1,985 research outputs found

    On steady-state preserving spectral methods for homogeneous Boltzmann equations

    Get PDF
    In this note, we present a general way to construct spectral methods for the collision operator of the Boltzmann equation which preserves exactly the Maxwellian steady-state of the system. We show that the resulting method is able to approximate with spectral accuracy the solution uniformly in time.Comment: 7 pages, 3 figure

    Anomalous diffusion, clustering, and pinch of impurities in plasma edge turbulence

    Full text link
    The turbulent transport of impurity particles in plasma edge turbulence is investigated. The impurities are modeled as a passive fluid advected by the electric and polarization drifts, while the ambient plasma turbulence is modeled using the two-dimensional Hasegawa--Wakatani paradigm for resistive drift-wave turbulence. The features of the turbulent transport of impurities are investigated by numerical simulations using a novel code that applies semi-Lagrangian pseudospectral schemes. The diffusive character of the turbulent transport of ideal impurities is demonstrated by relative-diffusion analysis of the evolution of impurity puffs. Additional effects appear for inertial impurities as a consequence of compressibility. First, the density of inertial impurities is found to correlate with the vorticity of the electric drift velocity, that is, impurities cluster in vortices of a precise orientation determined by the charge of the impurity particles. Second, a radial pinch scaling linearly with the mass--charge ratio of the impurities is discovered. Theoretical explanation for these observations is obtained by analysis of the model equations.Comment: This article has been submitted to Physics of Plasmas. After it is published, it will be found at http://pop.aip.org/pop

    The Atomic Physics Underlying the Spectroscopic Analysis of Massive Stars and Supernovae

    Full text link
    We have developed a radiative transfer code, CMFGEN, which allows us to model the spectra of massive stars and supernovae. Using CMFGEN we can derive fundamental parameters such as effective temperatures and surface gravities, derive abundances, and place constraints on stellar wind properties. The last of these is important since all massive stars are losing mass via a stellar wind that is driven from the star by radiation pressure, and this mass loss can substantially influence the spectral appearance and evolution of the star. Recently we have extended CMFGEN to allow us to undertake time-dependent radiative transfer calculations of supernovae. Such calculations will be used to place constraints on the supernova progenitor, to place constraints on the supernova explosion and nucleosynthesis, and to derive distances using a physical approach called the "Expanding Photosphere Method". We describe the assumptions underlying the code and the atomic processes involved. A crucial ingredient in the code is the atomic data. For the modeling we require accurate transition wavelengths, oscillator strengths, photoionization cross-sections, collision strengths, autoionization rates, and charge exchange rates for virtually all species up to, and including, cobalt. Presently, the available atomic data varies substantially in both quantity and quality.Comment: 8 pages, 2 figures, Accepted for publication in Astrophysics & Space Scienc
    • …
    corecore