3,437 research outputs found

    Drawing Big Graphs using Spectral Sparsification

    Full text link
    Spectral sparsification is a general technique developed by Spielman et al. to reduce the number of edges in a graph while retaining its structural properties. We investigate the use of spectral sparsification to produce good visual representations of big graphs. We evaluate spectral sparsification approaches on real-world and synthetic graphs. We show that spectral sparsifiers are more effective than random edge sampling. Our results lead to guidelines for using spectral sparsification in big graph visualization.Comment: Appears in the Proceedings of the 25th International Symposium on Graph Drawing and Network Visualization (GD 2017

    Constructing Linear-Sized Spectral Sparsification in Almost-Linear Time

    Full text link
    We present the first almost-linear time algorithm for constructing linear-sized spectral sparsification for graphs. This improves all previous constructions of linear-sized spectral sparsification, which requires Ω(n2)\Omega(n^2) time. A key ingredient in our algorithm is a novel combination of two techniques used in literature for constructing spectral sparsification: Random sampling by effective resistance, and adaptive constructions based on barrier functions.Comment: 22 pages. A preliminary version of this paper is to appear in proceedings of the 56th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2015

    Simple parallel and distributed algorithms for spectral graph sparsification

    Full text link
    We describe a simple algorithm for spectral graph sparsification, based on iterative computations of weighted spanners and uniform sampling. Leveraging the algorithms of Baswana and Sen for computing spanners, we obtain the first distributed spectral sparsification algorithm. We also obtain a parallel algorithm with improved work and time guarantees. Combining this algorithm with the parallel framework of Peng and Spielman for solving symmetric diagonally dominant linear systems, we get a parallel solver which is much closer to being practical and significantly more efficient in terms of the total work.Comment: replaces "A simple parallel and distributed algorithm for spectral sparsification". Minor change

    A Matrix Hyperbolic Cosine Algorithm and Applications

    Full text link
    In this paper, we generalize Spencer's hyperbolic cosine algorithm to the matrix-valued setting. We apply the proposed algorithm to several problems by analyzing its computational efficiency under two special cases of matrices; one in which the matrices have a group structure and an other in which they have rank-one. As an application of the former case, we present a deterministic algorithm that, given the multiplication table of a finite group of size nn, it constructs an expanding Cayley graph of logarithmic degree in near-optimal O(n^2 log^3 n) time. For the latter case, we present a fast deterministic algorithm for spectral sparsification of positive semi-definite matrices, which implies an improved deterministic algorithm for spectral graph sparsification of dense graphs. In addition, we give an elementary connection between spectral sparsification of positive semi-definite matrices and element-wise matrix sparsification. As a consequence, we obtain improved element-wise sparsification algorithms for diagonally dominant-like matrices.Comment: 16 pages, simplified proof and corrected acknowledging of prior work in (current) Section

    Community-aware network sparsification

    Full text link
    Network sparsification aims to reduce the number of edges of a network while maintaining its structural properties; such properties include shortest paths, cuts, spectral measures, or network modularity. Sparsification has multiple applications, such as, speeding up graph-mining algorithms, graph visualization, as well as identifying the important network edges. In this paper we consider a novel formulation of the network-sparsification problem. In addition to the network, we also consider as input a set of communities. The goal is to sparsify the network so as to preserve the network structure with respect to the given communities. We introduce two variants of the community-aware sparsification problem, leading to sparsifiers that satisfy different connectedness community properties. From the technical point of view, we prove hardness results and devise effective approximation algorithms. Our experimental results on a large collection of datasets demonstrate the effectiveness of our algorithms.https://epubs.siam.org/doi/10.1137/1.9781611974973.48Accepted manuscrip

    Probabilistic Spectral Sparsification In Sublinear Time

    Full text link
    In this paper, we introduce a variant of spectral sparsification, called probabilistic (ε,δ)(\varepsilon,\delta)-spectral sparsification. Roughly speaking, it preserves the cut value of any cut (S,Sc)(S,S^{c}) with an 1±ε1\pm\varepsilon multiplicative error and a δS\delta\left|S\right| additive error. We show how to produce a probabilistic (ε,δ)(\varepsilon,\delta)-spectral sparsifier with O(nlogn/ε2)O(n\log n/\varepsilon^{2}) edges in time O~(n/ε2δ)\tilde{O}(n/\varepsilon^{2}\delta) time for unweighted undirected graph. This gives fastest known sub-linear time algorithms for different cut problems on unweighted undirected graph such as - An O~(n/OPT+n3/2+t)\tilde{O}(n/OPT+n^{3/2+t}) time O(logn/t)O(\sqrt{\log n/t})-approximation algorithm for the sparsest cut problem and the balanced separator problem. - A n1+o(1)/ε4n^{1+o(1)}/\varepsilon^{4} time approximation minimum s-t cut algorithm with an εn\varepsilon n additive error
    corecore