3 research outputs found

    General criteria for the study of quasi-stationarity

    Get PDF
    For Markov processes with absorption, we provide general criteria ensuring the existence and the exponential non-uniform convergence in total variation norm to a quasi-stationary distribution. We also characterize a subset of its domain of attraction by an integrability condition, prove the existence of a right eigenvector for the semigroup of the process and the existence and exponential ergodicity of the Q-process. These results are applied to one-dimensional and multi-dimensional diffusion processes, to pure jump continuous time processes, to reducible processes with several communication classes, to perturbed dynamical systems and discrete time processes evolving in discrete state spaces.Comment: Updated bibliograph

    Spectral theory for random Poincaré maps

    No full text
    58 pagesInternational audienceWe consider stochastic differential equations, obtained by adding weak Gaussian white noise to ordinary differential equations admitting N asymptotically stable periodic orbits. We construct a discrete-time, continuous-space Markov chain, called a random Poincaré map, which encodes the metastable behaviour of the system. We show that this process admits exactly N eigenvalues which are exponentially close to 1, and provide expressions for these eigenvalues and their left and right eigenfunctions in terms of committor functions of neighbourhoods of periodic orbits. The eigenvalues and eigenfunctions are well-approximated by principal eigenvalues and quasistationary distributions of processes killed upon hitting some of these neighbourhoods. The proofs rely on Feynman–Kac-type representation formulas for eigenfunctions, Doob's h-transform, spectral theory of compact operators, and a recently discovered detailed-balance property satisfied by committor functions

    Spectral theory for random Poincaré maps

    No full text
    Nous nous intéressons à des équations différentielles stochastiques obtenues en perturbant par un bruit blanc des équations différentielles ordinaires admettant N orbites périodiques asymptotiquement stables. Nous construisons une chaîne de Markov à temps discret et espace d’états continu appelée application de Poincaré aléatoire qui hérite du comportement métastable du système. Nous montrons que ce processus admet exactement N valeurs propres qui sont exponentiellement proches de 1 et nous donnons des expressions pour ces valeurs propres et les fonctions propres associées en termes de fonctions committeurs dans les voisinages des orbites périodiques. Nous montrons également que ces valeurs propres sont bien séparées du reste du spectre. Chacune de ces valeurs propres exponentiellement proche de 1 est également reliée à un temps d’atteinte de ces voisinages. De plus, les N valeurs propres exponentiellement proches de 1 et fonctions propres à gauche et à droite associées peuvent être respectivement approchées par des valeurs propres principales, des distributions quasi-stationnaires, et des fonctions propres principales à droite de processus tués quand ils atteignent ces voisinages. Les preuves reposent sur une représentation de type Feynman–Kac pour les fonctions propres, la transformée harmonique de Doob, la théorie spectrale des opérateurs compacts et une propriété de type équilibré détaillé satisfaite par les fonctions committeurs.We consider stochastic differential equations, obtained by adding weak Gaussian white noise to ordinary differential equations admitting N asymptotically stable periodic orbits. We construct a discrete-time,continuous-space Markov chain, called a random Poincaré map, which encodes the metastable behaviour of the system. We show that this process admits exactly N eigenvalues which are exponentially close to 1,and provide expressions for these eigenvalues and their left and right eigenfunctions in terms of committorfunctions of neighbourhoods of periodic orbits. We also provide a bound for the remaining part of the spectrum. The eigenvalues that are exponentially close to 1 and the right and left eigenfunctions are well-approximated by principal eigenvalues, quasistationary distributions, and principal right eigenfunctions of processes killed upon hitting some of these neighbourhoods. Each eigenvalue that is exponentially close to 1is also related to the mean exit time from some metastable neighborhood of the periodic orbits. The proofsrely on Feynman–Kac-type representation formulas for eigenfunctions, Doob’s h-transform, spectral theory of compact operators, and a recently discovered detailed balance property satisfied by committor functions
    corecore