22,486 research outputs found

    Slave-rotor mean field theories of strongly correlated systems and the Mott transition in finite dimensions

    Full text link
    The multiorbital Hubbard model is expressed in terms of quantum phase variables (``slave rotors'') conjugate to the local charge, and of auxiliary fermions, providing an economical representation of the Hilbert space of strongly correlated systems. When the phase variables are treated in a local mean-field manner, similar results to the dynamical mean-field theory are obtained, namely a Brinkman-Rice transition at commensurate fillings together with a ``preformed'' Mott gap in the single-particle density of states. The slave- rotor formalism allows to go beyond the local description and take into account spatial correlations, following an analogy to the superfluid-insulator transition of bosonic systems. We find that the divergence of the effective mass at the metal- insulator transition is suppressed by short range magnetic correlations in finite-dimensional systems. Furthermore, the strict separation of energy scales between the Fermi- liquid coherence scale and the Mott gap found in the local picture, holds only approximately in finite dimensions, due to the existence of low-energy collective modes related to zero-sound.Comment: 16 pages, 12 figure

    Electron-phonon interactions on a single-branch quantum Hall edge

    Full text link
    We consider the effect of electron-phonon interactions on edge states in quantum Hall systems with a single edge branch. The presence of electron-phonon interactions modifies the single-particle propagator for general quantum Hall edges, and, in particular, destroys the Fermi liquid even at integer filling. The effect of the electron-phonon interactions may be detected experimentally in the AC conductance or in the tunneling conductance between integer quantum Hall edges.Comment: 9 pages (revtex) + one postscript file with 2 figures. A complete postscript file with all figures + text (5 pages) is available from http://FY.CHALMERS.SE/~eggert/fqh.ps or by request from [email protected]

    BCS pairing in Fermi systems with several flavors

    Full text link
    Motivated by the prospect of Bardeen-Cooper-Schrieffer (BCS) pairing in cold fermionic gases we analyze the superfluid phase of 3 fermionic flavors in the attractive Hubbard model. We show that there are several low--lying collective pairing modes and investigate their damping due to the partially gapless nature of the single-particle spectrum. Furthermore we analyze how these modes show up in the density response of the system. Apart from the Anderson-Bogoliubov phase mode of the pairing between two flavors, the dynamical structure factor contains signatures of the gapless third flavor. This picture is found to be robust against perturbations that break the global SU(3)-symmetry of the Hamiltonian.Comment: 13 pages, 6 figure

    Absolute spectral gaps for infrared light and hypersound in three-dimensional metallodielectric phoxonic crystals

    Get PDF
    By means of full electrodynamic and elastodynamic multiple-scattering calculations we study the optical and acoustic properties of three-dimensional lattices of metallic nanospheres implanted in a dielectric host. Our results show that such structures exhibit omnidirectional spectral gaps for both telecom infrared light and hypersound, with relatively low absorptive losses. This class of dual phoxonic band-gap materials is an essential step toward the hypersonic modulation of light and could lead to the development of efficient acousto-optical devices

    Accelerated Carrier Recombination by Grain Boundary/Edge Defects in MBE Grown Transition Metal Dichalcogenides

    Full text link
    Defect-carrier interaction in transition metal dichalcogenides (TMDs) play important roles in carrier relaxation dynamics and carrier transport, which determines the performance of electronic devices. With femtosecond laser time-resolved spectroscopy, we investigated the effect of grain boundary/edge defects on the ultrafast dynamics of photoexcited carrier in MBE grown MoTe2 and MoSe2. We found that, comparing with exfoliated samples, carrier recombination rate in MBE grown samples accelerates by about 50 times. We attribute this striking difference to the existence of abundant grain boundary/edge defects in MBE grown samples, which can serve as effective recombination centers for the photoexcited carriers. We also observed coherent acoustic phonons in both exfoliated and MBE grown MoTe2, indicating strong electron-phonon coupling in this materials. Our measured sound velocity agrees well with previously reported result of theoretical calculation. Our findings provide useful reference for the fundamental parameters: carrier lifetime and sound velocity, reveal the undiscovered carrier recombination effect of grain boundary/edge defects, both of which will facilitate the defect engineering in TMD materials for high speed opto-electronics

    Dual Order Parameter for the Nodal Liquid

    Full text link
    The guiding conception of vortex-condensation-driven Mott insulating behavior is central to the theory of the nodal liquid. We amplify our earlier description of this idea and show how vortex condensation in 2D electronic systems is a natural extension of 1D Mott insulating and 2D bosonic Mott insulating behavior. For vortices in an underlying superconducting pair field, there is an important distinction between the condensation of flux hc/2e and flux hc/e vortices. The former case leads to spin-charge confinement, exemplified by the band insulator and the charge-density-wave. In the latter case, spin and charge are liberated leading directly to a 2D Mott insulator exhibiting *spin-charge separation*. Possible upshots include not only the nodal liquid, but also a novel undoped antiferromagnetic insulating phase with gapped excitations exhibiting spin-charge separation.Comment: 16 pages, 2 figure
    • …
    corecore