227,048 research outputs found

    Spectral Attention-Driven Intelligent Target Signal Identification on a Wideband Spectrum

    Full text link
    This paper presents a spectral attention-driven reinforcement learning based intelligent method for effective and efficient detection of important signals in a wideband spectrum. In the work presented in this paper, it is assumed that the modulation technique used is available as a priori knowledge of the targeted important signal. The proposed spectral attention-driven intelligent method is consists of two main components, a spectral correlation function (SCF) based spectral visualization scheme and a spectral attention-driven reinforcement learning mechanism that adaptively selects the spectrum range and implements the intelligent signal detection. Simulations illustrate that the proposed method can achieve high accuracy of signal detection while observation of spectrum is limited to few ranges via effectively selecting the spectrum ranges to be observed. Furthermore, the proposed spectral attention-driven machine learning method can lead to an efficient adaptive intelligent spectrum sensor designs in cognitive radio (CR) receivers.Comment: 6 pages, 11 figure

    Machine learning in spectral domain

    Get PDF
    Deep neural networks are usually trained in the space of the nodes, by adjusting the weights of existing links via suitable optimization protocols. We here propose a radically new approach which anchors the learning process to reciprocal space. Specifically, the training acts on the spectral domain and seeks to modify the eigenvectors and eigenvalues of transfer operators in direct space. The proposed method is ductile and can be tailored to return either linear or non linear classifiers. The performance are competitive with standard schemes, while allowing for a significant reduction of the learning parameter space. Spectral learning restricted to eigenvalues could be also employed for pre-training of the deep neural network, in conjunction with conventional machine-learning schemes. Further, it is surmised that the nested indentation of eigenvectors that defines the core idea of spectral learning could help understanding why deep networks work as well as they do

    On the Sample Complexity of Subspace Learning

    Full text link
    A large number of algorithms in machine learning, from principal component analysis (PCA), and its non-linear (kernel) extensions, to more recent spectral embedding and support estimation methods, rely on estimating a linear subspace from samples. In this paper we introduce a general formulation of this problem and derive novel learning error estimates. Our results rely on natural assumptions on the spectral properties of the covariance operator associated to the data distribu- tion, and hold for a wide class of metrics between subspaces. As special cases, we discuss sharp error estimates for the reconstruction properties of PCA and spectral support estimation. Key to our analysis is an operator theoretic approach that has broad applicability to spectral learning methods.Comment: Extendend Version of conference pape

    CayleyNets: Graph Convolutional Neural Networks with Complex Rational Spectral Filters

    Full text link
    The rise of graph-structured data such as social networks, regulatory networks, citation graphs, and functional brain networks, in combination with resounding success of deep learning in various applications, has brought the interest in generalizing deep learning models to non-Euclidean domains. In this paper, we introduce a new spectral domain convolutional architecture for deep learning on graphs. The core ingredient of our model is a new class of parametric rational complex functions (Cayley polynomials) allowing to efficiently compute spectral filters on graphs that specialize on frequency bands of interest. Our model generates rich spectral filters that are localized in space, scales linearly with the size of the input data for sparsely-connected graphs, and can handle different constructions of Laplacian operators. Extensive experimental results show the superior performance of our approach, in comparison to other spectral domain convolutional architectures, on spectral image classification, community detection, vertex classification and matrix completion tasks
    corecore