapter is organized as follows. The main contributions and findings are

presented in Section 7.1 and the future works are suggested in Section 7.2.

7.1 Conclusions and Contributions

Cognitive radio is the key solution for resolving the conflict between spectrum

scarcity and under-utilisation using dynamic spectrum access. The main aim

of this work is to present an analytical performance evaluation of the machine

learning and the energy efficient cognitive radio systems while taking some

realistic conditions into account.
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Firstly, in Chapter 1, the overview of the cognitive radio networks in-

cluding the spectrum sharing and access modes, the specifications of IEEE

802.22 standard and the potential applications of the cognitive radio systems

is presented. Then, a detailed background about spectrum sensing methods,

bio-inspired techniques and machine learning algorithms is presented in Chap-

ter 2. A comprehensive overview about the energy harvesting cognitive radios

and the wireless power transfer methods is also presented.

Third, as mentioned in the introduction of this thesis, collaboration

between cognitive radios is encouraged for attaining the accurate spectrum

sensing results in low SNR conditions. In Chapter 3, bio-inspired algorithms

are utilized for the collaborative spectrum sensing and allocation. Both linear

and non-linear PU signals are considered and their performance is compared

using three bio-inspired techniques. It is observed that the performance of

the non-linear signals is degraded more compared to the linear signals. Based

on the analysis, it is also observed that bio-inspired algorithms have outper-

formed the conventional techniques utilized in the literature for collaborative

spectrum sensing and allocation. Among three bio-inspired techniques, it is

noticed that FFA outperforms PSO and FSS. The performance of the proposed

model is also investigated in different SNR conditions and using different num-

ber of the collaborating radios. The spectrum allocation framework based on

the spectrum sensing results is also presented in Chapter 3. Three spectrum

allocation objective functions are considered and it is observed that among all

bio-inspired algorithms, FFA has outperformed FSS and PSO by attaining the

highest maximum sum reward, maximum minimum reward and the maximum

proportional fair reward.

Fourth, as discussed earlier, the selection of the frequency, the time

duration, modulation technique and the transmission power for CRs is depen-
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dent on the accurate spectrum sensing results. However, the computation of

spectrum sensing requires a lot of resources and consumes time. The spec-

trum sensing performance can be improved using spectrum occupancy analy-

sis. In Chapter 4, four machine learning algorithms are utilized for analysing

spectrum occupancy. The performance comparison of the machine learning

algorithms has shown that SVM performs the best among all supervised and

unsupervised algorithms. It is noticed that performance of the SVM is affected

by the change in the value of the box constraints. A bio-inspired technique,

FFA is utilized to evaluate the optimal value of the box constraints. It is

observed that SVM+FFA outperform other algorithms including SVM. The

performance of the machine learning algorithms is also compared with a statis-

tical approach used for classification in the literature. The proposed framework

also presents a method for selecting the optimal parameters for all supervised

and unsupervised algorithms that helps to achieve higher value of the classifi-

cation accuracy. Based on the analysis, two distinct categories of the spectrum

bands were observed in the data. The categorization of the bands was done

on the basis of their mean input power, the maximum standard deviation and

their periodicity.

Fifth, the wireless networks are the main consumers of the energy in

the telecommunication infrastructure and their current power requirements

are increasing because of an exponential increase in the mobile data traffic.

Energy harvesting is one of the key solutions to achieve green communication.

However the wireless energy changes dynamically with time, frequency and

distance. In Chapter 5, a machine learning based energy predictive model is

presented. The optimal time slots and the frequency channels, where more

energy can be harvested is evaluated using the proposed framework. The

analysis is verified using two prediction algorithms and it is noticed that both
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proposed algorithms outperform the conventional prediction scheme in the

literature. The harvested power using low and medium efficiency harvesters

has been evaluated. It is noticed that harvested power using MEH is greater

than LEH, when data of different frequency bands was used. The prediction

error for different bands has also been investigated. Importantly, it has been

noticed that prediction error for the aperiodic bands is larger than periodic

bands.

Finally, a novel energy harvesting wireless powered cognitive radio frame-

work is presented in Chapter 6. In the proposed framework, energy harvesting

capabilities are proposed for both PUs and SU, where PUs harvest energy

when SU transmits data and vice versa. Different power levels for both PU

and SU have been utilized to test the model. Further, both low and high chan-

nel gain scenarios are investigated for the proposed framework. Based on the

analysis, it is observed that the proposed framework outperform the conven-

tional techniques because PUs attain energy gain from the SU transmission.

Moreover SU achieves throughput gain because SU gets extra transmission

time to send data while PUs are harvesting energy.

7.2 Future Research Directions

Based on the summary and findings about the conducted research in this

thesis, it can be concluded that there are still a lot of improvements that can

be done. Some of the guidelines and suggestions for the future research are

presented as follows.

The proposed framework in Chapter 3 has presented the comparison of

different bio-inspired techniques, where it was observed that each technique

has its own pros/ cons. Although FFA has shown the best performance but

it has some disadvantages. For example, it can be trapped into local optima
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while performing local search. Similarly the computational time for FFA is

higher than PSO. For combating this in future, novel and hybrid bio-inspired

algorithms can be developed, where the good features of the best algorithms

can be integrated. The hybrid bio-inspired algorithms would be useful for

globally optimizing the problem space while gaining convergence at the same

time.

The proposed intelligent framework in Chapter 3 and Chapter 4 deals

with bio-inspired and machine learning algorithms that are utilized to learn

from previous experiences and take optimal decisions. The intelligent frame-

work presented in this work can be improved by deploying human neo-cortical

learning architecture, called as, Hierarchical Temporal memory (HTMs). HTM

is a machine learning intelligence technology that aims to capture the struc-

tural and algorithmic properties of the neocortex [160]. HTM is specifically

designed for learning in an unsupervised manner from the environment and

uses its previous knowledge to make future predictions. It learns the time

based patterns in data, predicts future values, and detects anomalies. It has

been reported in [161] that this technology lays the groundwork for the new

era of machine intelligence. HTMs can help to use cognitive radio as one of

the key enabler for next generation networks (NGNs) because the intelligence

is required at each node in NGNs for executing the computations at run time.

Similarly the predictive modelling framework presented in Chapter 5

analyses the real time power measurements attained using spectrum analyser,

where the harvested energy is evaluated using the RF energy harvesters in

[145], [146]. The proposed framework in Chapter 5 can be improved in future

by deploying the RF energy harvesters at the University of Warwick. In this

scenario, the data attained using harvesters will give a better insight about

the variations of harvested energy with time and frequency.
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Furthermore, the complexity of the linear regression model in Chapter

5 linearly increases with an increase in the number of predictors. Sophisti-

cated techniques, such as principal component analysis (PCA) can be utilized

in future for evaluating the appropriate number of predictors that can keep

maximum variance in the data and can ensure satisfactory performance at the

same time.

In Chapter 6, the energy harvested by PU and the throughput attained

by SU are computed without considering collision and energy constraints. In

reality, there are constraints in the networks. Therefore in future, the analysis

of the unconstrained network in Chapter 6 can be improved by considering

collision constraint, that indicates the maximum permissible probability of

interference which can be tolerated by the PU network and energy causal-

ity constraint, that determines the balance between the harvested and the

consumed energy [162]. By considering the collision and energy causality con-

straints at the same time, the energy and spectrum efficiency can be jointly

optimized.

Furthermore in Chapter 6, information and energy signals are distin-

guished using different power levels. However this still needs to be addressed

that how information and energy signals can be separated if they have the

same power level. For addressing the mentioned scenario in future, differ-

ent features of the information and the energy signals can be extracted using

sophisticated feature detection techniques.

175



Bibliography

[1] I. F. Akyildiz, W. Y. Lee, M. C. Vuran, and S. Mohanty, “Next generation

dynamic spectrum access cognitive radio wireless networks: a survey”,

Computer Networks, vol. 50, pp. 2127 - 2159, September 2006.

[2] M. A. McHenry, “NSF spectrum occupancy measurements project sum-

mary”, shared spectrum co. report, December 2005.

[3] M. Wellens, J. Wu and P. Mahonen, “Evaluation of spectrum occupancy

in indoor and outdoor scenario in the context of cognitive radio”, Proc.

CrownCom’07, pp. 420 - 427, Orlando, USA, Aug. 2007.

[4] M. H. Islam, C. L. Koh, S. W. Oh, et all, “Spectrum survey in Singapore:

occupancy measurements and analyses”, Proc. CrownCom’08, pp. 1 - 7,

May 2008.

[5] R. Rajbanshi, “OFDM-based cognitive radio for DSA networks”, Techni-

cal Report ITTC-FY2008-TR-31620-05, September 2007.

[6] M. L. Bentez, A. Umbert and F. Casadevall, “Evaluation of spectrum

occupancy in spain for cognitive radio applications”, Proc. VTC-Spring09,

pp. 1 - 5, Apr. 2009.

[7] J. Mitola, “Cognitive radio for flexible mobile multimedia communica-

tions”, Proc. Mo-MuC 1999, pp. 3 - 10.

176



[8] S. Haykin, “Cognitive radio: brain-empowered wireless communications”,

IEEE Journal on Selected Areas in Communications, vol. 23, no. 2, pp.

201 - 220, 2005.

[9] F. K. Jondral, “Software-defined radio: basic and evolution to cognitive

radio”, EURASIP Journal on Wireless Communication and Networking,

vol. 2005, no. 3, pp. 275-283, Aug 2005.

[10] J. Xiang, Y. Zhang and T. Skeie, “Medium access control protocols in

cognitive radio networks”, Wiley Wireless communications and mobile

computing, vol. 10, pp. 31 - 49, Dec 2009.

[11] D. Cavalcanti and M. Ghosh, “Cognitive radio networks: enableing new

wireless broadband opportunities”, Proc. CrownCom’ 08, pp. 1 - 6, May

2008.

[12] A. Ghasemi and E. S. Sousa, “Collaborative spectrum sensing for oppor-

tunistic access in fading environments”, Proc. DySPAN’05, pp. 131 - 136,

Nov. 8 - 11 2005, Baltimore.

[13] D. Cabric, S. M. Mishra, and R. W. Brodersen, “Implementation issues

in spectrum sensing for cognitive radios”, Proc. Asilomar Conference, pp.

772 - 776, Nov. 7 - 10 2004, Pacific Grove, CA.

[14] P. Leaves et al., “Dynamic spectrum allocation in a multiradio envi-

ronment concept and algorithm”, Second International Conf. 3G Mobile

Commun. Technologies, pp. 53 - 57, March 2001, London, UK.

[15] C. X. Wang, X. Hong, H. H. Chen and J. Thompson, “On capacity of

cognitive radio networks with average interference power constraints”,

IEEE Trans. Wireless Communications, vol. 8, no. 4, pp. 1620-1625, April

2009.

177



[16] A. Ghasemi and E. Sousa, “Fundamental limits of spectrum sharing in

fading environments”, IEEE Trans. on Wireless Communication, vol. 6,

no. 2, pp. 649 - 658, 2007.

[17] Federal Communications commission, “Establishment of an interference

temperature metric to quantify and manage interference and to expand

available unlicensed operation in certain fixed, mobile and satellite fre-

quency bands”, ET Docket No. 03-237, Aug. 2004.

[18] Y. Han, A. Pandharipande and S. H. Ting, “Cooperative decode-and-

forward relaying for secondary spectrum access,” IEEE Transactions on

Wireless Communication, vol. 8, no. 10, pp. 4945 - 4950, Oct. 2009.

[19] S. Shellhammer and G. Chouinard, “Spectrum sensing requirements sum-

mary”, July 2006, Available Online: http://www.ieee802.org.

[20] C. Stevenson, G. Chouinard, Z. Lei, W. Hu, S. Shellhammer, and W.

Caldwell, “IEEE 802.22: the first cognitive radio wireless regional area

network standard”, IEEE Communications Magazine, vol. 47, pp. 130 -

138, Jan. 2009.

[21] M. Sherman, A. N. Mody, R. Martinez and C. Rodriguez, “IEEE stan-

dards supporting cognitive radio and networks, dynamic spectrum access

and coexistence”, IEEE Communications Magazine, vol. 46, no. 7, pp.

72-79, July 2008.

[22] H. R. Kim, H. Venkatesan, “ECEN 5692-Principals of digi-

tal communication project on IEEE 802.22”, Available Online:

http://ecee.colorado.edu/ ecen4242/802˙22/.

178



[23] E. Biglieri, A. J. Goldsmith, L. J. Greenstein, N. B. Mandayam and H. V.

Poor, ”Principles of cognitive radio”, Cambridge university press, ISBN:

9781107028753, Nov 2012.

[24] T. Li, N. Mandayam and A. Reznik, “A framework for resource allocation

in cognitive digital home”, Proc. GLOBECOM’10, pp. 1 - 5, Dec 2010.

[25] T. Li, N. Mandayam and A. Reznik, “Distributed algorithms for joint

channel and RAT allocation in a cognitive digital home”, Proc. WiOpt,

pp. 213 - 219, May 2011.

[26] G. Feng, Y. Wei, L. Wei, C. Wenqing, W. Shu, “Pipelined cooperative

spectrum sensing in cognitive radio networks”, Proc. IEEE wireless com-

munications and networking conference, pp. 1 - 5, 2009.

[27] Y. Chen, “Collaborative spectrum sensing in the presence of secondary

user interference for lognormal shadowing”, Wiley Journal of Wireless

Communications and Mobile Computing, vol. 12, no. 10, pp. 463 - 472,

2012.

[28] V. G. Chavali, C. R. Dasilva, “Collaborative spectrum sensing based on

new SNR estimation and energy combining method”, IEEE Transactions

on Vehicular technology, vol. 60, no. 8, pp. 4024 - 4029, 2011.

[29] Z. Quan, A. H. Sayed, “Optimal linear cooperation for spectrum sensing

in cognitive radio networks”, IEEE Journal of selected topics in signal

processing, vol. 2, no. 1, 2008.

[30] C. Peng, H. Zheng, B. Zhao, “Utilization and fairness in spectrum assign-

ment for opportunistic spectrum”, ACM Journal of mobile networks and

application, vol. 11, no. 4, pp. 555 - 576, 2006.

179



[31] Z. Zhao, Z. Peng, S. Zheng and J. Shang ,“Cognitive radio spectrum al-

location using evolutionary Algorithms”, IEEE Transactions on Wireless

Communications, vol. 8, no. 9, pp. 4421-4425, Sept 2009.

[32] V. Blaschke, H. Jaekel, T. Renk, C. Kloeck, F. K. Jondral, “Occupation

measurements supporting dynamic spectrum allocation for cognitive radio

design”, Proc. CrownCom’07, pp. 50 - 57, Orlando, Florida, Aug. 2007.

[33] S. Kaneko, S. Nomoto, T. Ueda, S. Nomura and K. Takeuchi, “Predicting

radio resource availability in cognitive radio - an experimental examina-

tion”, Proc. CrownCom’08, Singapore, May. 2008.

[34] M. Hoyhtya, S. Pollin, A. Mammela, ”Classification - based predictive

channel selection for cognitive radios”, Proc. ICC’10, pp. 1 - 6, Cape

town, South Africa, May. 2010.

[35] X. Zhou, J.Ma, Y. Li, Y. H. Kwon, A. C. K. Soong, G. Zhao, “Probability-

based transmit power control for dynamic spectrum access”, Proc. DyS-

PAN’08, pp. 1 - 5, Chicago, USA, Oct. 2008.

[36] X. Zhou, J. Ma, Y. Li, Y. H. Kwon, A. C. K. Soong, “Probability-based

optimization of inter-sensing duration and power control in cognitive ra-

dio”, IEEE Transactions on Wireless Communications, vol. 8, pp. 4922 -

4927, Oct. 2009.

[37] Smart2020, ”Enabling the low carbon economy in the information

age”, The Climate Group SMART 2020 Report, Available online:

http://www.theclimategroup.org.

[38] A. Dejonghe, B. Bougard, S. Pollin, J. Craninckx, A. Bourdoux, L. V.

der Perre, et al, “Green reconfigurable radio systems”, IEEE Signal Pro-

cessing Magazine, vol. 24, no. 3, pp. 90 - 101, May 2007.

180



[39] M. Pinuela, P. D. Mitcheson, S. Lucyszyn, “Ambient RF energy Har-

vesting in Urban and Semi-Urban environments”, IEEE Transactions on

Microwave Theory and Techniques, vol. 61, no. 7, pp. 2715 - 2726, July

2013.

[40] S. Park, H. Kim, and D. Hong, “Cognitive radio networks with energy

harvesting”, IEEE Transactions on Wireless Communications, vol. 12,

no. 3, pp. 1386-1397, March 2013.

[41] S. Lee, R. Zhang and K. Huang, “Opportunistic wireless energy harvesting

in cognitive radio networks”, IEEE Transactions on Wireless Communi-

cations, vol. 12, no. 9, September 2013.

[42] T. Nguyen, I. Koo, “Throughout of primary user with cognitive radio

function”, Proc. ISCIT, 2014.

[43] Z. Wang, Z. Chen, Y. Yao, B. Xia and H. Liu, “Wireless energy harvest-

ing and information transfer in cognitive two-way relay networks”, Proc.

Globecom’14, Dec 2014.

[44] G. Zheng, Z. Ho, E. A. Jorswieck, B. Ottersten, “Information and energy

cooperation in cognitive radio networks”, IEEE Transactions on Signal

Processing, vol. 62, no. 9, May 2014.

[45] E. Matskani, N. Chatzidiamantis, L. Georgiadis, I. Koutsopoulos and L.

Tassiulas, “The mutual benfits of primary-secondary user cooperation in

wireless cognitive networks”, Proc. WiOpt, 2014.

[46] C. Clancy, J. Hecker, E. Stuntebeck, and T. O. Shea, “Application of

machine learning to cognitive radio networks”, IEEE Wireless Communi-

cations, vol. 14, no. 4, pp. 47 - 52, 2007.

181



[47] S. M. Kay, “Fundamentals of statistical signal processing: detection the-

ory”, Prentice- Hall PTR, 1998.

[48] Z. Lei and F. Chin, “OFDM signal sensing for cognitive radios”, Proc.

PIMRC’08, France, Sept 2008.

[49] H. Urkowitz, “Energy detection of unknown deterministic signals”, Pro-

ceedings of IEEE, vol. 55, no. 4, pp. 523-531, April 1967.

[50] T. Yucek, H. Arslan, “A survey of spectrum sensing algorithms for cog-

nitive radio applications”, IEEE Communications Surveys and Tutorials,

vol. 11, no. 1, pp. 16-30, 2009.

[51] J. Mitola III, “Cognitive radio for flexible mobile multimedia communi-

cations”, Proc. MoMuC99, pp. 3-10. 1999.

[52] H. Tang, “Some physical layer issues of wide-band cognitive radio sys-

tems”, Proc. DySPAN’05, pp. 151-159, Nov 2005.

[53] A. Sahai, N. Hoven, and R. Tandra, “Some fundamental limits on cogni-

tive radio”, Proc. Allerton Conf. Commun. Control, Comput, Oct. 2004.

[54] W. A. Gardner, “Cyclostationarity in Communications and Signal Pro-

cessing”, IEEE Press, 1994.

[55] W. A. Gardner, “Signal interception: a unifying theoretical framework

for feature detection”, IEEE Transactions on Communications, vol. 36,

no. 8, pp. 897-906, Aug 1988.

[56] W. A. Gardner, “Exploitation of spectral redundancy in cyclostationary

signals”, IEEE signal processing magazine, vol. 8, no. 2, pp. 14-36, April

1991.

182



[57] Y. Zeng and Y. C. Liang, “Maximum-minimum eigenvalue detection for

cognitive radio”, Proc. IEEE PIMRC, Athens, Greece, Sept 2007.

[58] Y. Zeng, C. L. Koh and Y. C. Liang, “Maximum eigenvalue detection:

theory and applications”, Proc. ICC’08, pp. 4160-4164, Beijing, May 2008.

[59] Y. Zeng and Y. C. Liang, “Eigen value-based spectrum sensing algorithms

for cognitive radio”, IEEE Transaction on Communications, vol. 57, no.

6, pp. 1784-1793, June 2009.

[60] Y. Yuan, P. Bahl, R. Chandra, P. A. Chou, J. I. Ferrell, T. Moscibroda,

S. Narlanka, and Y. Wu, “KNOWS: Cognitive radio networks over white

spaces”, Proc. DySPAN’07, pp. 416427, April 2007.

[61] Y. Zeng, C. L. Koh, and Y.-C. Liang, “Maximum eigenvalue detection:

Theory and application”, Proc. ICC’08, pp. 4160-4164, May 2008.

[62] M. Ibnkahla, ”Cooperative cognitive radio networks”, Boca Raton, FL :

CRC Press, 2015, ISBN 9781466570795.

[63] L. Gavrilovska, V. Atanasovski, I. Macaluso and L. A. DaSilva, “Learn-

ing and reasoning in cognitive radio networks”, IEEE Communications

Surveys and Tutorials, vol. 15, no. 4, 2013.

[64] L. Gavirlovska, V. Atanasovsjo, I. Macaluso and L. DaSilva, “Learning

and reasoning in cognitive radio networks”, IEEE Communications Sur-

veys and Tutorials, vol. 15, no.4, pp. 1761-1771, 2013.

[65] D. Floreano and C. Mattiussi, “Bio-inspired artificial intelligence”, MIT

Press, ISBN-13: 978-0-262-06271-8, Sept 2008.

[66] F. Dressler, O. B. Akan, “A Survey on Bio-inspired Networking”, Elsevier

Computer Networks, vol. 54, no. 6, pp. 881-900, 2010.

183



[67] P. D. Lorenzo, S. Barbaroosa, “A Bio-Inspired swarming algorithm for

decentralized access in cognitive radio”, IEEE Transactions on signal

Processing, vol. 59, no 12, pp. 6160 - 6174, Dec 2011.

[68] A. Ghasemi, M. A. Mehrzad, “Spectrum allocation based on artificial bee

colony in cognitive radio networks”, Proc. IST’12, pp. 182-187, 6-8 Nov,

2012, Tehran.

[69] T. Renk, C. Kloeck, D. Burgkhardt, “Bio-Inspired algorithms for dynamic

resource allocation in cognitive wireless networks”, Proc. CrownCom’07,

Orlando, USA, Aug. 2007.

[70] S. Zheng,C. Lou and X. Yang, “Co-operative spectrum sensing using par-

ticle swarm optimization”, IET Electronic Letters, vol. 46, no. 22, Oct

2010.

[71] X. Cheng, M. Jiang, “Cognitive radio spectrum assignment based on ar-

tificial bee colony optimization”, Proc. ICCT’11, pp. 161-164, Sept 2011.

[72] F. Camastra and A. Vinciarelli, “Machine learning for audio, image and

video analysis”. Wiley publishers, 2006.

[73] R. Herbrich, ”Learning Kernel Classifiers”. MIT Press, 2003.

[74] T. Kohonen, “The self-organizing map”, Neurocomputing, vol. 21, pp. 16,

November 1998.

[75] W. L. Chao, “Machine learning tutorial”, Graduate institute of com-

munication engineering, national Taiwan university. Available online:

http://disp.ee.ntu.edu.tw/ pujols/Machine

[76] R. Sutton and A. Barto, “Reinforcement Learning: An Introduction”.

MIT Press, 1998.

184



[77] K. M. Thilina, K. W. Choi, N. Saquib and E. Hossain, “Machine learning

techniques for cooperative spectrum sensing in cognitive radio networks”,

IEEE Journal on Selected Areas in Communications, vol. 31, no. 11, Nov

2013.

[78] J. Oksanen, J. Lunden, V. Koivunen, “Reinforcement learning based sens-

ing policy optimization for energy efficient cognitive radio networks”, Neu-

rocomputing, vol. 80, pp. 102-110, March 2012.

[79] S. Hu, Y. Yao and Z. Yang, “MAC protocol identification using support

vector machines for cognitive radio networks”, IEEE Wireless Communi-

cations, vol. 21, no. 1, Feb 2014.

[80] G. Ding, Q. Wu, Y. Yao, J. Wang, and Y. Chen, “Kernel-based learning

for statistical signal processing in cognitive radio networks”, IEEE Signal

Processing Magazine, vol. 30, no. 4, July 2013.

[81] H. Pervaiz, L. Musavian, Q. Ni and Z. Ding, “Energy and spectrum ef-

ficient transmission techniques under QoS constraints towards green het-

erogeneous networks”, IEEE Access, vol. 3, pp. 1655-1671, Sept 2015.

[82] Q. Zhao and B. Sadler, “A survey of dynamic spectrum access”, IEEE

Signal Processing Magazine, vol. 24, no. 3, pp. 7989, May 2007.

[83] S. Park, H. Kim, D. Hong, “Cognitive radio networks with energy har-

vesting”, IEEE transactions on wireless communications, vol. 12, no. 3,

march 2013.

[84] T. Le, K. Mayaram, and T. Fiez, “Efficient far-field radio frequency energy

harvesting for passively powered sensor networks”, IEEE J. Solid- State

Circuits, vol. 43, no. 5, pp. 1287-1302, May 2008.

185



[85] A. M. Zungeru, L. M. Ang, S. Prabaharan, and K. P. Seng, “Radio fre-

quency energy harvesting and management for wireless sensor networks”,

Green Mobile Devices and Networks: Energy Optimization and Scavang-

ing Techniques, CRC Press, pp. 341-368, 2012.

[86] R. J. M. Vullers, R. V. Schaijk, I. Doms, C. V. Hoof, and R. Mertens,

“Micropower energy harvesting”, Elsevier Solid-State Circuits, vol. 53,

no. 7, pp. 684 - 693, July 2009.

[87] X. Lu, P. Wang, D. Niyato and E. Hossain, “Dynamic spectrum access

in cognitive radio networks with RF energy harvesting”, IEEE Wireless

Communications, vol. 21, no. 3, pp. 102-110, June 2014.

[88] S. Lee, R. Zhang and K. Huang, “Opportunistic wireless energy harvesting

in cognitive radio networks”, IEEE Transactions on Wireless Communi-

cations, vol. 12, No. 9, Sept 2013.

[89] Z. Ding, C. Zhong, D. W. K. Ng, M. Peng, H. A. Suraweera, R. Schober,

H. V. Poor, “Application of smart antenna technologies in simultaneous

wireless information and power transfer”, IEEE Communications Maga-

zine, vol. 53, no. 4, pp. 86-93, April 2015.

[90] X. Chen, C. Yuen, and Z. Zhang, “Wireless energy and information trans-

fer trade-off for limited feedback multiantenna systems with energy beam-

forming”, IEEE Transactions Vehicular Technology, vol. 63, no. 1, pp.

407-412, Jan.2014.

[91] X. Chen, Z. Zhang, H. Chen, H. Zhang, “Enhancing wireless informa-

tion and power transfer by exploiting multi-antenna techniques”, IEEE

Communications Magazine, vol. 53, no. 4, pp. 133-141, April 2015.

186



[92] S. Dikmese, S. Srinivasan, M. Shaat, et al., “Spectrum sensing and re-

source allocation for multicarrier cognitive radio systems under interfer-

ence and power constraints”, EURASIP Journal on Advances in Signal

Processing, DOI: 10.1186/1687-6180-2014-68, Dec 2014.

[93] T. S. Ghazaany, “Design and implementation of adaptive base band pre-

distorter for OFDM nonlinear transmitter”, PhD Thesis, University of

Bradford, U. K., 2011.

[94] D. W. Chi, P. Das, “Effects of nonlinear amplifiers and narrow band

interference in MIMO-OFDM with application to 802.11n WLAN”, Proc.

ICSPC, pp 1-7, Dec 2008.

[95] A. A. M. Saleh, “Frequency-independent and frequency-dependent nonlin-

ear models of TWT amplifiers”, IEEE Transactions on Communications,

vol. 29, no. 11, pp. 1715-1720, Nov 1981.

[96] Z. Quan, A. H. Sayed, “Optimal linear cooperation for spectrum sensing

in cognitive radio networks”, IEEE Journal of selected topics in signal

processing, vol. 2, no. 1, pp. 28-40, Feb 2008.

[97] M. F. Lohrer, “A comparison between the firefly algorithm and particle

swarm optimization”, PhD Thesis, Oakland University, U. S. A, March

2013.

[98] G. M. Cavalcanti, C. J. A. Bastos-Filho, F. B. Lima-Neto, et al, “A hybrid

algorithm based on fish school search and particle swarm optimization for

dynamic problems”, Advances in Swarm Intelligence, Lecture Notes in

Computer Science, vol. 6729, pp 543-552, 2011.

[99] X. Yang, “Firefly algorithms for multimodal optimization”, Springer Lec-

ture Notes in Computer Science, vol. 5792, pp. 169-178, 2009.

187



[100] A. B. Filho, and F. B. De Lima Neto, “A novel search algorithm based

on fish school behaviour”, Proc. ICSMC’08, pp. 2646 - 2651, Oct 2008.

[101] R. Poli, J. Kennedy and T. Blackwell, “Particle Swarm Optimization”,

Springer Journal on Swarm Intelligence, vol. 1, no. 1, pp. 33-57, Aug

2007.

[102] X. Yang, “Nature - inspired metaheuristic algorithms”, Luniver Press,

U. K, 2nd edn. 2010.

[103] J. Kennedy, R. C. Eberhart, “Particle swarm optimization”, Proc. ICNN,

vol. 1, pp. 42 - 48. May 2001.

[104] Y. Shi, R. Eberhart, “Parameter selection in particle swarm optimiza-

tion”, Proc’. Evolutionary Programming, vol. 1447, pp. 591-600, Dec

2005.

[105] R. Eberhart, Y. Shi, “Comparing inertia weights and constriction factors

in particle swarm optimization’, Proc. Congress on Evolutionary Compu-

tation, vol. 1, pp. 8488, July 2000.

[106] M. Erik, H. Pedersen, “Good Parameters for Particle Swarm Optimiza-

tion”, Hvass Laboratories, Technical Report no. HL1001, 2010.

[107] D. Tse, P. Viswanath, “Fundamentals of wireless communication”, Cam-

bridge University Press, 2005.

[108] Y. Chen, H-S. Oh, “A survey of measurement-based spectrum occu-

pancy modelling for cognitive radios”, IEEE Communications Surveys

and Tutorials, vol. PP, no. 99, pp. 1, Oct 2014.

188



[109] X. Zhou, J. Ma, Y. Li, Y. H. Kwon, A. C. K. Soong, G. Zhao,

“Probability-based transmit power control for dynamic spectrum access”,

Proc. DySPAN’08, pp. 1-5, Chicago, USA, Oct. 2008.

[110] X. Zhou, J. Ma, Y. Li, Y. H. Kwon, A. C. K. Soong, “Probability-based

optimization of inter-sensing duration and power control in cognitive ra-

dio”, IEEE Transactions on Wireless Communications, vol. 8, pp. 4922 -

4927, Oct. 2009.

[111] Z. Wang, S. Salous, “Spectrum occupancy statistics and time series mod-

els for cognitive radio”, Journal of Signal Processing Systems, vol. 62,

Feb. 2011.

[112] Ghosh, S. Pagadarai, D. P. Agrawal, A. M. Wyglinski, “A framework for

statistical wireless spectrum occupancy modeling”, IEEE Transactions on

Wireless Communications, vol. 9, No. 1, Jan 2010.

[113] C. Rudin, K. L. Wagstaff, “Machine learning for science and society”,

Springer Journal on Machine Learning, vol. 95, no. 1, pp. 1-9, Nov 2013.

[114] K. W. Choi, E. Hossain, D. I. Kin, “Cooperative spectrum sensing under

a random geometric primary user network model”, IEEE Transaction on

Wireless Communications, vol. 10, no. 6, June 2011.

[115] K. M. Thilina, K. W. Choi, N. Saquib, and E. Hossain, “Machine learning

techniques for cooperative spectrum sensing in cognitive radio networks”,

IEEE Journal on Selected Areas in Communications, vol. 31 , no. 11, pp.

2209 -2221, Nov 2013.

[116] D. Willkomm, S. Machiraju, J. Bolot, A. Wolisz, “Primary users in cel-

lular networks: A large-scale measurement study”, Proc. DySPAN’ 08,

pp. 1-11, 2008.

189



[117] V. K. Tumuluru, P. Wang, D. Niyato, “Channel status prediction for

cognitive radio networks”, Wiley Wireless Communications and Mobile

Computing, vol. 12, no. 10, pp. 862-874, July 2012.

[118] S. Pagadarai and A. M. Wyglinski, “A linear mixed-effects model of

wireless spectrum occupancy”, EURASIP Journal on Wireless Commu-

nications and Networking, vol. 2010, no. 203178, Aug. 2010.

[119] A. J. Petain, “Maximizing the utility of radio spectrum: broadband

spectrum measurements and occupancy model for use by cognitive radio”,

Ph.D. dissertation, Georgia Institute of Technology, Atlanta, GA, USA,

2005.

[120] RFeye evaluation system, Available online: https://uk.crfs.com/en/

products/nodes/evaluation-system/.

[121] M. Zhang, B. Li, S. Jiang, “Call blocking probabaility and packet delay

in cognitive radio networks” , Proc. WiCOM’ 12, Sept 2012.

[122] A. Y. N, M. I. Jordan, “On discriminative vs generative classifiers: A

comparison of logistic regression and Nave Bayes”, Advances in Neural

Information Processing Systems, pp. 841-848, 2002.

[123] L. Rokach, O. Maimon, “Decision Trees”, Data Mining and Knowledge

Discovery Handbook, Springer Publisher, 2nd ed, 1285, 2010.

[124] F. Berzal, J. C. Cubero, F. Cuenca, M. J. Bautista, “On the quest for

easy o understand splitting rules”, Elsevier Data and Knowledge Engi-

neering, Vol. 44, no. 1, pp. 31-48, Jan 2003.

[125] P. Flach, “Machine Learning: The Art and Science of Algorithms that

make sense of data”, Cambridge university press, Sept 2012.

190



[126] P. Laskov, C. Gehl, S. Kruger, K.R. Muller, “Incremental support vector

learning: analysis, implementation and applicatins”, vol. 7, pp. 1909-1936,

2006.

[127] A. b. Hur, J. Weston, “A user’s guide to support vector machines”, Data

Mining Techniques for the Life Sciences Methods in Molecular Biology,

vol. 609, pp. 223-239, 2010.

[128] A. Gani, K. Mohammadi, S. Shamshirband, T. A. Altameem, ”A com-

bined method to estimate wind speed distribution based on integrating

the support vector machine with fire fly algorithm”, Wiley environmental

progress and sustainable energy, Vol. 35, Issue 3, Oct 2015.

[129] L. Olatomiwa, S. Mekhilef, S. Shamshirband, ”A support vector

machine-firefly algorithm-based model for global solar radiation predic-

tion”, Vol. 115, pp. 632-644, May 2015.

[130] S. Ch, S. K. Sohani, D. Kumar, ”A support vector machine-firefly al-

gorithms based forecasting model to determine malaria transmission”,

Elsevier Journal on Neurocomputing, Vol. 129, pp. 279-288, April 2014.

[131] X. Yang, “Firefly algorithms for multimodal optimization”, LNCS 5792,

vol. 5792, pp. 169-178, 2009.

[132] S. Chatterjee, A. S. Hadi, “Simple linear regression”, Regression Analysis

by Example, Fourth Edition, 2006 John Wiley and Sons.

[133] G. A. Fink, “Markov Models for pattern Recognition: From theory to

Application”, Springer Advances in Computer Vision and Pattern Recog-

nition, 2nd edition, 2014.

191



[134] D. Garrette, J. Baldridge, “Type-supervised hidden Markov models

for part-of-speech tagging with incomplete tag dictionaries”, EMNLP -

CoNLL’12, pp. 821-831, Stroudsburg, PA, USA, 2012.

[135] D. Niyato, E. Hossain and A. Fallahi, “Sleep and wakeup strategies in

solar powered wireless sensor/Mesh networks: performance analysis and

optimization”, IEEE Transactions on mobile computing, vol. 6, no. 2, Feb

2007.

[136] B. Medepally N. B. Mehta, C. R. Murthy, “Implications of energy profile

and storage on energy harvesting sensor link performance, Proc. IEEE

Globecom09, pp. 1-6, Honolulu, Dec 2009.

[137] J. Lei, R. Yates and L. Greenstein, A generic model for optimizing single-

hop transmission policy of replenishable Sensors, IEEE Transactions on

Wireless Communications, vol. 8, no. 2, Feb 2009.

[138] J. R. Piorno, C. Bergonzini, D. Atienza and T. S. Rosing, “Prediction

and management in energy harvested wireless sensor nodes”, Proc. Wire-

less VITAE’09, pp.6-10, 17-20 May 2009.

[139] C. Bergonzini, D. Brunelli, L. Benini, “Algorithms for harvested en-

ergy prediction in battery less wireless sensor networks”, Proc. IWASI’09,

pp.144-149, 25-26 June 2009.

[140] M. Pinuela, P. D. Mitcheson, S. Lucyszyn, “Ambient RF Energy Har-

vesting in Urban and Semi-Urban environments”, IEEE Transactions on

Microwave Theory and Techniques, vol. 61, pp. 2715-2726, 2013.

[141] Y. Chen, H. S. Oh, ”A Survey of measurement-based spectrum occu-

pancy modelling for cognitive Radios”, IEEE Communications Surveys

Tutorials, vol. pp, no. 99, pp. 1, Oct 2014.

192



[142] P. Flach, “Machine Learning: The Art and Science of Algorithms that

make sense of data”, Cambridge university press, Sept 2012.

[143] L. Torgo, “Functional Models for regression tree leaves, Proc. ICML,

1997.

[144] M. Torlak, ” Telecom. switching and transmission”, UT

Dallas, Available online: https://www.utdallas.edu/ tor-

lak/courses/ee4367/lectures/lectureradio.pdf.

[145] K. Kotani, T. Ito, “High efficiency CMOS rectifier circuit with Self-

Vth Cancellation and power regulation functions for UHF RFIDs”, Proc.

ASSCC ’07, pp. 119-122, 2007.

[146] S. Scorcioni, L. Larcher, A. Bertacchini, “Optimised CMOS RF-DC Con-

verters for remote wireless powering of RFID applications”, 2012 IEEE

International Conference on RFID, pp. 47-53, 2012.

[147] E. Khansalee, Y. Zhao, E. Leelarasmee, K. Nuanyai, ”A dual-Band recti-

fier for RF energy harvesting systems”, Proc’. ECTI-CON, pp. 1-4, May

2014.

[148] H. Sun, Y. Guo, M. He and Z. Zhong, “A dual-band rectenna using

broadband yagi antenna array for ambient RF power harvesting”, IEEE

Antennas and Wireless propagation letters, vol. 12, 2013.

[149] R. Nau, “Forecasting with moving averages”, Fuqua school of Business,

Duke University, Aug 2014.

[150] L. Mohjazi, M. Dianati, G. K. Karagiannidis, S. Muhaidat, and M. Al-

Qutayri, “RF-powered cognitive radio networks: technical challenges and

limitations”, IEEE Communications Magazine, April 2015.

193



[151] S. Lee, R. Zhang and K. Huang, “Opportunistic wireless energy harvest-

ing in cognitive radio networks”, IEEE Transactions on Wireless Com-

munications, vol. 12, no. 9, September 2013.

[152] T. Nguyen, I. Koo, “Throughoput of primary user with cognitive radio

function”, Proc’. ISCIT, 2014.

[153] S. Park, H. Kim, D. Hong, “Cognitive radio networks with energy har-

vesting”, IEEE Transactions on Wireless Communication, vol. 12, no. 3,

March 2009.

[154] Z. Wang, Z. Chen, Y. Yao, B. Xia and H. Liu, “Wireless energy harvest-

ing and information transfer in cognitive two-way relay networks”, Proc.

Globecom, Dec 2014.

[155] G. Zheng, Z. Ho, E. A. Jorswieck, B. Ottersten, “Information and energy

cooperation in cognitive radio networks”, IEEE Transactions on Signal

Processing, vol. 62, no. 9, May 2014.

[156] E. Matskani, N. Chatzidiamantis, L. Georgiadis, I. Koutsopoulos and L.

Tassiulas, “The mutual benfits of primary-secondary user cooperation in

wireless cognitive networks”, Proc’. WiOpt, 2014.

[157] X. Chen, Z. Zhang, H. Chen and H. Zhang, “Enhancing wireless infor-

mation and power transfer by exploiting multi-antenna techniques”, IEEE

Communications Magazine, April 2015.

[158] H. Ju, R. Zhang, “Throughput maximization in wireless powered com-

munication networks”, IEEE Transactions on wireless communication,

vol. 13, no. 1, Jan 2014.

194



[159] F. F. Digham, M. S. Alouini and M. K. Simon, “On the energy detection

of unknown signals over fading channels”, IEEE Transaction on Wireless

Communications, vol. 44, no. 1, Jan 2007.

[160] Jeff Hawkins, “Hierarchical temporal memory including cortical learning

algorithms”, White paper published by Numenta, Version 0.2.1, Sept 2011.

[161] Numenta, “Leading the new era of machine intelligence”, Available on-

line: http://numenta.com/.

[162] W. Chung, S. Park, S.Lim, D. Hong, “Spectrum sensing optimization for

energy-harvesting cognitive radio systems”, IEEE Transaction on Wire-

less Communications, vol. 13, no. 5, May 2014.

195


