94 research outputs found

    Spectral Norm Regularization of Orthonormal Representations for Graph Transduction

    Get PDF
    International audienceRecent literature [1] suggests that embedding a graph on an unit sphere leads to better generalization for graph transduction. However, the choice of optimal embedding and an efficient algorithm to compute the same remains open. In this paper, we show that orthonormal representations, a class of unit-sphere graph em-beddings are PAC learnable. Existing PAC-based analysis do not apply as the VC dimension of the function class is infinite. We propose an alternative PAC-based bound, which do not depend on the VC dimension of the underlying function class, but is related to the famous Lovász ϑ function. The main contribution of the paper is SPORE, a SPectral regularized ORthonormal Embedding for graph trans-duction, derived from the PAC bound. SPORE is posed as a non-smooth convex function over an elliptope. These problems are usually solved as semi-definite programs (SDPs) with time complexity O(n^6). We present, Infeasible Inexact prox-imal (IIP): an Inexact proximal method which performs subgradient procedure on an approximate projection, not necessarily feasible. IIP is more scalable than SDP, has an O(1 √ T) convergence, and is generally applicable whenever a suitable approximate projection is available. We use IIP to compute SPORE where the approximate projection step is computed by FISTA, an accelerated gradient descent procedure. We show that the method has a convergence rate of O(1 √ T). The proposed algorithm easily scales to 1000's of vertices, while the standard SDP computation does not scale beyond few hundred vertices. Furthermore, the analysis presented here easily extends to the multiple graph setting

    Convex optimization over intersection of simple sets: improved convergence rate guarantees via an exact penalty approach

    Full text link
    We consider the problem of minimizing a convex function over the intersection of finitely many simple sets which are easy to project onto. This is an important problem arising in various domains such as machine learning. The main difficulty lies in finding the projection of a point in the intersection of many sets. Existing approaches yield an infeasible point with an iteration-complexity of O(1/ε2)O(1/\varepsilon^2) for nonsmooth problems with no guarantees on the in-feasibility. By reformulating the problem through exact penalty functions, we derive first-order algorithms which not only guarantees that the distance to the intersection is small but also improve the complexity to O(1/ε)O(1/\varepsilon) and O(1/ε)O(1/\sqrt{\varepsilon}) for smooth functions. For composite and smooth problems, this is achieved through a saddle-point reformulation where the proximal operators required by the primal-dual algorithms can be computed in closed form. We illustrate the benefits of our approach on a graph transduction problem and on graph matching

    Spectral Dimensionality Reduction

    Get PDF
    In this paper, we study and put under a common framework a number of non-linear dimensionality reduction methods, such as Locally Linear Embedding, Isomap, Laplacian Eigenmaps and kernel PCA, which are based on performing an eigen-decomposition (hence the name 'spectral'). That framework also includes classical methods such as PCA and metric multidimensional scaling (MDS). It also includes the data transformation step used in spectral clustering. We show that in all of these cases the learning algorithm estimates the principal eigenfunctions of an operator that depends on the unknown data density and on a kernel that is not necessarily positive semi-definite. This helps to generalize some of these algorithms so as to predict an embedding for out-of-sample examples without having to retrain the model. It also makes it more transparent what these algorithm are minimizing on the empirical data and gives a corresponding notion of generalization error. Dans cet article, nous étudions et développons un cadre unifié pour un certain nombre de méthodes non linéaires de réduction de dimensionalité, telles que LLE, Isomap, LE (Laplacian Eigenmap) et ACP à noyaux, qui font de la décomposition en valeurs propres (d'où le nom "spectral"). Ce cadre inclut également des méthodes classiques telles que l'ACP et l'échelonnage multidimensionnel métrique (MDS). Il inclut aussi l'étape de transformation de données utilisée dans l'agrégation spectrale. Nous montrons que, dans tous les cas, l'algorithme d'apprentissage estime les fonctions propres principales d'un opérateur qui dépend de la densité inconnue de données et d'un noyau qui n'est pas nécessairement positif semi-défini. Ce cadre aide à généraliser certains modèles pour prédire les coordonnées des exemples hors-échantillons sans avoir à réentraîner le modèle. Il aide également à rendre plus transparent ce que ces algorithmes minimisent sur les données empiriques et donne une notion correspondante d'erreur de généralisation.non-parametric models, non-linear dimensionality reduction, kernel models, modèles non paramétriques, réduction de dimensionalité non linéaire, modèles à noyau

    Multi-Label Dimensionality Reduction

    Get PDF
    abstract: Multi-label learning, which deals with data associated with multiple labels simultaneously, is ubiquitous in real-world applications. To overcome the curse of dimensionality in multi-label learning, in this thesis I study multi-label dimensionality reduction, which extracts a small number of features by removing the irrelevant, redundant, and noisy information while considering the correlation among different labels in multi-label learning. Specifically, I propose Hypergraph Spectral Learning (HSL) to perform dimensionality reduction for multi-label data by exploiting correlations among different labels using a hypergraph. The regularization effect on the classical dimensionality reduction algorithm known as Canonical Correlation Analysis (CCA) is elucidated in this thesis. The relationship between CCA and Orthonormalized Partial Least Squares (OPLS) is also investigated. To perform dimensionality reduction efficiently for large-scale problems, two efficient implementations are proposed for a class of dimensionality reduction algorithms, including canonical correlation analysis, orthonormalized partial least squares, linear discriminant analysis, and hypergraph spectral learning. The first approach is a direct least squares approach which allows the use of different regularization penalties, but is applicable under a certain assumption; the second one is a two-stage approach which can be applied in the regularization setting without any assumption. Furthermore, an online implementation for the same class of dimensionality reduction algorithms is proposed when the data comes sequentially. A Matlab toolbox for multi-label dimensionality reduction has been developed and released. The proposed algorithms have been applied successfully in the Drosophila gene expression pattern image annotation. The experimental results on some benchmark data sets in multi-label learning also demonstrate the effectiveness and efficiency of the proposed algorithms.Dissertation/ThesisPh.D. Computer Science 201

    Convex modeling with priors

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, School of Architecture and Planning, Program in Media Arts and Sciences, 2006.Includes bibliographical references (leaves 159-169).As the study of complex interconnected networks becomes widespread across disciplines, modeling the large-scale behavior of these systems becomes both increasingly important and increasingly difficult. In particular, it is of tantamount importance to utilize available prior information about the system's structure when building data-driven models of complex behavior. This thesis provides a framework for building models that incorporate domain specific knowledge and glean information from unlabeled data points. I present a methodology to augment standard methods in statistical regression with priors. These priors might include how the output series should behave or the specifics of the functional form relating inputs to outputs. My approach is optimization driven: by formulating a concise set of goals and constraints, approximate models may be systematically derived. The resulting approximations are convex and thus have only global minima and can be solved efficiently. The functional relationships amongst data are given as sums of nonlinear kernels that are expressive enough to approximate any mapping. Depending on the specifics of the prior, different estimation algorithms can be derived, and relationships between various types of data can be discovered using surprisingly few examples.(cont.) The utility of this approach is demonstrated through three exemplary embodiments. When the output is constrained to be discrete, a powerful set of algorithms for semi-supervised classification and segmentation result. When the output is constrained to follow Markovian dynamics, techniques for nonlinear dimensionality reduction and system identification are derived. Finally, when the output is constrained to be zero on a given set and non-zero everywhere else, a new algorithm for learning latent constraints in high-dimensional data is recovered. I apply the algorithms derived from this framework to a varied set of domains. The dissertation provides a new interpretation of the so-called Spectral Clustering algorithms for data segmentation and suggests how they may be improved. I demonstrate the tasks of tracking RFID tags from signal strength measurements, recovering the pose of rigid objects, deformable bodies, and articulated bodies from video sequences. Lastly, I discuss empirical methods to detect conserved quantities and learn constraints defining data sets.by Benjamin Recht.Ph.D

    Graph-based Methods for Visualization and Clustering

    Get PDF
    The amount of data that we produce and consume is larger than it has been at any point in the history of mankind, and it keeps growing exponentially. All this information, gathered in overwhelming volumes, often comes with two problematic characteristics: it is complex and deprived of semantical context. A common step to address those issues is to embed raw data in lower dimensions, by finding a mapping which preserves the similarity between data points from their original space to a new one. Measuring similarity between large sets of high-dimensional objects is, however, problematic for two main reasons: first, high-dimensional points are subject to the curse of dimensionality and second, the number of pairwise distances between points is quadratic with respect to the amount of data points. Both problems can be addressed by using nearest neighbours graphs to understand the structure in data. As a matter of fact, most dimensionality reduction methods use similarity matrices that can be interpreted as graph adjacency matrices. Yet, despite recent progresses, dimensionality reduction is still very challenging when applied to very large datasets. Indeed, although recent methods specifically address the problem of scaleability, processing datasets of millions of elements remain a very lengthy process. In this thesis, we propose new contributions which address the problem of scaleability using the framework of Graph Signal Processing, which extends traditional signal processing to graphs. We do so motivated by the premise that graphs are well suited to represent the structure of the data. In the first part of this thesis, we look at quantitative measures for the evaluation of dimensionality reduction methods. Using tools from graph theory and Graph Signal Processing, we show that specific characteristics related to quality can be assessed by taking measures on the graph, which indirectly validates the hypothesis relating graph to structure. The second contribution is a new method for a fast eigenspace approximation of the graph Laplacian. Using principles of GSP and random matrices, we show that an approximated eigensubpace can be recovered very efficiently, which be used for fast spectral clustering or visualization. Next, we propose a compressive scheme to accelerate any dimensionality reduction technique. The idea is based on compressive sampling and transductive learning on graphs: after computing the embedding for a small subset of data points, we propagate the information everywhere using transductive inference. The key components of this technique are a good sampling strategy to select the subset and the application of transductive learning on graphs. Finally, we address the problem of over-discriminative feature spaces by proposing a hierarchical clustering structure combined with multi-resolution graphs. Using efficient coarsening and refinement procedures on this structure, we show that dimensionality reduction algorithms can be run on intermediate levels and up-sampled to all points leading to a very fast dimensionality reduction method. For all contributions, we provide extensive experiments on both synthetic and natural datasets, including large-scale problems. This allows us to show the pertinence of our models and the validity of our proposed algorithms. Following reproducible principles, we provide everything needed to repeat the examples and the experiments presented in this work
    • …
    corecore