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Abstract

We survey recent literature focused on the following spectral sparsification question: Given an integer n and
ε > 0, does there exist a function N(n, ε) such that for every collection of C1, . . . ,Cm of n×n real symmetric
positive semidefinite matrices whose sum is the identity, there exists a weighted subset of size N(n, ε) whose
sum has eigenvalues lying between 1− ε and 1 + ε?

We present the algorithms for solving this problem given in [4, 8, 10]. These algorithms obtain N(n, ε) =
O(n/ε2), which is optimal up to constant factors, through use of the barrier method, a proof technique
involving potential functions which control the locations of the eigenvalues of a matrix under certain matrix
updates.

We then survey the applications of this sparsification result and its proof techniques to graph sparsification
[4, 10], low-rank matrix approximation [8], and estimating the covariance of certain distributions of random
matrices [32, 26]. We end our survey by examining a multivariate generalization of the barrier method used
in Marcus, Spielman, and Srivastava’s recent proof [19] of the Kadison-Singer conjecture.
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1 | Spectral Sparsification and The Barrier Method

1.1 Introduction

Given an integer n and ε > 0, does there exist a function N(n, ε) such that for every collection of C1, . . . ,Cm

of n×n real symmetric positive semidefinite matrices whose sum is the identity, there exists a weighted subset
of size N(n, ε) whose sum spectrally approximates the identity to a multiplicative factor of (1 + ε) – that is,
whose eigenvalues lie between 1− ε and 1 + ε?

Remarkably, such functions N(n, ε) exist although they lack dependence on m, the original number of
matrices in the collection. In this paper, we will concern ourselves with this type of sparsification result, so
named since the ratio N(n, ε)/m can be taken to be arbitrarily small. In particular, we will focus on the
following linear algebraic theorem essentially contained in the works of [4], [10], and [8], which finds that
N(n, ε) = O(n/ε2) suffices and furthermore gives a deterministic algorithm for finding a subset of that size.
This bound has optimal dependence on n and ε, up to constant factors [4].

Theorem 1.1.1. Let ε > 0, and let Ci,Di ∈ Rn×n for i ∈ [m] be symmetric and positive semidefinite and
suppose that ∑

i

Ci =
∑
i

Di = In.

Then there is a deterministic polynomial-time algorithm which finds scalars si ≥ 0 for i ∈ [m] such that at
most O(n/ε2) of the si are nonzero and

(1− ε)In �
∑
i

siDi and
∑
i

siCi � (1 + ε)In.

Note that this result is slightly different from the original question posed above. Before, we only had one
collection of matrices to sparsify but could give simultaneous upper and lower bounds on the eigenvalues of
the resulting sparsification; now, we are simultaneously sparsifying two collections of matrices, but can only
give a lower bound for the eigenvalues of one of the sparsifications and an upper bound for the eigenvalues
of the other. While the latter type of control will sometimes turn out to be useful, it is usually not needed;
we will often apply this theorem to one collection of matrices by taking Ci = Di.

In this chapter, we present the original motivation behind studying such matrix sparsifcation results, which
arises from the study of graph sparsification [4, 10]. We then present the proof of Theorem 1.1.1 by the
barrier method of Batson, Spielman, and Srivastava [4]. In Chapter 2, we present results of Boutsidis,
Drineas, and Magdon-Ismail which use these sparsification arguments and results about approximating the
SVD to obtain good spectral norm low-rank matrix approximations [8]. In Chapter 3, we present work of
Srivastava-Vershynin [26] and Youssef [32], which utilize a randomization of the barrier method to derive
results about the covariance of certain distributions of random matrices. Finally, in Chapter 4 we present
Marcus, Spielman, and Srivastava’s proof [19] of the long-standing Kadison-Singer problem, which uses a
multivariate generalization of the barrier method and the methods of interlacing families and real stable
polynomials.

1



CHAPTER 1. SPECTRAL SPARSIFICATION AND THE BARRIER METHOD 2

1.1.1 Motivation: Graph Sparsification

A sparsifier of a graph G is a subgraph H that is structurally similar to G but may contain many fewer
edges. Benczur and Karger [5] introduced cut sparsifiers, which preserve the weight of all of the cuts of
G.

Definition 1.1.2. Let G = (V,E,w) be a weighted graph, and for all U ⊆ V , let

δ(U) = {(u, v) ∈ E : u ∈ U, v /∈ V }

be the weight of the cut defined by U . A (1 + ε)-cut sparsifier of a graph G is a new weight function w′ on
E such that ∀U ⊆ V ,

(1− ε)|δ(U)| ≤ w(δ(U)) ≤ (1 + ε)|δ(U)|. (1.1)

Later, Spielman and Teng [25] introduced spectral sparsifiers based on the eigenvalues of the Laplacian of a
graph, leading to a stronger matrix-based characterization of sparsification.

Definition 1.1.3. Let G = (V,E,w) be a weighted graph, and let n = |V | and m = |E|. The Laplacian LG
of G is given by LG = BTWB, where B is the m× n edge-vertex incidence matrix defined as

Bev =


1, e = (v, ∗)
−1, e = (∗, v)

0, otherwise

and W is the diagonal weight matrix with Wee = w(e). The Laplacian is positive semidefinite and the
number of connected components of G is equal to the multiplicity of 0 as an eigenvalue of LG.

Definition 1.1.4. A (1 + ε)-spectral sparsifier of an weighted undirected graph G = (V,E,w) is a subgraph
(with possibly different weight function) H = (V, F,w′) such that

(1− ε)LG � LH � (1 + ε)LG. (1.2)

Thus, spectral sparsifiers approximately preserve the eigenvalues of the Laplacian. To see that this is a
stronger characterization than cut sparsification, note that the condition (1.2) implies the condition (1.1)
since (1.2) is equivalent to

(1− ε)xTLGx ≤ xTLHx ≤ (1 + ε)xTLGx for all x ∈ RV (1.3)

and (1.1) follows from this by taking x to be characteristic vectors of the cut sets U .

It is well-known that the family of Ramanujan graphs [17] yields good spectral sparsifiers for the complete
graph Kn.

Definition 1.1.5. A Ramanujan graph is a d-regular graph G whose adjacency matrix has nontrivial eigen-
values (eigenvalues other than d and −d) of magnitude at most 2

√
d− 1. Equivalently, the non-zero eigen-

values of its Laplacian lie between d− 2
√
d− 1 and d+ 2

√
d− 1.

Proposition 1.1.6. Let n, d > 0, let H be a d-regular Ramanujan graph on n vertices, and give every edge
of H weight n/(d− 2

√
d− 1). Then H is a γR-spectral sparsifier of the complete graph Kn, where

γR =
d+ 2

√
d− 1

d− 2
√
d− 1

.

Proof. The eigenvalues of the Laplacian of Kn are 0 and n, so the proposition follows immediately from the
previous definitions.
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Much research has been done to find algorithms for more general graphs G. In their paper introducing
spectral sparsification, Spielman and Teng [25] gave a randomized construction for finding (1 + ε)-spectral
sparsifiers with O(npolylog n/ε2) edges. Spielman and Srivastava [24] gave another randomized algorithm
for finding (1+ε)-spectral sparsifiers with O(n log n/ε2) edges through a concentration inequality of Rudelson
[23] and resistance properties of graphs. It turns out that their result can be generalized [10] through use of
the Ahlswede-Winter inequality [2], a matrix Chernoff bound, while keeping the requirement of O(n log n/ε2)
edges.

Theorem 1.1.7 (Ahlswede-Winter inequality, [2]). Let Y ∈ Rn×n be a symmetric, positive semidefinite
random matrix supported in 0 � Y � In, let EY = µIn, let ε ∈ (0, 1/2), and let Y1, . . . ,Ym be independent
copies of Y. Then

P

[
(1− ε)In �

1

µm

m∑
i=1

Yi � (1 + ε)In

]
≥ 1− 2n exp

(
−mε

2µ

2 ln 2

)
. (1.4)

Corollary 1.1.8 (Theorem 18, [10]). Let C1, . . . ,Cm ∈ Rn×n be symmetric and positive semidefinite and
suppose that

∑
i Ci = In. Then there is a randomized algorithm which finds scalars si ≥ 0 for i ∈ [m], at

most O(n log n/ε2) of which are nonzero, such that

P

[
(1− ε)In �

∑
i

siCi � (1 + ε)In

]
> 1/2.

Proof. Consider the discrete probability distribution which takes value Ci/Tr[Ci] with probability Tr[Ci]/n.
Apply the Ahlswede-Winter inequality (Theorem 1.1.7) with Y sampled from this distribution, so that
µ = 1/n. Then for

m > O

(
lnn

ε2µ

)
= O(n log n/ε2),

the error in (1.4) is bounded by 1/2.

In Section 1.3, we will see that the condition (1.2) in the definition of spectral sparsifiers is essentially a matrix
sparsification condition, so that Theorem 1.1.1 directly yields graph sparsifiers of size O(n/ε2).

1.2 The Barrier Method

1.2.1 Intuition: Eigenvalues under rank-one updates

Suppose that in Theorem 1.1.1 one takes Ci = Di = viv
T
i for some v1, . . . ,vm ∈ Rn in isotropic position;

that is,
∑
i viv

T
i = In. This yields the following corollary, the form of the theorem originally proved in

[4].

Corollary 1.2.1. Let ε > 0, and let v1, . . . ,vm with

m∑
i=1

viv
T
i = In.

Then there is a deterministic polynomial-time algorithm which finds scalars si ≥ 0 for i ∈ [m] such that at
most O(n/ε2) of the si are nonzero and

(1− ε)In �
∑
i

siviv
T
i � (1 + ε)In.
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To motivate the method of proof, we will look at what happens to the eigenvalues of a matrix A after a
rank-one update of the form vvT . We will need the well-known matrix determinant lemma, which shows
that the determinant behaves nicely under such updates.

Lemma 1.2.2 (Matrix determinant lemma). Suppose that A ∈ Rn×n is invertible and u,v ∈ Rn are column
vectors. Then

det(A + uvT ) = det(A)(1 + vTA−1u).

Let A ∈ Rn×n be symmetric and positive semidefinite with unit eigenvectors ui and corresponding eigenval-
ues λi, and let v ∈ Rn. Since A is symmetric, we can eigendecompose it as A = UDUT , such that ui are
the columns of the orthogonal matrix U and D has λi on the diagonal. Then the characteristic polynomial
of the rank-one update A + vvT is equal to

χ[A + vvT ](x) = det(xI−A− vvT )

= det(xI−A)(1− vT (xI−A)−1v) (by the matrix determinant lemma)

= χ[A](x)(1− vT (xI−A)−1v)

= χ[A](x)(1− vTU(xI−D)−1UTv)

= χ[A](x)

1−
n∑
j=1

〈v,uj〉2

x− λj

 .

Suppose further that v is drawn uniformly at random from the set of vi. Then in expectation, we get
that

Eχ[A + vvT ](x) = χ[A](x)

1−
n∑
j=1

E〈v,uj〉2

x− λj


= χ[A](x)

1− 1

m

n∑
j=1

m∑
i=1

〈vi,uj〉2

x− λj


= χ[A](x)

1− 1

m

n∑
j=1

uTj (
∑m
i=1 viv

T
i )uj

x− λj


= χ[A](x)

1− 1

m

n∑
j=1

1

x− λj


= (1− ∂x/m)χ[A](x).

Beginning with A = 0 and χ[A](x) = xn and iterating k times yields a family of associated Laguerre
polynomials

pk(x) = (1− ∂x/m)kxn, (1.5)

whose roots are known. In particular, after k = O(n/ε2) iterations, the ratio of the largest zero to the
smallest zero becomes O((1 + ε)/(1 − ε)) [11], our desired approximation ratio. However, we have only
seen how adding vectors randomly behaves in expectation; we need to show we can find an actual sequence
consisting of scalar multiples of the vectors vi from our set which mimics repeatedly adding the average
vector.

Since we have two different collections Ci and Di, we will begin with matrices A(0) = B(0) = 0 and update
A with multiples of the Ci and B with multiples of the Di to form two sequences of matrices A(q) and B(q)

for q = 0, . . . , T .
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In order to control the locations of the eigenvalues of A and B, we define the upper and lower barrier
potentials as follows:

Φu(A) =

k∑
i=1

1

u− λi(A)
= Tr[(uI−A)−1], Φ`(B) =

k∑
i=1

1

λi(B)− `
= Tr[(B− `I)−1].

These potentials (which are equal to constant multiples of the Stieltjes transform of A and B evaluated at u
and `) give information about the locations of all of the eigenvalues of A and B simultaneously. For example,
if all of A’s eigenvalues lie below u and Φu(A) = D, then no eigenvalue can be bigger than u − 1/D. We
will control the maximum eigenvalue of A(q) using an upper barrier u and the minimum eigenvalue of B(q)

using a lower barrier `. In tandem, we will make sure these above potentials do not increase over the course
of the algorithm, thus keeping the eigenvalues of A and B safely bounded by the barriers.

Later, we will choose positive constants u0, `0, δU , δL, εU , εL so that the algorithm will satisfy the following
properties:

1. At the beginning of the algorithm, the upper and lower barriers are at u = u0 and ` = `0 with initial
potentials Φu0(0) = εU and Φ`0(0) = εL.

2. For each timestep q = 1, . . . , T , there is some index i ∈ [m] and scalar t ≥ 0 such that

A(q) = A(q−1) + tCi and B(q) = B(q−1) + tDi.

3. If we increment the barriers u and l by δU and δL respectively at each timestep q = 1, . . . , T , neither
potential increases, and no eigenvalue ever crosses a barrier:

Φu+δU (A(q)) ≤ Φu(A(q−1)) ≤ εU , Φl+δL(B(q)) ≤ Φl(B
(q−1)) ≤ εL.

λmax(A(q)) ≤ u0 + qδU and λmin(B(q)) ≥ `0 + qδL.

4. The algorithm will finish after T = O(n/ε2) steps, at which point

λmax(A(T ))

λmin(B(T ))
≤ u0 + TδU

l0 + TδL
≤ 1 + ε

1− ε
.

We now introduce formulas which will allow us to compute the largest scalar multiple of a matrix C (resp.
D) which we can add to A (resp. B) while preserving the above barrier properties. Let

UA(C)
def
=

Tr[((u+ δU )I−A)−2C]

Φu(A)− Φu+δU (A)
+ Tr[((u+ δU )I−A)−1C],

LB(D)
def
=

Tr[(B− (`+ δL)I)−2D]

Φ`+δL(B)− Φ`(B)
− Tr[(B− (`+ δL)I)−1D].

The structure of the above quantities and the proofs of next two lemmas are inspired by the Sherman-
Morrison-Woodbury formula, a description of the inverse of a matrix under certain updates.

Lemma 1.2.3 (Sherman-Morrison-Woodbury Formula, [14]).

(A−UV)−1 = A−1 + A−1U(I−VA−1U)−1VA−1.

Using this identity, Lemmas 1.2.4 and 1.2.5 explicitly determine the magnitude of feasible updates to A and
B in terms of the quantities UA(C) and LB(D).

Lemma 1.2.4 (Upper Barrier Shift). Suppose λmax(A) < u and that C ∈ Rn×n is symmetric and positive
semidefinite. If t > 0 satisfies t−1 ≥ UA(C), then

Φu+δU (A + tC) ≤ Φu(A) and λmax(A + tC) < u+ δU .
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Proof. Let u = u′ + δU , let M = u′I − A, and let S = C1/2 be a symmetric square root of C. By the
Sherman-Morrison-Woodbury formula (Lemma 1.2.3), we may write

Φu+δU (A + tC) = Tr[(u′I− (A + tSS))−1]

= Tr[(M− tSS)−1]

= Tr
[
M−1 + tM−1S(I− tSM−1S)−1SM−1]

= Φu
′
(A) + tTr

[
M−1S(I− tSM−1S)−1SM−1]

= Φu
′
(A) + tTr

[
(I− tSM−1S)−1SM−2S

]
= Φu(A)− (Φu(A)− Φu

′
(A)) + tTr

[
(I− tSM−1S)−1SM−2S

]
.

Note that by assumption we have 1/t ≥ UA(C) > Tr[SM−1S]. Since λmax(SM−1S) ≤ Tr[SM−1S], we have
that

γ
def
= λmin(I− tSM−1S) = 1− tλmax(SM−1S) > 0.

We thus have γI � I− tSM−1S, so that 0 ≺ (I− tSM−1S)−1 � γ−1I, and Tr
[
(I− tSM−1S)−1SM−2S

]
≥

tγ−1 Tr[SM−2S]. Thus, to show that Φu+δU (A + tC) ≤ Φu(A), we must show that

Φu(A)− Φu
′
(A) ≥ tγ−1 Tr

[
SM−2S

]
=

Tr
[
SM−2S

]
t−1 − λmax(SM−1S)

.

Since λmax(SM−1S) ≤ Tr[SM−1S], it suffices to show that

Φu(A)− Φu
′
(A) ≥ tγ−1 Tr

[
SM−2S

]
=

Tr
[
SM−2S

]
t−1 − Tr[SM−1S]

,

which follows by substituting t−1 = UA(C).

Now, suppose that λmax(A+tC) ≥ u′. Then by continuity, there is some 0 < t′ < t such that λmax(A+t′C) =
u′, and thus Φu

′
(A+ t′C) is infinite. But since 1/t′ ≥ 1/t, by the above we have that Φu

′
(A+ t′A) ≤ Φu(A)

and is thus finite, a contradiction. Thus λmax(A + tC) < u′.

Lemma 1.2.5 (Lower Barrier Shift). Suppose ` < λmin(B),Φl(B) ≤ 1/δL, and that D ∈ Rn×n is symmetric
and positive semidefinite. If t > 0 satisfies t−1 ≤ LB(D), then

Φ`+δL(B + tD) ≤ Φ`(B) and λmin(B + tD) > `+ δL.

Proof. The proof is very similar to that of the previous lemma. Let `′ = ` + δL, let N = B − `′I, and let
S = D1/2 be a symmetric square root of D. By the Sherman-Morrison formula (Lemma 1.2.3), we may write

Φ`+δL(B + tD) = Tr[(B + tSS− `′I)−1]

= Tr[(N + tSS)−1]

= Tr[N−1 − tN−1S(I + tSN−1S)−1SN−1]

= Φ`′(B)− tTr[N−1S(I + tSN−1S)−1SN−1]

= Φ`′(B)− tTr[(I + tSN−1S)−1SN−2S]

= Φ`(B) + (Φ`′(B)− Φ`(B))− tTr[(I + tSN−1S)−1SN−2S].

Thus, to show that Φ`′(B + tD) ≤ Φ`(B), it suffices to show that

Φ`′(B)− Φ`(B) ≤ tTr[(I + tSN−1S)−1SN−2S].

Let
γ

def
= λmax(I + tSN−1S) = 1 + tλmax(tSN−1S) > 0.
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Then γ−1I ≺ (I + tSN−1S)−1, so that

tTr[(I + tSN−1S)−1SN−2S] ≥ γ−1tTr[SN−2S] ≥ Tr[SNS−1]

t−1 + Tr[SN−1S]

and it suffices to show that

Φ`′(B)− Φ`(B) ≤ Tr[SN−2S]

t−1 + Tr[SN−1S]
,

which follows by substituting t−1 = LB(D). The fact that λmin(B + tD) > ` + δL follows by a similar
argument to the one at the end of the previous lemma.

The following lemma shows that at each timestep q there is a good choice of index i and scalar t such that
adding tCi to A(t) and adding tDi to B(t) does not cause any eigenvalues to cross their respectively barriers.
Equivalently, it will hold that this choice of i and t simultaneously achieves the bounds on UA(Ci) and
LB(Di) required by the previous two lemmas.

Lemma 1.2.6 (Both Barriers). Let A,B ∈ Rn×n be symmetric and positive semidefinite, and suppose that
λmax(A) < u,Φu(A) < εU , λmin(B) > `,Φ`(B) < εL, and δ−1U + εU ≤ δ−1L − εL, . Then there exists an index
i ∈ [m] and t > 0 such that

Φu+δU (A + tCi) ≤ Φu(A), λmax(A + tCi) < u+ δU ,

Φ`+δL(B + tDi) ≤ Φ`(B), and `+ δL < λmin(B + tDi).

Proof. We will use an averaging argument: that is, we will show that

n∑
i=1

UA(Ci) ≤
n∑
i=1

LB(Di). (1.6)

Assuming this, there must be some i ∈ [m] such that UA(Ci) ≤ LB(Di), and applying Lemmas 1.2.4 and
1.2.5 with t = 1/UA(Ci) yields the desired results.

Now, we show (1.6). Let u′ = u+ δU . We may write

n∑
i=1

UA(Ci) =

∑
i Tr[(u′I−A)−2Ci]

Φu(A)− Φu′(A)
+
∑
i

Tr[(u′I−A)−1Ci]

=
Tr[(u′I−A)−2]

Φu(A)− Φu′(A)
+ Tr[(u′I−A)−1] (since

∑
iBi = 1)

=

∑
j(u
′ − λj(A))−2∑

j [(u− λj(A))−1 − (u′ − λj(A))−1]
+ Φu

′
(A)

= δ−1U

( ∑
j(u
′ − λj(A))−2∑

j [(u− λj(A))−1(u′ − λj(A))−1]

)
+ Φu

′
(A)

≤ δ−1U + Φu
′
(A) (since (u− λj(A))−1 ≥ (u′ − λj(A))−1)

≤ δ−1U + εU .
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We follow a similar calculation for the lower barrier:
n∑
i=1

LB(Di) =

∑
i Tr[(B− `′I)−2Di]

Φ`′(B)−
∑
i Φ`(B)

− Tr[(B− `′I)−1Di]

=
Tr[(B− `′I)−2]

Φ`′(B)− Φ`(B)
− Tr[(B− `′I)−1]

=

∑
j(λj(B)− `′)−2∑

j [(λj(B)− `′)−1 − (λj(B)− `)−1]
− Φ`′(B)

≥ δ−1L − Φ`′(B)

≥ δ−1L − εL,

where the last inequality follows from Lemma 1.2.7 below. Equation (1.6) then follows by our assumption
that δ−1U + εU ≤ δ−1L − εL.

Lemma 1.2.7. Suppose 0 < δL ≤ ε−1L ≤ λi − ` for all i and 0 ≤
∑
i(λi − `)−1 ≤ εL. Let `′ = `+ δL. Then∑

i(λi − `′)−2∑
i(λi − `′)−1 −

∑
i(λi − `)−1

−
∑
i

(λi − `′)−1 ≥ δ−1L −
∑
i

(λi − l)−1.

Proof. By our first hypothesis we also have that λi − `′ > 0. Let yi = (λi − `′)−1 and zi = (λi − `)−1. Note
that

∑
i(yi − zi) = δLyizi. Substituting and multiplying through by the first denominator of the left hand

side, we obtain that the given inequality is equivalent to

∑
i

y2i ≥

(
δL
∑
i

yizi

)
(δ−1L + δL

∑
i

yizi) =
∑
i

yizi +

[
δL
∑
i

yizi

]2
.

Rearranging again, we obtain

δL
∑
i

y2i zi ≥

[
δL
∑
i

yizi

]2
.

Applying Cauchy-Schwarz to the RHS, we obtain[
δL
∑
i

yizi

]2
≤

[
δL
∑
i

zi

][
δL
∑
i

y2i zi

]
≤ (δLεL)

[
δL
∑
i

y2i zi

]
≤ δL

∑
i

y2i zi,

where the last inequality follows from the assumption that δLεL ≤ 1, and the claimed inequality is established.

We are finally able to prove the main theorem.

Proof of Theorem 1.1.1. We need to choose the six constants required by the algorithm. Take

δL = 1, εL =
ε

2
, `0 = − n

εL
, δU =

2 + ε

2− ε
, εU =

ε

2δU
, u0 =

n

εU
. (1.7)

This yields 1
δU

+εU = 1
δL
−εL, the condition required by Lemma 1.2.6. By the previous lemmas, the algorithm

will satisfy conditions 1 – 4 above. Using these constants, we obtain that after T = 4n/ε2 iterations,

λmax(A(T ))

λmin(B(T ))
≤ u0 + TδU
`0 + TδL

=
(2 + ε)2

(2− ε)2
≤ 1 + ε

1− ε
.
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We can now obtain the scalars si by letting si be the sum of all t corresponding to steps when the matrices
Ci and Di were taken as updates, so that

λmax(
∑
i siCi)

λmin(
∑
i siDi)

≤ 1 + ε

1− ε
.

Since the algorithm had T steps, at most T = O(n/ε2) of the si will be nonzero. Finally, we can rescale all
of the si so that λmin(

∑
i siDi) = 1− ε and λmax(

∑
i siCi) ≤ 1 + ε.

The running time of the algorithm of Theorem 1.1.1 can be analyzed as follows. At the start of each timestep,
we can precompute the matrix powers M−1, etc. in time O(n3). For each i ∈ [m], we must then calculate the
functions UA(Ci) and LB(Di): we can compute the traces in the formulae using entry-ise products which
take time O(n2). Thus each iteration runs in time O(n3 + mn2) = O(mn2), and the total running time is
O(Tmn2) = O(mn3/ε2).

Theorem 1.1.1 has a useful generalization which drops the condition on that the sum of the matrices is the
identity. We will need this version for the graph sparsification results of Section 1.3.

Corollary 1.2.8 (Dual-Set Sparsification for General Decompositions). Let ε > 0, let Ci,Di ∈ Rn×n for
i ∈ [m] be symmetric and positive semidefinite, let

C =
∑
i

Ci and D =
∑
i

Di.

Then there is a deterministic polynomial-time algorithm which finds scalars si ≥ 0 for i ∈ [m] such that at
most O(n/ε2) of the si are nonzero and

(1− ε)D �
∑
i

siDi and
∑
i

siCi � (1 + ε)C.

Proof of Corollary 1.2.8. Since invertible matrices are dense in the space of all n× n matrices, it suffices to
prove the corollary when C and D are invertible. Define the functions

f(X) = C−1/2XC−1/2 and g(Y) = D−1/2YD−1/2,

and apply Theorem 1.1.1 to the collections of matrices f(Ci) and g(Di), each of which sum to the identity,
to obtain the result.

This reduction takes time O(mn3), and does not affect the runtime of the original algorithm.

Remark. The assumption that the matrices Ci and Di are positive semidefinite found in Theorem 1.1.1 is
necessary, as shown below.

Proposition 1.2.9 (Proposition 31, [10]). For every positive integer n, there exist symmetric matrices
C1, . . . ,Cm ∈ Rn×n with m = Ω(n2) such that C =

∑
i Ci is positive definite and for every ε ∈ (0, 1) and

y1, . . . , ym ∈ R such that (1− ε)C �
∑
i yiCi, all of the yi are nonzero.

Proof. For all 1 ≤ i < j ≤ n, let Eij = eie
T
j + eje

T
i , and suppose Y is the matrix with all ones, which is

positive semidefinite. Let the Ck consist of the Eij and 2I, so that

C = 2I +
∑

1≤i<j≤n

Eij = I + Y,

which is positive definite. Now, suppose that for ε ∈ (0, 1) and scalars t, zij we have that (1 − ε)C �
2tI+

∑
1≤i<j≤n zijEij . Taking traces of both sides and dividing by n yields 2(1− ε)/n ≤ 2t, and multiplying

both sides by Eij yields that 2(1− ε) ≤ zij for each 1 ≤ i < j ≤ n.
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1.3 Deterministic Graph Sparsification

The sparsification result of Corollary 1.2.1 yields an excellent deterministic solution to the graph sparsification
problem for any weighted undirected graph. Batson, Spielman, and Srivastava [4] proved the following
theorem:

Theorem 1.3.1. Let ε > 0 and let G = (V,E,w) be a weighted undirected graph with |V | = n. Then there is
a deterministic polynomial-time algorithm which finds a (1 + ε)-spectral sparsifier H = (V, F,w′) of G such
that |F | = O(n/ε2).

Remark Their original proof used different constants in (1.7) to obtain the approximation ratio

1 + ε =
d+ 1 + 2

√
d

d+ 1− 2
√
d

for some d > 1 and obtained sparsifiers with dd(n− 1)e edges. As such, these ‘twice-Ramanujan sparsifiers’
[4] have the same asymptotic approximation ratio as Ramanujan graphs and have (approximately) twice the
number of edges, since Ramanujan graphs are d-regular and thus have dn/2 edges.

Proof of Theorem 1.3.1. For each e = (i, j) ∈ E, define the matrix

Le = w(e)(ei − ej)(ei − ej)
T , (1.8)

so that LG =
∑
e∈E Le. Then applying Corollary 1.2.8 with Ce = De = Le yields scalars se, at most O(n/ε)2

of which are nonzero, such that
(1− ε)LG ≤

∑
e∈E

seLe ≤ (1− ε)LG (1.9)

Note that the quantity
∑
e∈E seLe is the Laplacian LH of a subgraph H of G with new weights w′(e) =

sew(e), and H is a (1 + ε)-sparsifier of G by (1.3).

It turns out that it is still possible to find such sparsifiers even if one must also preserve cost functions or
weights of colorings.

Proposition 1.3.2 ([10]). Let G = (V,E,w) be an undirected graph, and let c1, . . . , ck : E → R+ be cost
functions. For any ε ∈ (0, 1), there is a deterministic polynomial-time algorithm which finds a (1+ε)-spectral
sparsifier H = (V, F,w′) of G such that |F | = O((n+ k)/ε2) and for all i,

(1− ε)
∑
e∈E

w(e)ci(e) ≤
∑
e∈F

w′(e)ci(e) ≤ (1 + ε)
∑
e∈E

w(e)ci(e).

Proof. For each e ∈ E, recall the definition of the matrix Le given in (1.8) and define the direct sum
Be = [Le ⊕ w(e)c1(e)⊕ · · · ⊕ w(e)ck(e)]. Then

B =
∑
e∈E

Be = [LG ⊕
∑
e∈E

w(e)c1(e)⊕ · · · ⊕
∑
e∈E

w(e)ck(e)].

To obtain the result, apply Corollary 1.2.8 to the collections Ce = De = Be.

Corollary 1.3.3 ([10]). Let G = (V,E,w) be an undirected graph, and let E1, . . . , Ek be a partition (coloring)
of the edges in E. For any ε ∈ (0, 1), there is a deterministic polynomial-time algorithm which finds a (1+ε)-
spectral sparsifier H = (V, F,w′) of G such that |F | = O((n+ k)/ε2) and

(1− ε)
∑
e∈Ei

w(e) ≤
∑

e∈F∩Ei

w′(e) ≤ (1 + ε)
∑
e∈Ei

w(e).
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Proof. Let ci be the cost functions given by the characteristic functions of Ei, and apply the previous
proposition.

These techniques also yield spectral sparsifiers for hypergraphs. First, we define versions of the Laplacian
matrix and spectral sparsifiers for hypergraphs.

Definition 1.3.4 ([10]). Let G = (V, E , w) be a hypergraph. For each hyperedge E ∈ E , define its Laplacian
LE as the Laplacian of a graph on V which forms a clique on the vertices in E and has no other edges, and
then define the Laplacian of G by LG =

∑
E∈E w(E)LE .

A (1 + ε)-spectral sparsifier of G is a sub-hypergraph H satisfying

(1− ε)LG � LH � (1 + ε)L

The following analogue of Theorem 1.3.1 for hypergraphs immediately follows from the above definitions.

Proposition 1.3.5 ([10]). Let H = (V, E , w) be a hypergraph. For any ε ∈ (0, 1), there is a deterministic
polynomial-time algorithm which finds a (1 + ε)-spectral sparsifier G = (V,F , w′) of H with |F| = O(n/ε2).

Proof. Apply Corollary 1.2.8 to the matrices w(E)LE for each E ∈ E , which sum to LG .

These are just a few examples of applications taken from those in [10]; others not mentioned here include
results for cut sparsifiers of hypergraphs, semidefinite programs, and Caratheodory-type theorems.

A note on lower bounds Inspired by the Alon-Boppana bound [21], which implies that if H is a d-regular
unweighted (1 + ε)-sparsifier of the complete graph Kn, then ε ≥ 4/

√
d− o(1/

√
d) as n, d→∞, the authors

of [4] make the following conjecture for weighted sparsifiers.

Conjecture 1.3.1 ([4]). Let H = (V,E,w) be a weighted graph with n vertices and average degree d. If H
is a (1 + ε)-spectral sparsifier of the complete graph Kn, then

ε ≥ 4√
d

+O (1/d) .

They also prove the following weaker theorem instead, which still is able to yield an asymptotic lower bound
of O(n/ε2) for our original sparsification problem [20].

Theorem 1.3.6 (Proposition 4.2, [4]). Let H = (V,E,w) be a weighted graph with n vertices and average
degree d. If H is a (1 + ε)-spectral sparsifier of the complete graph Kn, then

ε ≥ 2√
d
−O

(√
d

n

)
.



2 | Applications to Low-RankMatrix Approximation

2.1 Introduction

Let A ∈ Rm×n, let rank(A) = ρ, and let k ≤ ρ be an integer. Then we recall that the singular value
decomposition (SVD) of A is given by

A =
(
Uk Uρ−k

)︸ ︷︷ ︸
U

(
Σk 0
0 Σρ−k

)
︸ ︷︷ ︸

Σ

(
VT
k

VT
ρ−k

)
︸ ︷︷ ︸

VT

,

where the matrix Σ contains the nonzero singular values σ1, . . . , σρ on the diagonal, the matrix U ∈ Rm×ρ
contains the left singular vectors of A, and the matrix V ∈ Rn×ρ contains the right singular values of
A.

It is well known that the best rank-k approximation of a matrix A with respect to a unitarily invariant
norm is given by Ak = UkΣkV

T
k , but evaluating this requires computing (parts of) the SVD, which may be

too slow for certain applications. Thus, much research has been done on the column-based reconstruction
problem, which concerns algorithms for efficiently finding subspaces spanned by a small set of r � n columns
of A which still yield good approximations in some norm.

The problem is phrased as follows. Let C ∈ Rm×r consist of r columns of A for some r < n. Taking || · ||N
to be either the spectral or Frobenius norm, we define πNC,k(A) to be the best approximation to A with
respect to || · ||N that lies within the column space of C and that has rank at most k ≤ r. How does the
column-based reconstruction error ∣∣∣∣A− πNC,k(A)

∣∣∣∣
N

compare multiplicatively to the error of the best unconstrained rank k approximation, given by ||A −
Ak||N?

In this chapter, we will follow the spectral part of the analysis of [8], which applies the sparsification results of
Chapter 1 to obtain deterministic and randomized algorithms in both norms for column-based reconstruction
for any r ≥ k. For a more detailed history of the approaches to column-based reconstruction and other related
formulations of low-rank approximation, as well as similar results for the Frobenius norm, we encourage the
reader to consult the introduction of [8].

The main highlight will be the following theorem, which combines one of the aforementioned deterministic
algorithms with a fast randomized approximation of the SVD to obtain near-optimal error in expectation
while avoiding computing singular vectors.

Theorem 2.1.1 (Fast randomized spectral norm reconstruction). Let A ∈ Rm×n have rank ρ, and let
1 < k < ρ be an integer. There exists a randomized algorithm which selects r > k columns of A and forms
a matrix C ∈ Rm×r such that

E[
∣∣∣∣A− π2

C,k(A)
∣∣∣∣
2
] ≤ O(

√
n/r) ||A−Ak||2 .

The algorithm runs in O(mnk log(min(m,n)/k)/ε+ nrk2) time.

12
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2.2 Sparsification and Low-Rank Matrix Approximation

2.2.1 Preliminaries

We will use the spectral norm || · ||2 and the Frobenius norm || · ||F , which are both unitarily invariant
and submultiplicative: that is, for suitably sized matrices A,B, ||AB|| ≤ ||A||||B|| under either norm. In
addition, ||AB||F ≤ ||A||2||B||F and ||AB||F ≤ ||A||F ||B||2. These norms also satisfy a few properties
reminiscent of the Pythagorean theorem.

Lemma 2.2.1. Let A,B ∈ Rm×n. If ATB = 0 or BTA = 0, then

||A + B||2F = ||A||2F + ||B||2F .

Proof. Suppose ATB = 0. Then

||A + B||2F = Tr[(A + B)(A + B)T ] = Tr[AAT ] + Tr[BBT ] + Tr[BAT ] = ||A||2F + ||B||2F ,

where in the last equality we used the cyclic property of trace.

Lemma 2.2.2. Let A,B ∈ Rm×n. If ATB = 0 or BTA = 0, then

max(||A||22 , ||B||
2
2) ≤ ||A + B||22 ≤ ||A||

2
2 + ||B||22 .

Proof. Suppose ATB = 0. Let u ∈ Rn be a unit vector. Then

||A + B||22 = max
u

uT (A + B)(A + B)Tu = max
u

uT (AAT + BBT )u ≤ ||A||22 + ||B||22.

In addition,

max
u

uT (AAT + BBT )u ≥ max
(

max
u

uTAATu,max
u

uTBBTu
)

= max(||A||22 , ||B||
2
2).

We will also need the following inequality concerning the spectral norm of projection operators.

Lemma 2.2.3 (Theorem 2.1, [27]). Let P ∈ Rn×n be a nonzero projection. Then

||I−P||2 ≤ ||P||2.

Proof. If P = I the result is obvious, so we can also assume that I − P is also a nonzero projection. Let
u ∈ Rn be a unit vector, and let x = Pu and y = (I − P)u. If x = 0, then ||(I − P)u||2 = 1 ≤ ||P||2. If
y = 0, then ||(I−P)u||2 = 0 ≤ ||P||2. Thus, assume that both x and y are nonzero. Let

w =
||y||2
||x||2

x +
||x||2
||y||2

y,

so that ||w||2 = 1. But then

||P||2 ≥ ||Pw||2 =

∣∣∣∣∣∣∣∣ ||y||2||x||2
x

∣∣∣∣∣∣∣∣
2

= ||y||2 = ||(I−P)u||2.

Thus ||P||2 ≥ |(I−P)u||2 for every unit vector u, and the result follows.

We now turn to results concerning representations of πNC,k(A). By definition, we can express it by

πFC,k(A) = CX, where X = argmin
Y∈Rr×n:rank(Y)≤k

||A−CY||N . (2.1)

The next lemma shows that πNC,k(A) is the projection of A onto the column space of CX, and no other
subspace of the column space of C can approximate A better.
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Lemma 2.2.4. Let A ∈ Rm×n and C ∈ Rm×r, and let r > k. Let X ∈ Rr×n be the matrix in (2.1), and let
Y ∈ Rr×n be any matrix with rank ≤ k. Then

||A−CX||N = ||A− (CX)(CX)+A||N ≤ |A− (CY)(CY)+A||N .

Proof. Since Y(CY)+A has rank at most k, the second inequality follows by (2.1). Taking Y = X and
squaring, we obtain

||A−CX||N ≤ ||A− (CX)(CX)+A||N .

Next, we may write

||A−CX||2N = ||(A− (CX)(CX)+A)− (CX)(I− (CX)+A))||2N .

Since ((CX)(CX)+)T = (CX)(CX)+, we have that (A− (CX)(CX)+A)T (CX)(I− (CX)+A)) = 0, so we
can apply Lemmas 2.2.1 and 2.2.2 to obtain

||A−CX||2N ≤ ||A− (CX)(CX)+A||2N .

In the Frobenius norm, we can give an explicit formula for πFC,k(A) which requires computing an SVD.

Lemma 2.2.5. Let A ∈ Rm×n and C ∈ Rm×r, let 0 < k < r be an integer, and let B = O(OTA)k, where
O ∈ Rm×r consists of the orthonormal columns of C. Then

||A−B||2F =
∣∣∣∣A− πFC,k(A)

∣∣∣∣
F
,

Proof. Note that we can write∣∣∣∣A− πFC,k∣∣∣∣2F =
∣∣∣∣A− πFO,k∣∣∣∣2F = min

M:rank(M)≤k
||A−OM||2F .

Expanding this term,

||A−OM||2F =
∣∣∣∣A−OOTA + O(OTA−M)

∣∣∣∣2
F

=
∣∣∣∣A−OOTA

∣∣∣∣2
F

+
∣∣∣∣O(OTA−M)

∣∣∣∣2
F

=
∣∣∣∣A−OOTA

∣∣∣∣2
F

+
∣∣∣∣OTA−M

∣∣∣∣2
F
,

where the second equality follows from Lemma 2.2.1, as (A −OOTA)T (O(OTA −M)) = 0 because O is
orthonormal. Since the above expression is minimized when M = OTA, the result follows.

In the spectral norm, the same matrix yields a 2-approximation, which will be good enough for later re-
sults.

Lemma 2.2.6. Let A ∈ Rm×n and C ∈ Rm×r, let 0 < k < r be an integer, and let B = O(OTA)k, where
O ∈ Rm×r consists of the orthonormal columns of C. Then

||A−B||22 ≤ 2
∣∣∣∣A− π2

C,k(A)
∣∣∣∣2
2
.

Proof. First, note that OOTA is the best approximation to A in the column space of O, so that ||A −
OOTA||22 ≤ ||A− π2

Q,k(A)||22. In addition,

||OOTA− (OOTA)k||22 = σ2
k+1(OOTA) ≤ σ2

k+1(A) = ||A−Ak||22, (2.2)

where the inequality follows since OOT is a projection.
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Noting that (OOTA)k = O(OTA)k, we now expand

||A−O(OTA)k||22 = ||A−OOTA + O(OTA− (OTA)k)||22
≤ ||A−OOTA||22 + ||O(OTA− (OTA)k)||22 (by Lemma 2.2.2)

≤ ||A− π2
O,k(A)||22 + ||O(OTA− (OTA)k)||22 (OOTA is best approx. in colspan(O))

≤ ||A− π2
O,k(A)||22 + ||A−Ak||22 (by (2.2))

≤ 2||A− π2
O,k(A)||22 (Ak is the best rank-k approx. to A)

= 2||A− π2
C,k(A)||22.

In applying Lemma 2.2.2 above, we used that (A−OOTA)T (O(OTA− (OTA)k)) = 0, which follows since
O is orthonormal.

2.2.2 Matrix Factorizations

For matrices A ∈ Rm×n and X ∈ Rn×k, where XTX = I, we will consider factorizations of the form

A = AXXT + E,

which consist of the projection of A onto the column space of X and an orthogonal error term satisfying
EX = (A − AXXT )X = 0. The next lemmas exhibit why we care about this family of factorizations:
any such factorization of A yields bounds for the error obtained from approximating by πNC,k(A). In these
lemmas, the matrix S ∈ Rn×r will play the role of a sampling matrix which selects and possibly re-weights
some columns of A to produce a matrix C.

Lemma 2.2.7. Consider as above A = BXT + E, with B = AX and XTX = I. Let S ∈ Rn×r be any
matrix with rank(XTS) = rank(X) = k, and let C = AS. Then the following inequality holds in both spectral
and Frobenius norms: ∣∣∣∣A− πNC,k(A)

∣∣∣∣2
N
≤ ||E||2N +

∣∣∣∣ES(XTS)+
∣∣∣∣
N

Proof. Consider Y = C(XTS)+XT . Then rank(Y) ≤ k and Y is in the column space of C, so that by
definition ∣∣∣∣A− πNC,k(A)

∣∣∣∣
N
≤ ||A−Y||N .

Expanding the right hand side,∣∣∣∣A−C(XTS)+XT
∣∣∣∣2
N

=
∣∣∣∣BXT + E− (BXT + E)S(XTS)+XT

∣∣∣∣2
N

=
∣∣∣∣BXT −BXTS(XTS)+XT + E−ES(XTS)+XT

∣∣∣∣2
N
.

Note that XTS(XTS)+ = Ik since rank(XTS) = k, so that the first two terms cancel. Thus∣∣∣∣A−C(XTS)+XT
∣∣∣∣2
N

=
∣∣∣∣E−ES(XTS)+XT

∣∣∣∣2
N
.

Next, note that ES(XTS)+XTET = ES(XTS)+ XT (AT −XXTAT )︸ ︷︷ ︸
XT AT−(XT X)XT AT=0

= 0, so that by Lemmas 2.2.1 and

2.2.2, ∣∣∣∣E−ES(XTS)+XT
∣∣∣∣2
N
≤ ||E||2N +

∣∣∣∣ES(XTS)+XT
∣∣∣∣2
N
.

Thus the inequality holds.

Next, we obtain an analogue of the previous result which yields a multiplicative error bound instead of an
additive one.
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Lemma 2.2.8. Consider as above A = BXT + E, with B = AX and XTX = I. Let S ∈ Rn×r be any
matrix with rank(XTS) = rank(X) = k, and let C = AS. Then the following inequality holds in both spectral
and Frobenius norms: ∣∣∣∣A− πNC,k(A)

∣∣∣∣2
N
≤ ||E||2N ·

∣∣∣∣S(XTS)+
∣∣∣∣
2

Proof. In the proof of the previous lemma, we showed∣∣∣∣A−C(XTS)+XT
∣∣∣∣2
N

=
∣∣∣∣E−ES(XTS)+XT

∣∣∣∣2
N

=
∣∣∣∣E(I− S(XTS)+XT )

∣∣∣∣2
N
.

By submultiplicativity, the right hand side satisfies∣∣∣∣E(I− S(XTS)+XT )
∣∣∣∣2
N
≤ ||E||2N ·

∣∣∣∣I− S(XTS)+XT )
∣∣∣∣
2
.

Next, note that (S(XTS)+XT )2 = S(XTS)+ XTS(XTS)+︸ ︷︷ ︸
=Ik

XT = S(XTS)+XT , so that S(XTS)+XT is a

nonzero projection. By Lemma 2.2.3 and since XTX = I,∣∣∣∣I− S(XTS)+XT
∣∣∣∣
2
≤
∣∣∣∣S(XTS)+XT

∣∣∣∣
2

=
∣∣∣∣S(XTS)+

∣∣∣∣
2
,

and the claimed inequality follows.

2.2.3 Deterministic Spectral Norm Reconstruction

We are now ready to present some preliminary deterministic algorithms for spectral column-based recon-
struction. We will need the following corollary, which is yielded by different choices of constants in (1.7) and
by a slight modification of Theorem 1.1.1 which allows the matrices Ci and Di to have different (square)
dimensions. We state it in the rank one case for simplicity.

Corollary 2.2.9. Suppose v1, . . . ,vn ∈ Rk and w1, . . . ,wn ∈ Rd satisfy
∑
i viv

T
i = Ik and

∑
i wiw

T = Id.
Given an integer r with k < r ≤ m, there exist scalars si, at most r of which are nonzero, such that(

1−
√
k/r
)2

Ik �
∑
i

siviv
T
i and

∑
i

siwiw
T
i �

(
1 +

√
d/r
)2

Id.

Proof. Note that the proof of Theorem 1.1.1 still holds even if the matrices Ci and Di have different
dimensions. The only changes will be to take constants

δL = 1, `0 = −
√
rk, εL = − k

`0
, δU =

1 +
√
d/r

1−
√
k/r

, u0 = δU
√
dr, εU =

d

u0
,

noting that δ−1U + εU = δ−1L − εL as required by Lemma 1.2.6, and to run the algorithm for exactly T = r
steps to obtain an approximation ratio of

u0 + rδU
`0 + rδL

=
(1 +

√
d/r)2

(1−
√
k/r)2

,

as required.

Let vi,wi and si be as in the above corollary, and suppose exactly r′ of the si are nonzero. Using these si,
define a sampling matrix S ∈ Rn×r′ by including

√
siei as a column of S if and only if si is nonzero. Let V

and W be matrices whose rows are vi and wi, respectively. Then∑
i

siviv
T
i = VTSSTV and

∑
i

siwiw
T
i = WTSSTW.
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With this notation, the above result thus implies that

1−
√
k/r ≤ σk(VTS) and σ1(WTS) ≤ 1 +

√
`/r.

In the following algorithms, the sparsification result of Corollary 2.2.9 helps to control the singular values of
these sampled matrices VTS which appear in the error terms of Lemmas 2.2.7 and 2.2.8.

Theorem 2.2.10 (Deterministic spectral norm reconstruction). Let A ∈ Rm×n have rank ρ and let k < ρ
be an integer. Then there exists a deterministic polynomial-time algorithm which selects r > k columns of
A and forms a matrix C ∈ Rm×r such that∣∣∣∣A− π2

C,k(A)
∣∣∣∣
2
≤ O(

√
ρ/r) ||A−Ak||2 .

Proof. Let A = UΣVT be the SVD, and let S be the sampling matrix obtained by applying Corollary 2.2.9
to the n orthonormal rows of Vk and the n orthonormal rows of Vρ−k. Then S satisfies

1−
√
k/r ≤ σk(VT

k S) and σ1(VT
ρ−kS) ≤ 1 +

√
(ρ− k)/r.

Let C = AS, so that C is constructed from rescaled columns of A.

By Lemma 2.2.7 applied to the matrix X = Vk, we have that∣∣∣∣A− π2
C,k(A)

∣∣∣∣2
2
≤ ||A−Ak||22 +

∣∣∣∣(A−Ak)S(VT
k S)+

∣∣∣∣2
2

≤ ||A−Ak||22 + ||(A−Ak)S||22 ·
∣∣∣∣(VT

k S)+
∣∣∣∣2
2

= ||A−Ak||22 +
∣∣∣∣Uρ−kΣρ−kV

T
ρ−kS

∣∣∣∣2
2
·
∣∣∣∣(VT

k S)+
∣∣∣∣2
2

≤ ||A−Ak||22 + ||Σρ−k||22 ·
∣∣∣∣VT

ρ−kS
∣∣∣∣2
2
·
∣∣∣∣(VT

k S)+
∣∣∣∣2
2

= ||A−Ak||22 + ||A−Ak||22 ·
∣∣∣∣VT

ρ−kS
∣∣∣∣2
2
·
∣∣∣∣(VT

k S)+
∣∣∣∣2
2

≤ ||A−Ak||22

1 +

(
1 +

√
(ρ− k)/r

1 +
√
k/r

)2


Taking square roots and applying
√

1 + x2 ≤ 1 + x yields the result.

We can sacrifice some of this approximation accuracy for a slightly faster algorithm, which will have asymp-
totically similar error to the randomized algorithm of the next section. Instead of having to compute the
full SVD, as in the previous algorithm, we only need the first k right singular vectors of A.

Theorem 2.2.11 (Faster deterministic spectral norm reconstruction). Let A ∈ Rm×n have rank ρ, and let
k < ρ be an integer. There exists a deterministic polynomial-time algorithm which selects r > k columns of
A and forms a matrix C ∈ Rm×r such that∣∣∣∣A− π2

C,k(A)
∣∣∣∣
2
≤ O(

√
n/r) ||A−Ak||2 .

Proof. Let A = UΣVT be the SVD, and let S be the sampling matrix obtained by applying Corollary 2.2.9
to the n orthonormal rows of Vk and the n orthonormal rows of In. Then S satisfies

||InS||2 = σ1(InS) ≤ 1 +
√
n/r.

By Lemma 2.2.8, we obtain∣∣∣∣A− π2
C,k(A)

∣∣∣∣2
2
≤ ||A−Ak||22 ·

∣∣∣∣S(VT
k S)+

∣∣∣∣2
2

= ||A−Ak||22 ·
∣∣∣∣InS(VT

k S)+
∣∣∣∣2
2

≤ ||A−Ak||22 · ||InS||22 ·
∣∣∣∣(VT

k S)+
∣∣∣∣2
2

≤ ||A−Ak||22

[
1 +

√
n/r

1−
√
k/r

]2
.
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Note that the error in the previous theorem contains the same multiplicative factor of O(
√
n/r) that in

Theorem 2.1.1 obtains in expectation. These factors are asymptotically optimal; we prove this by giving
explicit matrices families which achieve this approximation ratio. As we take α → 0 in the forthcoming
lemma, we require approximation error which approaches n/r.

Lemma 2.2.12. For any α > 0, and k, r ≥ 1, there exists a matrix A ∈ R(n+1)×n for which

∣∣∣∣A− π2
C,k(A)

∣∣∣∣
2
≥
∣∣∣∣A−CC+A

∣∣∣∣
2
≥
√
n+ α2

r + α2
||A−Ak||2 ,

where C is any matrix consisting of r columns of A.

Proof. Consider the matrix A ∈ R(n+1)×n given by

A =


1 1 · · · 1
α 0 · · · 0
0 α 0 · · · 0

0 0 0 · · · α

 ,
for which A1i = 1 for i ∈ [n], Ai+1,i = α, and the rest of the entries of A are zero. Then

ATA = 1n1Tn + α2In, σ2
1(A) = n+ α2, σ2

i (A) = α2 for i > 1.

Since k ≥ 1, we have that ||A−Ak||22 = σ2
k+1(A) = α2. Without loss of generality, by permuting rows of A

we can assume that C consists of the first r columns of A.

We will reconstruct A one column at a time. Let aj be the jth column of A. Then the reconstruction error
on aj is given by the minimum of ||aj −Cx||22 over all x ∈ Rr. For j ≤ r, the vector ej yields zero error.
For j > r, we can substitute aj = e1 + αej+1 to obtain

||aj −Cx||22 =

∣∣∣∣∣
∣∣∣∣∣e1

(
r∑
i=1

xi − 1

)
+ α

r∑
i=1

xiei+1 − ej+1

∣∣∣∣∣
∣∣∣∣∣
2

=

(
r∑
i=1

xi − 1

)2

+ α2
r∑
i=1

x2i + 1.

The minimum of this expression must occur when all of the xi are equal; assuming this and solving yields
xi = 1/(r + α2) for all i. Let X ∈ Rr×n be the matrix whose first r columns are zero and which has the
value 1/(r + α2) everywhere else. Then by Lemma 2.2.4,

||A−CC+A||22 = ||A−CX||22.

By a simple computation,

||A−CX||22 =
n+ α2

r + α2
α2 =

n+ α2

r + α2
||A−Ak||22 .

The first inequality in the lemma follows since the first quantity is the best approximation of rank k in the
column space of C, while the second approximation has no constraints on rank.

2.3 Approximating the SVD

As a stepping stone for Theorem 2.3.1, we will prove the following randomized result, which finds a fac-
torization of the form seen in Section 2.2.2 whose error is, in expectation, a constant multiple of the error
obtained from approximating by Ak.
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Lemma 2.3.1 (Randomized approximate spectral SVD). Let A ∈ Rm×n have rank ρ, and let 1 < k < ρ be
an integer. For ε ∈ (0, 1), there exists an algorithm that computes a factorization A = AXXT +E satisfying
XTX = Ik and EX = 0, such that

E[||E||2] ≤ (
√

2 + ε)||A−Ak||2.

Given this result, we can prove Theorem 2.1.1 by applying the same error-bounding techniques as in Theorem
2.2.11, but using the matrix X instead of Vk.

Proof of 2.1.1. Let S be the sampling matrix obtained by applying Corollary 2.2.9 to the n orthonormal
rows of the matrix X and the n orthonormal rows of the matrix In, where X is obtained by running the
algorithm of Lemma 2.3.1.

Following the proof of Theorem 2.2.11 with A−Ak replaced by the error term E from the previous lemma
and Vk replaced by X, we obtain

||A− π2
C,k(A)||2 ≤ ||E||2

1 +
√
n/r

1−
√
k/r

.

The theorem follows from taking expectations and using the bound on E given in the previous lemma.

For the analysis of the runtime of this algorithm, see the proof of Theorem 1.3 in [8].

We will spend the rest of this section presenting the proof of Lemma 2.3.1, which parallels the analysis of the
‘power scheme’ algorithm of [15], which uses matrices of the form (AAT )qAΠ for a much smaller standard
Gaussian matrix Π (a random matrix with entries i.i.d distributed in N (0, 1)) to obtain matrices which
approximate the range of A.

The following five lemmas are stated in [15]. These first two lemmas give bounds on the expectation of
norms of Gaussian matrices and their pseudoinverses, and their proofs lie mostly out of the scope of this
paper.

Lemma 2.3.2 (Proposition 10.1, [15]). Let X ∈ Rm×k, Y ∈ R`×n, and let Π ∈ Rk×` be a matrix with
entries drawn i.i.d from N (0, 1). Then(

E[||XΠY||2F ]
)1/2

= ||X||F ||Y||F .

E[||XΠY||2] ≤ ||X||2||Y||F + ||Y||2||X||F .

Proof. For the first inequality, we have:

E[||XΠY||2F ] =

m∑
a=1

n∑
b=1

E


 k∑
i=1

∑̀
j=1

XaiΠijYjb

2
 =

m∑
a=1

n∑
b=1

k∑
i=1

∑̀
j=1

X2
aiY

2
jb = ||X||2F ||Y||2F .

For the second inequality, refer to [13].

Lemma 2.3.3 (Propositions A.4, A.5, A.6, [15]). Let k, p ≥ 2 be integers and let Π ∈ Rk×(k+p) be a matrix
with entries drawn i.i.d. from N (0, 1). Then(

E
[
||Π+||2F

])1/2
=
√
k/(p− 1)

E
[
||Π+||2

]
≤ e(

√
k + p)/p.
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The next two lemmas deal with powers of spectral norms of projection matrices.

Lemma 2.3.4 (Proposition 8.5, [15]). Let Q ∈ Rn×n be an symmetric projection, let D ∈ Rn×n be a
nonnegative diagonal matrix, and let t ≥ 1 be an integer. Then

||QDQ||t2 ≤ ||QDtQ||t2.

Proof. Suppose v ∈ Rn is a unit vector which satisfies

vT (QDQ)v = ||QDQ||2. (2.3)

Consider w = Qv/||Qv||2. Expanding,

||QDQ||2 ≥ wT (QDQ)w =
vTQT (QDQ)Qv

||Qv||22
=

vT (QDQ)v

||Qv||22
.

For (2.3) to be an equality, we must have ||Qv||2 = 1, so that Qv = v. Then

||QDQ||t2 = (vT (QDQ)v)t = (vTDv)t =

∑
j

v2
jDjj

t

≤
∑
j

v2
jD

t
jj = vTDtv = (Qv)TDtQv ≤ ||QDtQ||2,

where the middle inequality follows by Jensen’s inequality since t ≥ 1 and ||v||2 = 1.

Lemma 2.3.5 (Proposition 8.5, [15]). Let P ∈ Rn×n be an symmetric projection and let A ∈ Rn×m. For
any integer q ≥ 0,

||PA||2 ≤ ||P(AAT )qA||1/(2q+1)
2 .

Proof. Let A = UΣVT be the SVD, and compute

||PA||2(2q+1)
2 = ||PAATP||2q+1

2 = ||PUΣ2UTP||2q+1
2 = ||(UTPU)Σ2(UTPU)||2q+1

2 ,

where the last equality follows by unitary invariance. Note that (UTPU)2 = UTPU is a symmetric projec-
tion, so by applying the previous lemma we obtain that

||(UTPU)Σ2(UTPU)||2q+1
2 ≤ ||(UTPU)Σ2(2q+1)(UTPU)||2 = ||PUΣ2(2q+1)UTP||2

by unitary invariance. We finish by noting that

||PUΣ2(2q+1)UTP||2 = ||P(AAT )2(2q+1)P||2 = ||P(AAT )qA||22.

We will also need that standard Gaussian matrices have full rank almost surely.

Lemma 2.3.6. Let k, ` ≥ 1 be integers with k ≤ `, and let Π ∈ Rk×` be a standard Gaussian matrix. Then
rank(Π) = k with probability 1.

Proof. Let v1, . . . ,vk ∈ R` be the rows of Π. For 1 ≤ i ≤ k, conditioning on the Gaussian vectors v1, . . . ,vk,
the vector space Vi = span(v1, . . . ,vi−1) has positive codimension and thus has measure zero. Since the
distribution of the Gaussian vector vi is absolutely continuous and independent of v1, . . . ,vi−1, we have

P[vi ∈ Vi|v1, . . . ,vi−1) = 0.

Integrating over all v1, . . . ,vi−1, we obtain P[vi ∈ Vi] = 0, so that union bounding over i yields the claim.

The following lemma is similar to Corollary 10.10 in [15], which provides an analysis of the aforementioned
‘power scheme’ algorithm.
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Lemma 2.3.7. Let A ∈ Rm×n have rank ρ, and let 1 < k < ρ be an integer. Let s ≥ 2 be an integer
oversampling parameter, and let r = k+ s. Let Π ∈ Rn×r be a matrix with entries drawn i.i.d from N (0, 1).
Let q ≥ 0 be an integer, and let B = (AAT )qA, and let Y = BΠ. Then

E[||A− π2
Y,k(A)||2] ≤

(
1 +

√
k/(p− 1) + (e

√
k + p/p)

√
min(m,n)− k

)1/(2q+1)

||A−Ak||2.

Proof. Let π2
Y,k(A) = YXA and π2

Y,k(B) = YXB , where XA and XB are the matrices in condition 2.1 for
A and B respectively. Then by Lemma 2.2.4 we have that

||A− (YXA)(YXA)+A||2 ≤ ||A− (YXB)(YXB)+A||2. (2.4)

Write A − (YXB)(YXB)+A = (I − (YXB)(YXB)+)A||2. Then I − (YXB)(YXB)+ is a symmetric pro-
jection, so that by Lemma 2.3.5, we obtain

||A−(YXB)(YXB)+A||2 ≤ ||(I−(YXB)(YXB)+)(AAT )qA||1/(2q+1)
2 = ||(I−(YXB)(YXB)+)B||1/(2q+1)

2 .

Then combining another application of Lemma 2.2.4 with (2.4) yields

||A− π2
Y,k(A)||2 ≤ ||B− π2

Y,k(B)||1/(2q+1)
2 .

Taking expectations and using Holder’s inequality, we get

E[||A− π2
Y,k(A)||2] ≤

(
E[||B− π2

Y,k(B)||2]
)1/(2q+1)

.

Let B = UΣVT be the SVD of B, and let ρ′ = rank(B). Consider

Π1 = VT
k Π and Π2 = VT

ρ′−kΠ.

Since Gaussian matrices are rotationally invariant, VTΠ is also a standard Gaussian matrix. Thus, since
Π1 and Π2 are non-intersecting submatrices of VTΠ, they are independent standard Gaussian matrices. In
addition, by Lemma 2.3.6 Π1 has full rank k. Applying Lemma 2.2.7 and using

√
a2 + b2 ≤ a+ b, we obtain∣∣∣∣B− π2

Y,k(B)
∣∣∣∣
2
≤
∣∣∣∣Uρ′−kΣρ′−kV

T
ρ′−k

∣∣∣∣
2

+
∣∣∣∣Uρ′−kΣρ′−kV

T
ρ′−kΠ(VT

k Π)+
∣∣∣∣
2

= ||Σρ′−k||2 +
∣∣∣∣Σρ′−kΠ2Π

+
1

∣∣∣∣
2
.

We will now take expectations with respect to Π2 and then Π1. By Lemma 2.3.2,

E
Π2

[
∣∣∣∣Σρ′−kΠ2Π

+
1

∣∣∣∣
2
|Π1] = ||Σρ′−k||2

∣∣∣∣Π+
1

∣∣∣∣
F

+
∣∣∣∣Π+

1

∣∣∣∣
2
||Σρ′−k||F .

Note that ||Σρ′−k||F ≤
√

min(m,n)− k||Σρ′−k||2. Next, by Lemma 2.3.3, we have the two bounds

E[||Π+
1 ||F ] ≤ E[||Π+

1 ||2F ]1/2 ≤
√
k/(p− 1), and E[||Π+

1 ||2] = e
√
k + p/p.

Thus
E[
∣∣∣∣B− π2

Y,k(B)
∣∣∣∣
2
] ≤

(
1 +

√
k/(p− 1) + e

√
k + p/p

√
min(m,n)− k

)
||Σρ′−k||2.

Finally, expanding the definition of A, note that A = UΣ2q+1VT is the SVD of A, so that

||Σρ′k
||2 = ||B−Bk||2 = ||A−Ak||2q+1

2 .
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Proof of Lemma 2.3.1. Let Y be as in the previous lemma. It is easy to find q ≥ 0 such that the constant
of the the inequality in Lemma 2.3.7 is bounded above by 1 + ε/

√
2, so that

E[||A− π2
Y,k(A)||2] ≤ (1 + ε/

√
2)||A−Ak||2.

Let O be an orthonormal basis for the column space of Y. By taking square roots in Lemma 2.2.6 we have
that

||A−O(OTA)k||2 ≤
√

2||A− π2
Y,k(A)||2.

Let X consist of the right singular vectors of the matrix (OTA)k, and let E = A − AXXT . We can
write O(OTA)k = CXT for some matrix C. But since XT has orthonormal columns, AXXT is the best
approximation to A in the column space of X, so that

||E||2 = ||A−AXXT ||2 ≤ ||A−CXT || ≤
√

2||A− π2
Y,k(A)||2.



3 | Applications to Covariance Estimation

3.1 Introduction

In this chapter, we will follow the analyses of [32] and [26], which study the problem of how many times
one needs to sample a random matrix before one obtains a good spectral estimator for the matrix. More
concretely, let X ∈ Rn×n be a positive semidefinite random matrix. In order to estimate EX, one can use the
unbiased estimator 1

N

∑N
i=1 Xi, where the Xi are N independent samples of X. If we measure the goodness

of this estimator by its spectral error ∣∣∣∣∣
∣∣∣∣∣ 1

N

N∑
i=1

Xi − EX

∣∣∣∣∣
∣∣∣∣∣
2

,

how many of these samples do we need to get small spectral error ε? By dimensional reasons, one must
have that N ≥ n. However, are there general classes of distributions for which this bound is on the order of
N = O(n), disregarding factors of ε?

Note that if we take X = vvT for a random vector v of finite variance valued in Rn such that Ev = 0,
then EX is exactly the covariance matrix of v. As such, this problem is a generalization of the problem of
covariance estimation which was studied for isotropic vectors with bounded spectral norm in [23], obtaining
N = O(n log n), and for sub-exponential distributions in [1], obtaining N = O(n) and answering our question
in the affirmative. For an overview of further results concerning covariance estimation, we refer the reader
to [29].

Returning to the matrix setting, the following theorem proven in [32] holds for a much wider class of
distributions which includes the sub-exponential distributions. It shows that any distribution of symmetric
positive semidefinite matrices with finite (2 + ε)-moments needs only N = O(n) samples, and its proof
consists of a randomization of the barrier method of Chapter 1, yielding what the authors of [26] claim to
be a novel proof method in random matrix theory.

Notation In what follows, for random variables X with finite pth moment, we will denote the Lp norm
(E[|X|p])1/p by ||X||p. For a matrix A, we will denote its spectral (operator) norm by ||A||, dropping the
the usual subscript to avoid confusion. For a variable x, we will adopt the notation C(x) to represent the
value and existence of suitable constants dependent only on x.

Theorem 3.1.1. Let X ∈ Rn×n be symmetric and positive semidefinite, and let X = UDUT be its eigen-
decomposition, where U ∈ Rn×n is orthogonal and D ∈ Rn×n is diagonal. Suppose that U and D are
independent, and that the diagonal entries αi = Dii are independent. Suppose further that for some p > 2
we have for all i ∈ [n] that

Eαi = 1 and ||αi||p ≤ C(p).

Then for ε ∈ (0, 1) and
N ≥ C(p)ε−2p/(p−2) · n,

one has

E

∣∣∣∣∣
∣∣∣∣∣ 1

N

N∑
i=1

Xi − In

∣∣∣∣∣
∣∣∣∣∣ ≤ ε.

23
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3.2 Regularity Conditions

There is an even wider family of distributions for which N = O(n) samples suffice: those which satisfy the
following strong regularity condition.

Definition 3.2.1. Let X ∈ Rn×n be a random matrix. For η > 0, we say that X satisfies the strong
regularity condition (SRη) with constant Cη > 0 if

P (||PXP|| ≥ t) ≤ Cηt−1−η for all t > Cη rank(P), for all orthogonal projections P ∈ Rn×n.

We show that distributions with finite (2 + ε) moments satisfy the strong regularity condition. We will need
Rosenthal’s inequality [22] for sums of symmetric random variables:

Theorem 3.2.2 (Rosenthal’s inequality). Let X1, . . . , Xn be independent symmetric random variables. Then
for every 2 ≤ p <∞,

Mp ≤
∣∣∣∣∣∣∑Xi

∣∣∣∣∣∣
p
≤ C(p)Mp,

where
Mp = max

[(∑
||Xi||22

)1/2
,
(∑

||Xi||22
)1/p]

.

Lemma 3.2.3. Let X ∈ Rn×n be symmetric and positive semidefinite, and let X = UDUT be its eigen-
decomposition, where U ∈ Rn×n is orthogonal and D ∈ Rn×n is diagonal. Suppose that U and D are
independent, and that the diagonal entries αi = Dii are independent. Then if for some p > 2 and constant
C > 0 we have that for all i ∈ [n],

Eαi = 1 and ||αi||p ≤ C,

then X satisfies SRp/2−1.

Proof. We will show the following property for η = p/2− 1:

P (Tr[PX] ≥ t) ≤ Ct−1−η for all t > Cη rank(P), for all orthogonal projections P ∈ Rn×n. (3.1)

Note that this implies SRη since Tr[PX] = Tr[PXP] ≥ ||PXP|| by cyclic properties of trace. In addition,
since the trace is invariant under changes of basis, it suffices to assume that U = In, so that X = D.

Now, let P ∈ Rn×n be an orthogonal projection of rank k, so that Tr P = k and |Pii| ≤ 1 for each i. Then
we can write

P (Tr[PD] ≥ t) = P (Tr[P(D− I)] ≥ t− k) ≤ P (|Tr[P(D− I)]| ≥ t− k) ≤ (t− k)−p ||Tr[P(D− I)]|p]||pp ,

where the last inequality follows by Markov’s inequality. We can write Tr[P(D− I)] =
∑

Pii(αi− 1), where
the Pii(αi − 1) are independent symmetric random variables. Applying Rosenthal’s inequality, we obtain
that

||Tr[P(D− I)]|p]||pp ≤ max

[(∑
P2
ii E |αi − 1|2

)p/2
,
∑
|Pp

ii|E |αi − 1|p
]
.

Using |Pii| ≤ 1 and the moment condition of the αi, we obtain that

||Tr[P(D− I)]|p]||pp ≤ C(p)kp/2,

so that P (Tr[PD] ≥ t) ≤ (t−k)−pkp/2. Setting k = Dt for suitable constant D, we obtain property (3.1).

As a result, the following theorem implies Theorem 3.1.1.
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Theorem 3.2.4. Let X ∈ Rn×n be a positive semidefinite random matrix with EX = 1. Assume that X
satisfies SRη. Then, for ε ∈ (0, 1) and for

N ≥ C(η)ε−2−2/η · n,

one has

E

∣∣∣∣∣
∣∣∣∣∣ 1

N

N∑
i=1

Xi − In

∣∣∣∣∣
∣∣∣∣∣ ≤ ε.

It is also possible to matrices sampled from the log-concave distributions of [1] satisfy SR; see section 8 of
[32] for a reference.

The strong regularity condition is not necessary for the forthcoming statement of Proposition 3.3.1, and can
be replaced with a weaker regularity condition which deals with moments of certain inner products.

Definition 3.2.5. Let X ∈ Rn×n be a random matrix. For p > 1, we say that X satisfies the weak regularity
condition (WRp) if

||〈Xu,u〉||p ≤ C(p) for all unit vectors u ∈ Rn .

The following lemma shows that SR is indeed stronger than WR.

Lemma 3.2.6. Let X ∈ Rn×n be a symmetric positive definite random matrix satisfying SRη for some η > 0.
Then X also satisfies WRp for p = 1 + η > 1.

Proof. Let u ∈ Rn be a unit vector, and let P be the rank one orthogonal projection onto the span of u. By
SRη, P(||PXP|| ≥ t) ≤ Cηt−1−η for all t > Cη. By definition of P, we have that ||PXP|| = 〈Xu,u〉, and the
lemma follows by an integration of tails.

For explanations of the optimality of these regularity conditions, see Section 1.8 of [26].

3.3 Randomizing the Barrier Method

We rely on a randomized version of the barrier method to control the upper and lower eigenvalues of the
sample matrices AN =

∑N
i=1 Xi. Since we no longer have control over the magnitude or value of our

matrix updates, since each update is an independent random variable Xi drawn from a given distribution,
we will instead take our upper and lower shifts to be random variables and bound how these shifts behave
in expectation as the number of samples N increases.

We will control the the expectations of the upper and lower eigenvalues through two separate theorems.
Because of this, we will not need a lemma analogous to Lemma 1.2.6. We reiterate that we only need the
weaker regularity constraint WR to obtain the necessary bounds for the minimum eigenvalue, while we need
the strong regularity constraint SR to control the maximum eigenvalue.

Optimality of Regularity constraints

Theorem 3.3.1 (Expectation of minimum eigenvalue). Let Xi ∈ Rn×n be independent positive semidefinite
random matrices satisfying WRp with EXi = In, and let ε ∈ (0, 1). Then for

N ≥ C(p) · n · ε−
p−1
2p−1 ,

one has

Eλmin

(
N∑
i=1

Xi

)
≥ 1− ε.
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Theorem 3.3.2 (Expectation of maximum eigenvalue). Let Xi ∈ Rn×n be independent positive semidefinite
random matrices satisfying SRη with EXi = In, and let ε ∈ (0, 1). Then for

N ≥ C(η) · n · ε−2−2/η,

one has

Eλmax

(
N∑
i=1

Xi

)
≤ 1 + ε.

We will also need the following Chernoff-type bound:

Lemma 3.3.3. Let p ∈ (1, 2] and suppose X1, . . . , XN are independent (real-valued) positive random vari-
ables with EXi = 1 and the moment bound ||Xi||p ≤ C(p). Then

E

[∣∣∣∣∣ 1

N

N∑
i=1

Xi − 1

∣∣∣∣∣
]
≤ C(p)N−(p−1)/p.

Proof. Define centered random variables Zi = (Xi − 1)/N . Then we have:

E
∣∣∣∑Zi

∣∣∣ = E
∣∣∣∣∑(Zi − E

Z′i

Z ′i)

∣∣∣∣ ,
where Z ′i is an independent copy of Zi. By Jensen’s inequality and symmetrization for εi uniform independent
±1 Bernoullis,

E
∣∣∣∑Zi

∣∣∣ ≤ E
Zi,Z′i

∣∣∣∑(Zi − Z ′i)
∣∣∣ = E

Zi,Z′i,εi

∣∣∣∑(εiZi − εiZ ′i)
∣∣∣ ≤ 2

N
E

Xi,εi

∣∣∣∑ εiXi

∣∣∣ .
By Cauchy-Schwarz and two more applications of Jensen’s inequality we have

2

N
E

Xi,εi

∣∣∣∑ εiXi

∣∣∣ ≤ 2

N
E
[∑

X2
i

]1/2
≤ 2

N
E
[∑

Xr
i

]1/r
≤ 2

N

[∑
EXr

i

]1/r
≤ C(p)N−(p−1)/p.

These three results together yield a proof of Theorem 3.2.4.

Proof of Theorem 3.2.4. Let p = 1 + η/2, so that X satisfies WRp and SRη, and choose N greater than the
constraints in Theorems 3.3.1 and 3.3.2. Let Y be the average of the N samples Xi, given by

Y =
1

N

N∑
i=1

Xi.

We may define the random variables

Y
def
= ||Y − In|| ≤ ||Y − (Tr[Y]/n)In||+ ||(Tr[Y]/n)In − In||

def
= Y1 + Y2,

where the middle inequality follows by the triangle inequality. We will bound these terms separately. First,
note that

Y1 = λmax [Y − (Tr[Y]/n)In] = max [λmax(Y)− Tr[Y]/n,Tr[Y]/n− λmin(Y)] ≤ λmax(Y)− λmin(Y),

where the last inequality follows since both terms inside the max are positive and thus their sum is an upper
bound for their max. Taking expectations and using the bounds of Theorems 3.3.1 and 3.3.2 yields that
EY1 ≤ 2ε.
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Next, define scalar random variables Xi = Tr[Xi]/n, so that

Y2 = |Tr(Y)/n− 1| =

∣∣∣∣∣ 1

N

N∑
i=1

Xi − 1

∣∣∣∣∣ .
Furthermore, we have that

||Xi||p ≤
1

n

n∑
j=1

||〈Xiej , ej〉||p ≤ C(η)

by WRp with p = 1 + η/2, so that by Lemma 3.3.3 with parameter p← min(p, 2) and the bound on N given
by Theorem 3.3.1, we have EY2 = ε. Thus EY ≤ 3ε, and we are done by rescaling ε.

3.3.1 The Minimum Eigenvalue

We use the notation of Chapter 2 for the barrier potential function

Φ`(A) = Tr[(A− `I)−1]

and its upper bound εL ≥ Φ`(A). The following proposition implies Theorem 3.3.1.

Proposition 3.3.4. Suppose ` < λmin(A) and let X be a positive semidefinite random matrix satisfying WRp
for some p > 1 such that EX = In. Then if ε ∈ (0, 1) and

Φ`(A) ≤ εL = C(p) · εp/(p−1),

then there exists a shift random variable, δ, which is dependent on X and satisfies

`+ δ < λmin(A + X), Φ`+δ(A + X) ≤ Φ`(A), E[δ] ≥ 1− ε. (3.2)

Proof of Theorem 3.3.1. We begin with matrix A0 = 0 and deterministic lower barrier `0 = −n/εL. For
each t ∈ [N ], let At = At−1 + Xt. We apply Proposition 3.3.4 inductively: suppose that we have obtained
random shifts δ1, . . . , δt after summing samples X1, . . . ,Xt to obtain a matrix At. Conditioning on these
variables, we can apply the proposition with A = At to obtain a new shift δt+1 satisfying the conditions of
(3.2). After N steps, we have

E
δi

N∑
i=1

δi ≥ N(1− ε),

and thus Eλmin(An/N) ≥ 1/N ·
(
Eδi
∑N
i=1 δi

)
≥ 1− ε.

Aside from the random shift, the conditions of this proposition are almost identical to those in the lower
barrier shift of Lemma 1.2.5 in Chapter 1. However, we are not given a constant shift δL and must instead
find a suitable shift δ. We will give an explicit formula for such a shift and then prove that this choice of
shift is large enough, in the sense that E δ ≥ 1− ε.

Consider the quantity

L′A(δ,X) =
1

δ

Tr[N−2X]

Tr[N−2]
− Tr[N−1X]

def
=

1

δ
FA(δ,X)−GA(δ,X).

Then since δTr[N−2] ≤ Φ`+δ(A)−Φ`(A), Lemma 1.2.5 immediately implies the following corollary:

Corollary 3.3.5. Let ` ∈ R and δ > 0. Suppose `+ δ < λmin(A). Then if L′A(δ,X) ≥ 1, then

Φ`+δ(A + X) ≤ Φ`(A).
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We now enumerate some properties of the quantities FA(δ,X) and GA(δ,X) which will be useful later.

Lemma 3.3.6 (Moments of FA and GA). Suppose X ∈ Rn×n satisfies WRp for some p > 1 and EX = In.
Then the following moment bounds hold:

(a) EFA(0,X) = 1 and E[FA(0,X)p] ≤ Cp.

(b) EGA(0,X) = Φ`(A) ≤ εL and E[GA(0,X)p] ≤ CpεpL.

(c) P[FA(0,X) ≥ t] ≤ Cpt−p and P[GA(0,X) ≥ t] ≤ CpεpLt−p.

Proof. Since trace is linear and EX = In, it is immediate that EFA(0,X) = 1 and EGA(0,X) = Tr[(A −
`I)−1] = Φ`(A). Property WR implies that

||FA(0,X)||p =

∣∣∣∣∣∣∣∣∑n
i=1〈Xui,ui〉(λi − `)−2∑n

i=1(λi − `)−2

∣∣∣∣∣∣∣∣
p

≤
∑n
i=1 ||〈Xui,ui〉||p (λi − `)−2∑n

i=1(λi − `)−2
≤ C1/p

p .

||GA(0,X)||p =

∣∣∣∣∣
∣∣∣∣∣
n∑
i=1

〈Xui,ui〉
λi − `

∣∣∣∣∣
∣∣∣∣∣
p

≤
n∑
i=1

||〈Xui,ui〉||p
λi − `

≤
n∑
i=1

||〈Xui,ui〉||p
λi − `

≤ C1/p
p Φ`(A) ≤ C1/p

p εL.

Part (c) of the proposition follows from the above and Markov’s inequality.

Using these properties, the next two lemmas specify a good lower shift and calculate its expectation.

Lemma 3.3.7 (Explicit lower shift). Let t ∈ (0, 1). Let

δ =

{
(1− t)3FA(0,X) if FA(0,X) ≤ t/εL and GA(0,X) ≤ t,
0 otherwise.

Then `+ δ < λmin(A) and Φ`+δ(A + X) ≤ Φ`(A).

Proof. If δ = 0, then the lemma is immediate. Thus, suppose that FA(0,X) ≤ t/εU and GA(0,X) ≤ t. But
then δ = (1− t)3FA(0,X) ≤ (1− t)3t/εL < 1/εL, and thus 0 < 1− δεL < 1, so that

1

δ
FA(δ,X)−GA(δ,X) =

1

(1− t)3FA(0,X)
FA(δ,X)−GA(δ,X)

≥ (1− δεL)2

(1− t)3
− (1− δεL)−1GA(0, B)

≥ (1− t)2

(1− t)3
− t

1− t
= 1.

Lemma 3.3.8 (Expectation of random lower shift δ). E δ ≥ (1− t)3(1− 2Cpε
p−1
L t1−p).

Proof. Define a characteristic random variable as follows:

χA(X) =

{
0 if FA(0,X) ≤ t/εL and GA(0,X) ≤ t,
1 otherwise.

Then δ = (1− t)3FA(0,X)(1− χA(X)), and

||χA(X)||q = (EχA(X))1/q = (P [FA(0,X) > t/εL or GA(0,X) > t])1/q ≤
(
2Cpε

p
Lt
−p)1/q , (3.3)
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where the last inequality follows by a union bound and Markov’s inequality. Let q be such that 1/p+1/q = 1.
We then have the following series of inequalities:

E δ = (1− t)3 (EFA(0,X)− E[FA(0,X) · χA(X)])

= (1− t)3 (1− E[FA(0,X) · χA(X)]) (By Lemma 3.3.6)

≥ (1− t)3 (1− ||FA(0,X)||p · ||χA(X)||q]) (By Holder’s inequality)

≥ (1− t)3
(

1− ||FA(0,X)||p ·
(

2C1/q
p εp−1L t1−p

))
(By (3.3))

= (1− t)3
(

1− C1/p
p ·

(
2C1/q

p εp−1L t1−p
))

(By Lemma 3.3.6)

= (1− t)3(1− 2Cpε
p−1
L t1−p).

We are now ready to prove Proposition 3.3.4, which completes our analysis of the minimum eigenvalue.

Proof of Proposition 3.3.4. Take t = ε/4. Recalling the assumption εL = C(p)εp/(p−1), so that (1 −
2C(p)εp−1L t1−p = 1−O(ε), we obtain E δ ≥ 1− ε by suitable choice of constants.

3.3.2 The Maximum Eigenvalue

Recall the upper barrier potential
Φu(A) = Tr[(uI−A)−1]

and its upper bound εU ≥ Φu(A). The following proposition implies Theorem 3.3.2.

Proposition 3.3.9. Suppose λmax(A) < u, let X be a positive semidefinite random matrix satisfying MSRη
for some η > 0 such that EX = In, and let ε ∈ (0, 1). If

Φu(A) ≤ εU = C(η) · ε1+2/η,

there exists a shift random variable, δ, which is dependent on X and satisfies

λmax(A + X) < u, Φu+δ(A + X) ≤ Φu(A), E δ ≤ 1 + ε.

Proof of Theorem 3.3.2. The proof is once again inductive and is extremely similar to that of Theorem 3.3.1,
so we omit it here.

Our approach will be similar to that for the minimum eigenvalue. We recall the definition

UA(δ,B) =
Tr[M−2B]

Φu(A)− Φu+δ(A)
+ Tr[M−1B]

def
= P (δ,B) +Q(δ,B).

The deterministic upper barrier shift lemma, Lemma 1.2.4, immediately implies the following corollary:

Corollary 3.3.10. Let u ∈ R and δ > 0. Suppose λmax(A) < u. Then if UA(δ,B) ≤ 1, then

λmax(A + B) < u+ δ and Φu+δ(A + B) ≤ Φu(A).

Note that the denominator of P (δ,B) is not as simple as the denominator of F (δ,B) above; this is because
the required inequality on UA(δ,B) is an upper bound instead of a lower bound, so a similar substitution does
not help in this case. Because of this, the analysis of these two terms will turn out to be more complicated.
Instead of immediately finding a single feasible shift for both terms at once, we will find a shift for each of
P and Q separately and then take the sum of these two shifts as our total shift.
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For some choice of ε ∈ (0, 1), pick another parameter β = ε/8 to bound the second term Q(δ,B), and define
the following feasible shifts:

δP = min{δ : δ ∈ R+, P (δ,B) ≤ 1− β} and δQ = min{δ : δ ∈ R+, Q(δ,B) ≤ β}.

We fix A and u satisfying Proposition 3.3.9 in the following results. We will now estimate these separately
in Propositions 3.3.12 and 3.3.18, and choose the shift δ = δP + δQ, which will satisfy

Lemma 3.3.11. E δ = 1 + 4β + C(η)(εU/β)η/2 + C(η)εηUβ
−1−η.

Since β = ε/8, it is clear that for adequate choices of constants we obtain E δ ≤ 1 + ε, and thus this choice
of δ will be a feasible shift in Proposition 3.3.9.

Bounding δP

We will prove the following bound on the expectation of δP .

Proposition 3.3.12. E δP ≤ 1 + 4β + C(η)(εU/β)η/2.

Let ui be the unit eigenvectors of A, with corresponding eigenvalues λi. Then define

P (δ,B) =

∑
i〈Bui,ui〉(u+ δ + λi)

−2

δ
∑
i(u− λi)−1(u+ δ − λi)−1

≤ 1

δ

∑
i〈Bui,ui〉(u− λi)−1(u+ δ − λi)−1∑

i(u− λi)−1(u+ δ − λi)−1
def
=

1

δ
R(δ,B). (3.4)

We will need some bounds on the moment of the quantity R(δ,B).

Lemma 3.3.13 (Moments of R). The quantity R(δ,B) satisfies the following moment bounds:

ER(δ,B) = 1 and ER(δ,B)p ≤ C(η)

for p < 1 + η.

Proof. First, let ζi = (u− λi)−1(u+ δ − λi)−1. Then

ER(δ,B) =

∑
i E〈Bui,ui〉ζi∑

i ζi
=

∑
i ||ui||22ζi∑

i ζi
= 1,

since the ui are unit vectors. Next,

||R(δ,B)||p ≤
∑
i ||〈Bui,ui〉||pζi∑

i ζi
≤
∑
i C(η)ζi∑
i ζi

= C(η),

where the first inequality follows by Minkowski’s inequality and the second inequality follows from applying
the WRp condition, which is implied by SRη since p < 1 + η.

This allows us to bound a moment of δP , which will be useful later.

Lemma 3.3.14. E δ1+η/2P ≤ C(η).

Proof. We have that:

P[δP > δ] = P[P (δ,B) > 1− β] ≤ P[R(δ,B) > δ(1− β)] ≤Mη(t(1− β))−1−3η/4

where the middle inequality follows from (3.4) and the last inequality follows by Lemma 3.3.13 and Markov’s
inequality. Integrating now yields

E δ1+η/2P =

∫ ∞
0

P[δ
1+η/2
P > t]t dt =

∫ ∞
0

P[δP > s](1 + η/2)sη/2 ds

≤
∫ 1

0

(1 + η/2)t1/2 + C(η)(1− β)−1−3η/4
∫ ∞
1

t−1−η/4 ≤ C(η),

where in the last inequality we used that β ≤ 1/2.
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It will be helpful to further split δP into the two random variables

δP,1 =

{
δP , if R(0,B) ≤ β/4εU
0, otherwise

, and δP,2 =

{
δP , if R(0,B) > β/4εU

0, otherwise

By definition, E δP = E δP,1 + E δP,2, so we will bound the expectations of these variables separately in the
following two lemmas and sum the bounds to obtain Lemma 3.3.12.

Lemma 3.3.15 (Expectation of δP,1). E δP,1 ≤ 1 + 4β.

Proof. Suppose R(0,B) ≤ β/4εU , and let z = (1 + 4β)R(0,B). Then for each i we have (u − λi)
−1 ≤

Φu(A) ≤ εU , so that εU (u − λi) ≥ 1, and therefore u + z − λi ≤ (1 + zεU )(u − λi). By inspection of the
definition of R, we have that R(z,B) ≤ (1 + zεU )R(0,B), so that

P (z,B) ≤ 1 + zεU
z

R(0,B) ≤ β2 + β/4 + 1

1 + 4β
≤ 1− β.

But then δP,1 ≤ δP ≤ z = (1 + 4β)R(0,B). Taking expectations and using that ER(0,B) = 1 by Lemma
3.3.13 yields the desired bound.

We will need to use our bounds on the moments of R and δP to obtain a bound for δP,2.

Lemma 3.3.16 (Expectation of δP,2). E δP,2 ≤ C(η)(εU/β)η/2.

Proof. Let p = 1 + η/2, and let q be such that 1/p+ 1/q = 1. Note that

(δP,2/δP )q = δP,2/δP , and E[δP,2/δP ] = P[P (0,B) > β/4εU ].

We now have the following chain of inequalities:

E δP,2 = E[δP (δP,2/δP )] = E[δ
1+η/2
P ]1/p E[δP,2/δP ]1/q (By Holder’s inequality)

≤ C(η)E[δP,2/δP ]1/q (by Lemma 3.3.14)

= C(η)P[R(0,B) > β/4εU ]1/q

≤ C(η)
(
E[R(0,B)1+η/2](β/4εU )−1−η/2

)1/q
(By Markov’s inequality)

≤ C(η)(εU/β)η/2 (By Lemma 3.3.13).

Bounding δQ

Note that since B is symmetric and positive semidefinite it has a symmetric square root S = B1/2. Once
again, let ui be the unit eigenvectors of A, with corresponding eigenvalues λi. Let Ci = Suiu

T
i S, and

µi = εU (u− λi), so that

Q(δ,B) = Tr[SM−1S] =

∣∣∣∣∣
∣∣∣∣∣
n∑
i=1

Suiu
T
i S

u+ δ − λi

∣∣∣∣∣
∣∣∣∣∣ = εU

∣∣∣∣∣
∣∣∣∣∣
n∑
i=1

Ci

µi + εUδ

∣∣∣∣∣
∣∣∣∣∣ .

Letting ν = εUδ in the above formula, we obtain that finding δQ is equivalent to finding the minimum ν > 0
such that ∣∣∣∣∣

∣∣∣∣∣
n∑
i=1

Ci

µi + ν

∣∣∣∣∣
∣∣∣∣∣ ≤ β/εU . (3.5)

We will call this parameter µ. We note the following simple properties of Ci and µ.
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Lemma 3.3.17 (Properties of Ci and µ). The following properties hold: E ||Ci|| = 1,
∑n
i=1 1/µi ≤ 1, and

P

(∣∣∣∣∣
∣∣∣∣∣∑
i=S

Ci

∣∣∣∣∣
∣∣∣∣∣ ≥ t

)
= P(||PSBPS || ≥ t) ≤ C(η)t−1−η for all t ≥ C(η)|S| and |S| ⊆ [n],

where PS denotes the orthogonal projection onto the span of {ui}i∈S.

Proof. For the first property, we have that E ||Ci|| = E ||Suiu
T
i S|| = E ||Sui||2 = E〈Bui,ui〉. The second

property holds since
∑n
i=1 1/µi = ε−1U Φu(A) ≤ 1. The last property follows by appealing to the facts that B

satisfies SRη and that rank(PS) = |S| for all S ⊆ [n].

Proposition 3.3.18 (Expectation of δQ). E δQ ≤ C(η)εηUβ
−1−η.

Proof. We will give a bound on Eµ. Let L = β/εU . Let Ik = {i : 2k ≤ µi < 2k+1} and nk = |Ik|. By the
previous lemma, we have that ∑

k≥0

nk
2k

=

n∑
i=1

1

µi
≤ 1.

Let µ′ > 0 be minimum number such that

1

2k + µ′

∣∣∣∣∣
∣∣∣∣∣∑
i∈Ik

Ci

∣∣∣∣∣
∣∣∣∣∣ ≤ αK , where αk def

= min

(
L

2

nk
2k
,
L

2σ
2−kη/(2+2η)

)
and σ =

∑
k≥0

k−η/(2+2η),

where these constants are chosen so that
∑
αK
≤ L. We can evaluate∣∣∣∣∣

∣∣∣∣∣
n∑
i=1

Ci

µi + µ′

∣∣∣∣∣
∣∣∣∣∣ =

∣∣∣∣∣∣
∣∣∣∣∣∣
∑
k≥0

∑
i∈Ik

Ci

µi + µ′

∣∣∣∣∣∣
∣∣∣∣∣∣ ≤

∣∣∣∣∣∣
∣∣∣∣∣∣
∑
k≥0

1

2k + µ′

∑
i∈Ik

Ci

∣∣∣∣∣∣
∣∣∣∣∣∣ ≤

∑
k≥0

1

2k + µ′

∣∣∣∣∣
∣∣∣∣∣∑
i∈Ik

Ci

∣∣∣∣∣
∣∣∣∣∣ .

This is bounded above by
∑
k≥0 αk ≤ L = β/εU by the definition of µ′. But then by (3.5) we have µ ≤ µ′,

so it suffices to give a bound on Eµ′. We have for t ≥ 0 that

P[µ′ ≥ t] ≤
∑
k≥0

P

 1

2k + t

∣∣∣∣∣
∣∣∣∣∣∑
i∈Ik

Ci

∣∣∣∣∣
∣∣∣∣∣ > αk

 (by a union bound)

=
∑
k≥0

P

∣∣∣∣∣
∣∣∣∣∣∑
i∈Ik

Ci

∣∣∣∣∣
∣∣∣∣∣ > αk(2k + t)


≤
∑
k≥0

c

(αk(2k + t))1+η
(For c, η arising from Lemma 3.3.17).

Since we chose αk so that αk ≥ L/(2σ)2−kη/(2+2η), we have that

P[µ′ ≥ t] ≤ C(η)

L1+η

∑
k≥0

1

2−kη/2(2k + t)η+1
≤ C(η)

L1+η

∑
k≥0

1

(2k + t)η/2+1
.

Integrating tails to obtain expectation, we get that

Eµ′ ≤ C(η)

L1+η

∑
k≥0

∫ ∞
0

1

(2k + t)η/2+1
dt =

C(η)

L1+η

∑
k≥0

2−kη ≤ C(η)

L1+η
.

Recalling that µ = εUδQ yields the result.



4 | The Multivariate Barrier Method and Kadison-Singer

4.1 Introduction

The analysis in this chapter primarily follows that of Marcus-Spielman-Srivastava [19] and Tao [28]. The
aim of this chapter is to prove the following linear algebraic theorem, which we will see implies an affirmative
solution to the Kadison-Singer problem.

Theorem 4.1.1. Let ε > 0, and let A1, . . . ,Am ∈ Cn×n be independent random rank one Hermitian positive
semidefinite matrices taking finitely many values, such that

E
m∑
i=1

Ai = Id and E tr Ai ≤ ε for all i.

Then with positive probability, the largest root of the polynomial χ [
∑m
i=1 Ai] (x) is at most (1 +

√
ε)2. Equiv-

alently,

P

[∣∣∣∣∣
∣∣∣∣∣
m∑
i=1

Ai

∣∣∣∣∣
∣∣∣∣∣
2

≤ (1 +
√
ε)2

]
> 0.

The proof will use the technique of interlacing families developed by [18] to prove the following proposition,
which allows us to work with a deterministic characteristic polynomial instead of a random one.

Proposition 4.1.2. Let A1, . . . ,Am ∈ Cn×n be independent random rank one Hermitian positive semidef-
inite matrices taking finitely many values. Then with positive probability, the largest root of the polynomial
χ [
∑m
i=1 Ai] (x) is bounded above by the largest root of the expected characteristic polynomial Eχ [

∑m
i=1 Ai] (x)

While the expected characteristic polynomial is tough to analyze as given, we will show that it has a more
useful explicit formula:

Definition 4.1.3. Let A1, . . . ,Am ∈ Cn×n. The mixed characteristic polynomial of A1, . . . ,Am is given by

µ[A1, . . . ,Am](x) =

(
m∏
i=1

1− ∂i

)
det

(
xI +

m∑
i=1

ziAi

)∣∣∣∣∣
z1=···=zm=0

, (4.1)

where ∂i is shorthand for ∂zi .

Theorem 4.1.4. Let A1, . . . ,Am ∈ Cn×n be independent random Hermitian rank one positive semidefinite
matrices with finite support. Then

Eχ

[
m∑
i=1

Ai

]
(x) = µ[EA1, . . . ,EAm](x).

After proving this representation, the proof will proceed as follows: first, we will show that the mixed
characteristic polynomial is real rooted using the theory of real stablility, a multivariate generalization of
real rootedness. Then, we will prove the following theorem, which bounds the largest root of this polynomial

33
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by investigating how the operators (1−∂i) affect locations of roots. Note that these operators are reminiscent
of those found in (1.5). Not coincidentally, we will utilize multivariate generalizations of the barrier potentials
found in Chapter 1.

Theorem 4.1.5. Let A1, . . . ,Am ∈ Cn×n be Hermitian positive semidefinite matrices with
∑m
i=1 Ai = Id

and Tr[Ai] ≤ ε for each i. Then the largest root of µ[A1, . . . ,Am](x) is at most (1 +
√
ε)2.

Theorem 4.1.1 follows by applying Theorem 4.1.5 to the matrices EAi and subsequently applying Theorem
4.1.4 and Proposition 4.1.2.

4.1.1 The Mixed Characteristic Polynomial

In this section, we will given an elegant proof due to Tao [28] of the following deterministic version of
Theorem 4.1.4, which shows that the mixed characteristic polynomial of rank one matrices is equal to the
characteristic polynomial of their sum.

Theorem 4.1.6. Let A1, . . . ,Am ∈ Cd×d be rank one matrices with sum A. Then

χ[A](x) = µ[A1, . . . ,Am](x).

First, we show that the determinant is affine-multilinear under rank-one updates.

Lemma 4.1.7. Let A1, . . . ,Am,B ∈ Cd×d, and suppose that the Ai have rank one. The polynomial

(t1, . . . , tm) 7→ det

(
B +

m∑
i=1

tiAi

)

is affine-multilinear in the t1, . . . , tm, meaning that it is of the form

(t1, . . . , tm) 7→
∑

1≤i1<···<ij≤m

ai1,...,ij ti1 · · · tij

for some coefficients ai1,...,ij .

Proof. We first prove the lemma for m = 1. Suppose A ∈ Cd×d is rank one, so that A = uv∗ for column
vectors u,v ∈ Cd. For invertible matrices B, we have by Sylvester’s formula that

det(B + tuv∗) = det(B)(1 + tv∗B−1u),

which is affine-linear in t. Since invertible matrices are dense in the space of all matrices, the lemma follows
for all matrices B.

If m > 1, to show that the polynomial is affine-linear in ti, we can just freeze the other ti and reduce to the
case m = 1.

Proof of Theorem 4.1.6. Let p(t1, . . . , tm) = det(B + t1A1 + · · · + tmAm). By the previous lemma, it is
affine-multilinear, so the partial derivatives ∂ktip vanish for k ≥ 2. Taking the Taylor expansion to degree 1
in every ti, we obtain

p(t1, . . . , tm) =

(
m∏
i=1

(1 + ti∂zi)

)
p(z1, . . . , zm)|z1=···=zm=0.

Setting B = xI and ti = −1 in the above yields the theorem.

This theorem quickly implies Theorem 4.1.4, since we can expand the mixed characteristic polynomial as a
linear combination of terms which are multilinear in the Ai, which are jointly independent.
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4.1.2 Interlacing and Interlacing Families

Marcus, Spielman and Srivastava [18] developed the notion of interlacing families of polynomials, which have
the powerful property that at least one polynomial in the family has largest root which is at most the largest
root of the sum of the polynomials in the family.

We use the following notation: if f(x) is a real rooted univariate polynomial, we let lc(f) be the leading
coefficient of f , and we let lr(f) be the largest (most positive) root of f . We say that f is real rooted if all
of its coefficients and roots are real.

Definition 4.1.8. A real rooted polynomial g(x) = (x − αi) · · · (x − αn−1) interlaces another real rooted
polynomial f(x) = (x− βi) · · · (x− βn) if

β1 ≤ α1 ≤ β2 ≤ α2 ≤ · · · ≤ αn−1 ≤ βn.

We say that g(x) strictly interlaces f(x) if all of these inequalities are strict. We say that real rooted
polynomials f1(x), . . . , fk(x) have a common interlacing if there is a real rooted polynomial g(x) such that
g(x) interlaces fi(x) for each i.

Note that the definition of common interlacing may be rephrased as a series of inequalities on the roots of
the fi, but it is often convenient to actually find a polynomial g which interlaces the fi.

Definition 4.1.9. Let S1, . . . , Sm be finite sets, and for every assignment s1, . . . , sm ∈ S1 × · · · × Sm,
suppose fs1,...,sm(x) is a real rooted degree n polynomial with positive leading coefficient. For every partial
assignment s1, . . . , sk ∈ S1 × · · · × Sk, define

fs1,...,sk(x) =
∑
sj∈Sj

k+1≤j≤m

fs1,...,sm(x),

as well as
f∅(x) =

∑
sj∈Sj

1≤j≤m

fs1,...,sm(x).

These are the sums of all the fs given by the extensions of an assignment s1, . . . , sk.

We say that the polynomials {fs1,...,sm} are an interlacing family if for all and all partial assignments
s1, . . . sk ∈ S1 × · · · × Sk with k ∈ [m− 1], the polynomials

{fs1,...,sk,t}t∈Sk+1

have a common interlacing.

We now present some important properties of interlacing families. The next lemma shows that the largest root
of the sum of polynomials with a common interlacing bounds the largest root of at least one of them.

Lemma 4.1.10. Let f1, . . . , fk be real rooted polynomials of the same degree n with positive leading coef-
ficients, and let F = f1 + · · · + fk. If f1, . . . , fk have a common interlacing, then there exists an i such
that

lr(fi) ≤ lr(F ).

Proof. Let g be the common interlacing of the fi. Then for each i we have that fi(lr(g)) ≤ 0, since
lr g is between the second-largest and largest roots of fi and fi has positive leading coefficient. Thus,
F (lr(g)) ≤ 0, so that lr(F ) ≥ lr(g). But then there must be some i such that fi(lr(F )) ≥ 0, since otherwise
F (lr(F )) =

∑
fi(lr(F )) < 0, a contradiction. This fi must satisfy lr(fi) ≤ lr(F ).

Using the inductive nature of interlacing families, the following result generalizes the previous lemma and
yields the property of interlacing families mentioned at the beginning of this section.
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Theorem 4.1.11. Let S1, . . . , Sm be finite sets and let {fs1,...,sm} be an interlacing family of polynomials.
Then there exists some assignment s1, . . . , sm ∈ S1 × · · · × Sm such that

lr(fs1,...,sm) ≤ lr(f∅).

Proof. Proceed by induction. By the definition of an interlacing family, the set of polynomials {fs1}s1∈S1

has a common interlacing, and since their sum is f∅, Lemma 4.1.10 yields a choice of s1 such that lr(fs1) ≤
lr(f∅). Next, suppose that for some choice s1, . . . , sk ∈ S1 × · · · × Sk, lr(fs1,...,sk) ≤ lr(f∅). Then since∑
sk+1∈Sk+1

fs1,...,sk,sk+1
= fs1,...,sk , once again use Lemma 4.1.10 to choose sk+1 with

lr(fs1,...,sk) ≤ lr(f∅),

completing the induction.

Finally, the following lemma proven as Proposition 1.35 in [12] states that two polynomials having a common
interlacing is equivalent to a real rootedness condition on all of their convex combinations, and will be useful
for proving real rootedness. We omit the proof, which consists of tedious casework.

Lemma 4.1.12. Let f and g be monic univariate polynomials of the same degree n such that, for all constants
λ ∈ (0, 1), the linear combination λf + (1− λ)g is real rooted. Then f and g have a common interlacing.

4.1.3 Real Stable Polynomials

In order to prove the real rootedness criterion in Lemma 4.1.12, the authors of [18] and [19] use the theory
of real stability, a generalization of real rootedness to multivariate polynomials. As we will see, real stable
polynomials have useful closure and interlacing properties. Below we present results necessary for the proof
of Theorem 4.1.1, including a theorem of [7] concerning the real stability of polynomials given by certain
determinants; for a broader survey, see [30].

To ease notation, in what follows we let ∂i stand for ∂zi .

Definition 4.1.13. A polynomial p ∈ C[z1, . . . , zm] is stable if whenever Im(zi) > 0 for all i, p(z1, . . . , zm) 6=
0. A stable polynomial p ∈ R[z1, . . . , zm] is said to be real stable. Consequently, a univariate polynomial is
real stable if and only if it has real coefficients and roots.

We present two closure properties for real stable polynomials: closure under univariate restriction and
closure under certain differential operators. In order to prove some of these closure properties, we will need
the following theorem from complex analysis for so we can construct continuity arguments.

Theorem 4.1.14 (Hurwitz’ theorem). Let D be a domain in Cn and suppose that {fk} is a sequence of
nonvanishing analytic functions on D that converge to f uniformly on compact subsets of D. Then f is
either nonvanishing on D or else identically zero.

Lemma 4.1.15. Let p ∈ C[z1, . . . , zm] be real stable of degree d, and let t be real. Then p(z1, . . . , zm−1, t) ∈
C[z1, . . . , zm−1] is either real stable or identically zero.

Proof. Consider the polynomials pk = p(z1, . . . , zm−1, t+ i2−t), which are real stable since p is and converge
uniformly to p(z1, . . . , zm−1, t). Applying Hurwitz’ theorem on the upper half-plane of Cm−1, we obtain that
p(z1, . . . , zm−1, t) ∈ C[z1, . . . , zm−1] is either real stable or identically zero.

We next establish closure under the family of operators 1− ∂i.

Lemma 4.1.16. Let p ∈ C[z1, . . . , zm] be real stable of degree d. Then (1− ∂i)p(z) is also real stable.
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Proof. Fix z1, . . . , zm−1, and let g(z) = p(z1, . . . , zm−1, z). It suffices to show that p(z) − p′(z) is stable if
p(z) is stable. Factoring, p(z) = a

∏d
i=1(z − αi) for some αi with nonpositive imaginary part, we can write

p(z)− p′(z) = p(z)

(
1−

d∑
i=1

(z − αi)−1
)
.

But then if z has positive imaginary part, then (z − αi) has positive imaginary part and (z − αi)−1 has
negative imaginary part for all i, so that the sum has nonzero imaginary part. Thus if p(z) is stable, then
p(z)− p′(z) is stable, and we are done.

In order to have a starting point for using these closure properties, we show that the term at the heart of
equation (4.1) is itself a real stable polynomial.

Lemma 4.1.17 (Proposition 2.4, [7]). Let A1, . . . ,Am ∈ Rn×n be positive semidefinite matrices, and let
B ∈ Cn×n be Hermitian. Then the polynomial

f(z1, . . . , zn) = det

(
m∑
i=1

ziAi + B

)

is real stable or identically zero.

Proof. By a continuity argument using Hurwitz’ theorem on the upper half-plane (taking limits, say, of
positive definite Aik → Ai), we can reduce to the case that all of the Ai are positive definite. Let z(t) = α+λt
with α ∈ Rn, λ ∈ Rn+, and t ∈ C. Then C =

∑
i λiAi is positive definite, and thus has both an inverse and

a square root. Let H be the Hermitian matrix given by H =
∑
i αiAi + B. Substituting, we may write

f(z(t)) = det

(
m∑
i=1

(αi + λit)Ai + B

)
= det (tC + H) = det(C) det(tI + C−1/2HC−1/2),

where the last equality follows by Sylvester’s formula. But then f(z(t)) is a constant multiple of the charac-
teristic polynomial of the Hermitian matrix C−1/2HC−1/2, and thus must have all real zeros. Since α and
λ were arbitrary, we conclude that f(z1, . . . , zn) is either real stable or identically zero.

Applying the above lemmas to the representation of the mixed characteristic polynomial given in Theorem
4.1.4, we can conclude that it is real rooted.

Corollary 4.1.18. Let A1, . . . ,Am ∈ Cn×n be positive semidefinite and Hermitian. Then µ[A1, . . . ,Am](x)
is real rooted.

Proof. By taking xI as an extra Ai and setting B = 0 in Lemma 4.1.17, we get that the multivariate
polynomial

det

(
xI +

m∑
i=1

ziAi

)
is real stable. The closure properties of Lemmas 4.1.15 and 4.1.16 imply that µ[A1, . . . ,Am](x) is real stable;
since it is univariate, it is real rooted.

We now have all we need to prove Proposition 4.1.2. Suppose that Ai may take the values Xi,ji for ji ∈ [`i].
We will show that the polynomials

fj1,...,jk =

(
k∏
i=1

pi,ji

)
· E
Ak+1,··· ,Am

χ

[
k∑
i=1

Xi,ji +

m∑
i=k+1

Ai

]
(x)

form an interlacing family.
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Proof of Proposition 4.1.2. Fix k ∈ [m] and j1, . . . , jk−1 ∈ [l1]× · · · × [lk−1]. We must show for all s, t ∈ [lk]
that fj1,...,jk−1,s and fj1,...,jk−1,t have a common interlacing.

By Lemma 4.1.12, we only need to show that for every λ ∈ [0, 1],

pλ(x) = λqj1,...,jk−1,s(x) + (1− λ)fj1,...,jk−1,t(x)

is real rooted. Let Yk be the random vector which equals Xk,s with probability λ and Xk,t with probability
1− λ. We may then factor this into the expectation as:

pλ(x) =

(
k−1∏
i=1

pi,ji

)
· E
Yk,Ak+1,··· ,Am

χ

[
k−1∑
i=1

Xi,ji + Yk +

m∑
i=k+1

Ai

]
(x).

But then by Theorem 4.1.4, pλ(x) is a constant multiple of a mixed characteristic polynomial, and by
Corollary 4.1.18 must be real rooted.

Thus the fj1,...,jk form an interlacing family. Note that f∅ = E[
∑m
i=1 Ai], so that the result follows by

Theorem 4.1.11.

4.2 The Multivariate Barrier Method

We will first define a multivariate polynomial whose restriction yields the mixed characteristic polyno-
mial.

Lemma 4.2.1. Let A1, . . . ,Am ∈ Cd×d be Hermitian positive semidefinite matrices with
∑m
i=1 Ai = I, and

define

Q(y1, . . . , ym) =

(
m∏
i=1

1− ∂yi

)
det

(
m∑
i=1

yiAi

)
.

Then
µ[A1, . . . ,Am](x) = Q(x, . . . , x).

Proof. For differentiable f , we have by the chain rule that ∂yi(f(yi))|yi=zi+x = ∂zif(zi + x). The lemma
follows by applying this relation to equation (4.1).

Given this lemma, it is apparent that some sort of upper bound on the roots of Q will lead to an upper
bound on the roots of the mixed characteristic polynomial. More specifically, given a real stable polynomial
p ∈ C[z1, . . . , zm], we will say that a real vector z = (z1, . . . , zm) ∈ Rm is above the roots of p if p is positive
on the real orthant

{(y1 . . . , ym) : yi ≥ xi for all i ∈ [m]},

and we will show that (1+
√
ε)2 ·1 is above the roots of Q, so that the largest root of the mixed characteristic

polynomial is at most (1 +
√
ε)2.

In order to control the positions of the (real) roots of Q, we will use multivariate generalizations of the
barrier functions in Chapter 1.

Definition 4.2.2. Let p ∈ C[z1, . . . , zm] be real stable and let z lie above the roots of p. Define the univariate
restriction qz,i(t) = p(z1, . . . , zi−1, t, zi+1, . . . , zm). Then the barrier function of p in coordinate i at z is given
by

Φip(z) = ∂i(log p(z)) =
∂ip(z)

p(z)
=
q′z,i(zi)

qz,i(zi)
=

r∑
j=1

1

zi − λj
,

where λ1, . . . , λr are the roots of qz,i, which are all real by closure properties. Note that the barrier function
in a certain coordinate takes the same form as the univariate barrier functions in Chapter 1.
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The following is a useful ‘commutation’ relation.

Lemma 4.2.3. Let p ∈ C[z1, . . . , zm] be real stable. Then ∂jΦip = ∂iΦ
j
p.

Proof. We have ∂jΦip = ∂j∂i log p = ∂i∂j log p = ∂iΦ
j
p.

The next lemma shows that the multivariate barrier functions are are monotonic and convex in every co-
ordinate. We make use of the following theorem of of [6], which gives a characterization of all real stable
bivariate polynomials.

Lemma 4.2.4 (Essentially Corollary 6.7, [6]). If p(z1, z2) is a bivariate real stable polynomial of degree
exactly d, then there exist positive semidefinite matrices A,B ∈ Rd×d and a symmetric matrix C ∈ Rd×d
such that

p(z1, z2) = ± det(z1A + z2B + C).

Furthermore, we can take A + B to be the identity.

We will also need the well-known Jacobi determinant formula

∂t det(X + tY) = tr[(X + tY)−1Y] det(X + tY). (4.2)

Lemma 4.2.5. Suppose p is real stable and z is above the roots of p. Then for all i, j ≤ m and δ ≥ 0, the
barrier function of p in coordinate i satisfies:

(−1)k∂kj Φip(z) ≥ 0 (4.3)

for k = 0, 1, 2. In particular, it is nonnegative, monotonic, and convex in every coordinate.

Proof. Nonnegativity follows directly frmom the assumption z is above the roots of p, so we focus on
monotonicity and convexity.

Suppose that i = j, and recall the the definitions of the univariate restrictions qz,i(zi) =
∏r
k=1(zi − λk).

Then the barrier function in coordinate i is given by Φip(z) =
∑r
k=1

1
zi−λk

. We focus on each term of this
sum. Since zi is above the roots of p, we have that zi > λk, so it is clear that term (zi−λ)−1 decreases as zi
increases. Taking its second derivative, we obtain ∂2i (zi − λk)−1 = 2(zi − λk)−3 > 0, which yields convexity.

Now, suppose that i 6= j. Without loss of generality, by renumbering and fixing all of the other variables we
can assume that p takes the form p(z1, z2). Suppose the point (z1, z2) is above the roots of p. By Lemma
4.2.4, there are positive semidefinite symmetric A,B with A + B = I and a symmetric matrix C such
that p(z1, z2) = ±det(z1A + z2B + C). The sign of p(z1, z2) must be positive, since for sufficiently large t,
p(t, t) = det(tI + C) will be positive and there are no roots in the real orthant above (z1, z2).

By the Jacobi determinant formula (4.2), we have

Φ1
p(z1, z2) =

det(z1A + z2B + C) Tr[(z1A + z2B + C)−1A]

det(z1A + z2B + C)
= Tr[(z1A + z2B + C)−1A].

Let M = z1A+z2B+C. Then we claim that the symmetric matrix M is positive definite; suppose that it is
not, so that it has a nonpositive eigenvalue −λ ≤ 0. But then p(z1 +λ, z2 +λ) = det(M +(−λ)(A+B)) = 0,
a contradiction to the assumption that (z1, z2) is above the roots of p. Thus M is positive definite, and M
has an invertible square root M1/2. We can expand

Φ1
p(z1, z2 + δ) = Tr[(M + δB)−1A] = Tr[M−1/2(O + δM−1/2BM−1/2)−1M−1/2A]

= Tr[(I + δM−1/2BM−1/2)−1M−1/2AM−1/2]

= Tr[(I− δ ·X + δ2 ·X2 +O(δ3))Y]

= Tr[Y]− δTr[XY] + δ2 Tr[X2Y] +O(δ3)
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for the positive semidefinite matrices X = M−1/2BM−1/2 and Y = M−1/2AM−1/2. In the second to last
equality, we expanded (I + X)−1 as a power series. Since the sign of the first-order term in δ is negative and
the sign of the second-order term in δ is positive, we establish montonicity and convexity.

A stability bound of the form Φip(z) < 1 combined with the monotonic (k = 0) properties of the barrier
function in Lemma 4.2.5 lets us argue that applying operators of the form (1 − ∂i) to some real stable
polynomial p preserves vectors which are above the roots of p.

Corollary 4.2.6. Let p ∈ C[z1, . . . , zm] be real stable, and suppose z ∈ Rm is above the roots of p and
Φip(z) < 1. Then z is above the roots of p− ∂ip.

Proof. Suppose y is above z. Note that p(y)− ∂ip(y) only vanishes if p(y) = ∂ip(y), which is equivalent to
Φip(y) = 1. But since y is above z, by the monotonicity condition in Lemma 4.2.5 this can never happen.

The next lemma shows that in order to maintain this stability bound in some coordinate, we only need to
shift our bound on the roots of p by a small amount in that coordinate.

Lemma 4.2.7. Let p ∈ C[z1, . . . , zm] be real stable with z ∈ Abovep, and δ > 0 satisfies

Φjp(z) ≤ 1− 1/δ.

Then for all i ∈ [m],
Φip−∂jp(z + δej) ≤ Φip(z).

Proof. By the previous corollary, we have z is above the roots of p− ∂jp, and thus so is z + δej . Expanding
the operator Φip−∂jp in the domain above the roots of p− ∂jp, we have that

Φip−∂jp = ∂i log(p− ∂jp) = ∂i log
[
p(1− Φjp)

]
= ∂i log p+ ∂i log(1− Φjp) = Φip +

∂iΦ
j
p

1− Φjp
.

We want to show that Φip−∂1p(z + ∂e1) ≤ Φip(z). Using the above, this is equivalent to

Φip(z + δe1)−
∂1Φip(z + δe1)

1− Φ1
p(z + ∂e1)

≤ Φip(z).

By the convexity property in Lemma 4.2.5, −∂jΦip(z + δej) ≤ Φip(z)−Φip(z + ∂ej), so that it is sufficient to
show that

−
∂jΦ

i
p(z + δej)

1− Φ1
p(z + ∂ej)

≤ −δ · ∂jΦip(z + δej).

The term −∂jΦip(z + δej) = −∂iΦjp(z + δej) by Lemma 4.2.3 and is nonnegative by Lemma 4.2.5. If it is
zero, we are done, so assuming it is positive, canceling and rearranging yields that the previous inequality is
equivalent to

1− 1/δ ≥ Φip(z + δej),

which is implied by the monotonicity property in Lemma 4.2.5 and the assumption that Φjp(z) ≤ 1−1/δ.

We are now able to complete the proof of Theorem 4.1.5.

Proof of Theorem 4.1.5. Set

p(y1, . . . , ym) = det

(
m∑
i=1

yiAi

)
.
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Let t = ε+
√
ε > 0, and note that p(t1) = det(tId) > 0, so that t1 is above the roots of p since the Ai, are

positive semidefinite. Using the Jacobi Determinant formula, write

Φip(t1) =
∂ip(t1)

p(t1)
= Tr

(t m∑
i=1

Ai

)−1
Ai

 = Tr[Ai]/t ≤ ε/(ε+
√
ε).

For each k ∈ [m], let

pk(y) =

(
k∏
i=1

1− ∂i

)
p(y).

Let x(0) = t1, and let x(i) = x(i−1) + δei for each 1 ≤ i ≤ m. Proceed by induction on i. The monotonicity
properties in Lemma 4.2.5 imply that Φipk(x(k)) ≤ Φip(t1), so that by Corollary 4.2.6 we have that x(k)

is above the roots of pk. In particular, we have that x(m) = (t + δ)1 is above the roots of pm. Since
µ[A1, . . . ,Am](x) = pm(x1) by Lemma 4.2.1, the largest root of µ[A1, . . . ,Am](x) is at most t + δ =
(1 +

√
ε)2.

4.3 The Kadison-Singer Problem

The original form of the Kadison-Singer problem [16] asked “whether each pure state on the algebra of
bounded diagonal operators on `2 has a unique extension to a pure state on B(`2), the algebra of all bounded
operators on `2.” It was one of the core open problems in operator theory until its solution by [19], and much
research had been done to show its equivalence with important results across many spheres of mathematics.
For a survey covering the problem, its various formulations, and its implications, see [9].

In this section, we show how Theorem 4.1.4 implies Weaver’sKSr conjecture [31], a combinatorial form of the
Kadison-Singer problem lying at the heart of discrepancy theory. The conjecture is stated as follows:

Theorem 4.3.1 (Conjecture KSr). There exist universal constants N ≥ 2 and ε > 0 such that the following
holds. Let v1, . . . , vn ∈ Ck satisfy ||v1||2 ≤ 1 for all i, and suppose that∑

i

|〈u, vi〉|2 ≤ N

for every unit vector u ∈ Ck. Then there exists a partition X1, . . . , Xr of {1, . . . , n} such that∑
i∈Xj

|〈u, vi〉|2 ≤ N − ε

for every unit vector u ∈ Ck and all j.

Due to results of Akemann and Anderson [3] which require deep operator theory, in order to show that
Conjecture KSr implies the Kadison-Singer problem it is sufficient to show that it implies the following
proposition.

Proposition 4.3.2 (Part of Theorem 1, [31]). Let P ∈ Cn×n be an orthogonal projection with max Pii ≤
1/N . Then there exist diagonal projections Q1, . . . ,Qr ∈ Cn×n such that

∑
Qj = In and ||QjPQj || ≤

1− ε/N for all j.

Reduction from KSr. Suppose Conjecture KSr holds for some r,N , and ε. Let P ∈ Cn×n be an orthogonal
projection and let ρ = rank(P). Let vi =

√
N · Pei for i ∈ [n], so that ||vi||22 = N ||Pei||22 = N〈Pei, ei〉 ≤

N max Pii ≤ 1. In addition, for any unit vector u ∈ im(P),∑
i

|〈u,vi〉|2 =
∑
i

|〈u,
√
NPei〉|2 = N

∑
i

|〈u, ei〉|2 = N.
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Restricting to the subspace im(P) and invoking Conjecture KSr, we obtain a partition X1, . . . , Xr of [n]
such that ∑

i∈Xj

|〈u, vi〉|2 ≤ N − ε

for every unit vector u ∈ im(P) and all j. For 1 ≤ j ≤ r, let Qj ∈ Cn×n be the projection which zeroes out
coordinates not in Xj : Qjek = 1 if k ∈ Xj and Qjek = 0 otherwise, so that

∑
j Qj = In. Then for any unit

vector u ∈ im(P), using that P and Qj are self-adjoint,

||QjPu||22 =
∑
i

|〈QjPu, ei〉|2 =
∑
i

|〈u,PQjei〉|2 = 1/N
∑
i∈Xj

|〈u,vi〉|2 ≤ 1− ε/N.

Thus ||QjPQj || = ||QjP||2 ≤ 1− ε/N for all j.

Finally, we now show that Theorem 4.1.1 implies the KS2 conjecture. Marcus, Spielman and Srivastava
prove a slightly stronger version:

Proposition 4.3.3. Let u1, . . . ,un be column vectors in Cd such that
∑

uiu
∗
i = I and ||ui||2 ≤ L for all i.

Then there exists a partition of {1, . . . , n} into sets X1 and X2 such that∣∣∣∣∣∣
∣∣∣∣∣∣
∑
i∈Xj

uiu
∗
i

∣∣∣∣∣∣
∣∣∣∣∣∣ ≤ (1 +

√
2L)2

2
.

Reduction to KS2. Let N = 18, let ui = vi/
√
N so that

∑
uiu

∗
i = I, and let L = 1/N . This yields KS2 for

ε = 2.

Proof. Let w1, . . . ,wn ∈ C2d be random column vectors such that

wi =

[√
2ui
0

]
or wi =

[
0√
2ui

]
each w.p. 1/2.

Note that
n∑
i=1

Ewiw
∗
i =

n∑
i=1

[
uiu

∗
i 0

0 uiu
∗
i

]
= I

and E ||wi||2 = 2||ui||2 ≤ 2L, so that the conditions of Theorem 4.1.1 apply for the matrices Ai = uiu
∗
i .

Applying it with ε = 2L, we obtain that there exists a subset X1 ∈ {1, . . . , n} such that, letting X2 =
{1, . . . , n} \X1: ∣∣∣∣∣

∣∣∣∣∣∑
i∈X1

[√
2ui
0

] [√
2ui
0

]∗
+
∑
i∈X2

[
0√
2ui

] [
0√
2ui

]∗∣∣∣∣∣
∣∣∣∣∣ ≤ (1 +

√
2L)2.

Rearranging, this bounds each of the terms as follows:∣∣∣∣∣
∣∣∣∣∣∑
i∈X1

[
ui
0

] [
ui
0

]∗∣∣∣∣∣
∣∣∣∣∣ ≤ (1 +

√
2L)2

2
and

∣∣∣∣∣
∣∣∣∣∣∑
i∈X2

[
0
ui

] [
0
ui

]∗∣∣∣∣∣
∣∣∣∣∣ ≤ (1 +

√
2L)2

2

Since ∣∣∣∣∣
∣∣∣∣∣∑
i∈X1

[
ui
0

] [
ui
0

]∗∣∣∣∣∣
∣∣∣∣∣ =

∣∣∣∣∣
∣∣∣∣∣∑
i∈X1

uiu
∗
i

∣∣∣∣∣
∣∣∣∣∣ and

∣∣∣∣∣
∣∣∣∣∣∑
i∈X2

[
0
ui

] [
0
ui

]∗∣∣∣∣∣
∣∣∣∣∣ =

∣∣∣∣∣
∣∣∣∣∣∑
i∈X2

uiu
∗
i

∣∣∣∣∣
∣∣∣∣∣ ,

the claim follows.
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