3,437 research outputs found
Drawing Big Graphs using Spectral Sparsification
Spectral sparsification is a general technique developed by Spielman et al.
to reduce the number of edges in a graph while retaining its structural
properties. We investigate the use of spectral sparsification to produce good
visual representations of big graphs. We evaluate spectral sparsification
approaches on real-world and synthetic graphs. We show that spectral
sparsifiers are more effective than random edge sampling. Our results lead to
guidelines for using spectral sparsification in big graph visualization.Comment: Appears in the Proceedings of the 25th International Symposium on
Graph Drawing and Network Visualization (GD 2017
Constructing Linear-Sized Spectral Sparsification in Almost-Linear Time
We present the first almost-linear time algorithm for constructing
linear-sized spectral sparsification for graphs. This improves all previous
constructions of linear-sized spectral sparsification, which requires
time.
A key ingredient in our algorithm is a novel combination of two techniques
used in literature for constructing spectral sparsification: Random sampling by
effective resistance, and adaptive constructions based on barrier functions.Comment: 22 pages. A preliminary version of this paper is to appear in
proceedings of the 56th Annual IEEE Symposium on Foundations of Computer
Science (FOCS 2015
Simple parallel and distributed algorithms for spectral graph sparsification
We describe a simple algorithm for spectral graph sparsification, based on
iterative computations of weighted spanners and uniform sampling. Leveraging
the algorithms of Baswana and Sen for computing spanners, we obtain the first
distributed spectral sparsification algorithm. We also obtain a parallel
algorithm with improved work and time guarantees. Combining this algorithm with
the parallel framework of Peng and Spielman for solving symmetric diagonally
dominant linear systems, we get a parallel solver which is much closer to being
practical and significantly more efficient in terms of the total work.Comment: replaces "A simple parallel and distributed algorithm for spectral
sparsification". Minor change
Recommended from our members
Spectral sparsification
We survey recent literature focused on the following spectral sparsification question: Given an integer n and
> 0, does there exist a function N(n; ) such that for every collection of C1; : : : ;Cm of n n real symmetric
positive semidefinite matrices whose sum is the identity, there exists a weighted subset of size N(n; ) whose
sum has eigenvalues lying between 1 and 1 + ?
We present the algorithms for solving this problem given in [4, 8, 10]. These algorithms obtain N(n; ) =
O(n= 2), which is optimal up to constant factors, through use of the barrier method, a proof technique
involving potential functions which control the locations of the eigenvalues of a matrix under certain matrix
updates.
We then survey the applications of this sparsification result and its proof techniques to graph sparsification
[4, 10], low-rank matrix approximation [8], and estimating the covariance of certain distributions of random
matrices [32, 26]. We end our survey by examining a multivariate generalization of the barrier method used
in Marcus, Spielman, and Srivastava’s recent proof [19] of the Kadison-Singer conjecture
A Matrix Hyperbolic Cosine Algorithm and Applications
In this paper, we generalize Spencer's hyperbolic cosine algorithm to the
matrix-valued setting. We apply the proposed algorithm to several problems by
analyzing its computational efficiency under two special cases of matrices; one
in which the matrices have a group structure and an other in which they have
rank-one. As an application of the former case, we present a deterministic
algorithm that, given the multiplication table of a finite group of size ,
it constructs an expanding Cayley graph of logarithmic degree in near-optimal
O(n^2 log^3 n) time. For the latter case, we present a fast deterministic
algorithm for spectral sparsification of positive semi-definite matrices, which
implies an improved deterministic algorithm for spectral graph sparsification
of dense graphs. In addition, we give an elementary connection between spectral
sparsification of positive semi-definite matrices and element-wise matrix
sparsification. As a consequence, we obtain improved element-wise
sparsification algorithms for diagonally dominant-like matrices.Comment: 16 pages, simplified proof and corrected acknowledging of prior work
in (current) Section
Community-aware network sparsification
Network sparsification aims to reduce the number of edges of a network while maintaining its structural properties; such properties include shortest paths, cuts, spectral measures, or network modularity. Sparsification has multiple applications, such as, speeding up graph-mining algorithms, graph visualization, as well as identifying the important network edges.
In this paper we consider a novel formulation of the network-sparsification problem. In addition to the network, we also consider as input a set of communities. The goal is to sparsify the network so as to preserve the network structure with respect to the given communities. We introduce two variants of the community-aware sparsification problem, leading to sparsifiers that satisfy different connectedness community properties. From the technical point of view, we prove hardness results and devise effective approximation algorithms. Our experimental results on a large collection of datasets demonstrate the effectiveness of our algorithms.https://epubs.siam.org/doi/10.1137/1.9781611974973.48Accepted manuscrip
Probabilistic Spectral Sparsification In Sublinear Time
In this paper, we introduce a variant of spectral sparsification, called
probabilistic -spectral sparsification. Roughly speaking,
it preserves the cut value of any cut with an
multiplicative error and a additive error. We show how
to produce a probabilistic -spectral sparsifier with
edges in time
time for unweighted undirected graph. This gives fastest known sub-linear time
algorithms for different cut problems on unweighted undirected graph such as
- An time -approximation
algorithm for the sparsest cut problem and the balanced separator problem.
- A time approximation minimum s-t cut algorithm
with an additive error
- …
