7 research outputs found

    Multistatic radar optimization for radar sensor network applications

    Get PDF
    The design of radar sensor networks (RSN) has undergone great advancements in recent years. In fact, this kind of system is characterized by a high degree of design flexibility due to the multiplicity of radar nodes and data fusion approaches. This thesis focuses on the development and analysis of RSN architectures to optimize target detection and positioning performances. A special focus is placed upon distributed (statistical) multiple-input multipleoutput (MIMO) RSN systems, where spatial diversity could be leveraged to enhance radar target detection capabilities. In the first part of this thesis, the spatial diversity is leveraged in conjunction with cognitive waveform selection and design techniques to quickly adapt to target scene variations in real time. In the second part, we investigate the impact of RSN geometry, particularly the placement of multistatic radar receivers, on target positioning accuracy. We develop a framework based on cognitive waveform selection in conjunction with adaptive receiver placement strategy to cope with time-varying target scattering characteristics and clutter distribution parameters in the dynamic radar scene. The proposed approach yields better target detection performance and positioning accuracy as compared with conventional methods based on static transmission or stationary multistatic radar topology. The third part of this thesis examines joint radar and communication systems coexistence and operation via two possible architectures. In the first one, several communication nodes in a network operate separately in frequency. Each node leverages the multi-look diversity of the distributed system by activating radar processing on multiple received bistatic streams at each node level in addition to the pre-existing monostatic processing. This architecture is based on the fact that the communication signal, such as the Orthogonal Frequency Division Multiplexing (OFDM) waveform, could be well-suited for radar tasks if the proper waveform parameters are chosen so as to simultaneously perform communication and radar tasks. The advantage of using a joint waveform for both applications is a permanent availability of radar and communication functions via a better use of the occupied spectrum inside the same joint hardware platform. We then examine the second main architecture, which is more complex and deals with separate radar and communication entities with a partial or total spectrum sharing constraint. We investigate the optimum placement of radar receivers for better target positioning accuracy while reducing the radar measurement errors by minimizing the interference caused by simultaneous operation of the communication system. Better performance in terms of communication interference handling and suppression at the radar level, were obtained with the proposed placement approach of radar receivers compared to the geometric dilution of precision (GDOP)-only minimization metric

    Dual-Function Radar Communications via Frequency-Hopping Code Selection

    Full text link
    Dual-function radar communications (DFRC) systems serve an indispensable role within emerging paradigm shifts combining sensing modalities with information exchange. Utilising an integrated waveform, the spectral and spatial degrees of freedom (DoF) of the host radar platform are exploited to embed information symbols into the radar waveform. Furthermore, DFRC systems are beginning to embed the information in the fast-time, i.e. within the radar pulse. One method involves the use of orthogonal frequency-hopping (FH) waveforms in conjunction with multiple-input multiple-output (MIMO) radar arrays. While the secondary communications function is achieved, modulating the radar fast-time comes at the expense of the primary sensing operation. In this dissertation, we study the implementation of a novel information embedding scheme for frequency-hopped MIMO (FH-MIMO) DFRC applications. We first develop a generalised framework which unifies existing FH-MIMO DFRC schemes. We then expose new methods of fast-time information embedding, such as the frequency-hopping code selection (FHCS) scheme. We also design hybrid information embedding strategies which enable significantly higher bit rates at no further expense of the radar. Then, we characterise the communications performance of the FHCS scheme exposed by this generalised framework. We identify significant aspects of FHCS signalling which relate to index modulation schemes as a whole, such as the truncation of the symbol dictionary. We formulate an optimisation relating the maximum transform-limit with the achievable communications symbol rate and bit rate. Following this, we address the issue of symbol detection as it pertains to index modulation schemes utilising truncated codebooks. We design a low-complexity communications receiver for the FHCS scheme which ensures valid membership of the estimated symbol to the allowed communications constellation. Furthermore, we derive expressions which show that the probability of symbol error reduces in those cases where truncated dictionaries are employed. Finally, we analyse the performance of the integrated FHCS waveform from the perspective of the primary radar operation. We establish a measure which enables the analysis of the average ambiguity function across all realisations of the permuted symbol dictionary. We also derive the performance of the radar receiver operating characteristics (ROC), including the false-alarm and detection probabilities

    Rake, Peel, Sketch:The Signal Processing Pipeline Revisited

    Get PDF
    The prototypical signal processing pipeline can be divided into four blocks. Representation of the signal in a basis suitable for processing. Enhancement of the meaningful part of the signal and noise reduction. Estimation of important statistical properties of the signal. Adaptive processing to track and adapt to changes in the signal statistics. This thesis revisits each of these blocks and proposes new algorithms, borrowing ideas from information theory, theoretical computer science, or communications. First, we revisit the Walsh-Hadamard transform (WHT) for the case of a signal sparse in the transformed domain, namely that has only K †N non-zero coefficients. We show that an efficient algorithm exists that can compute these coefficients in O(K log2(K) log2(N/K)) and using only O(K log2(N/K)) samples. This algorithm relies on a fast hashing procedure that computes small linear combinations of transformed domain coefficients. A bipartite graph is formed with linear combinations on one side, and non-zero coefficients on the other. A peeling decoder is then used to recover the non-zero coefficients one by one. A detailed analysis of the algorithm based on error correcting codes over the binary erasure channel is given. The second chapter is about beamforming. Inspired by the rake receiver from wireless communications, we recognize that echoes in a room are an important source of extra signal diversity. We extend several classic beamforming algorithms to take advantage of echoes and also propose new optimal formulations. We explore formulations both in time and frequency domains. We show theoretically and in numerical simulations that the signal-to-interference-and-noise ratio increases proportionally to the number of echoes used. Finally, beyond objective measures, we show that echoes also directly improve speech intelligibility as measured by the perceptual evaluation of speech quality (PESQ) metric. Next, we attack the problem of direction of arrival of acoustic sources, to which we apply a robust finite rate of innovation reconstruction framework. FRIDA â the resulting algorithm â exploits wideband information coherently, works at very low signal-to-noise ratio, and can resolve very close sources. The algorithm can use either raw microphone signals or their cross- correlations. While the former lets us work with correlated sources, the latter creates a quadratic number of measurements that allows to locate many sources with few microphones. Thorough experiments on simulated and recorded data shows that FRIDA compares favorably with the state-of-the-art. We continue by revisiting the classic recursive least squares (RLS) adaptive filter with ideas borrowed from recent results on sketching least squares problems. The exact update of RLS is replaced by a few steps of conjugate gradient descent. We propose then two different precondi- tioners, obtained by sketching the data, to accelerate the convergence of the gradient descent. Experiments on artificial as well as natural signals show that the proposed algorithm has a performance very close to that of RLS at a lower computational burden. The fifth and final chapter is dedicated to the software and hardware tools developed for this thesis. We describe the pyroomacoustics Python package that contains routines for the evaluation of audio processing algorithms and reference implementations of popular algorithms. We then give an overview of the microphone arrays developed
    corecore