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ARTICLE

Machine learning in spectral domain
Lorenzo Giambagli1, Lorenzo Buffoni1,2, Timoteo Carletti 3, Walter Nocentini1 & Duccio Fanelli1✉

Deep neural networks are usually trained in the space of the nodes, by adjusting the weights

of existing links via suitable optimization protocols. We here propose a radically new

approach which anchors the learning process to reciprocal space. Specifically, the training

acts on the spectral domain and seeks to modify the eigenvalues and eigenvectors of transfer

operators in direct space. The proposed method is ductile and can be tailored to return either

linear or non-linear classifiers. Adjusting the eigenvalues, when freezing the eigenvectors

entries, yields performances that are superior to those attained with standard methods

restricted to operate with an identical number of free parameters. To recover a feed-forward

architecture in direct space, we have postulated a nested indentation of the eigenvectors.

Different non-orthogonal basis could be employed to export the spectral learning to other

frameworks, as e.g. reservoir computing.
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Machine learning (ML)1–4 refers to a broad field of study,
with multifaceted applications of cross-disciplinary
breadth. ML is a subset of artificial intelligence (AI)

which ultimately aims at developing computer algorithms that
improve automatically through experience. The core idea is that
systems can learn from data, so as to identify distinctive patterns
and make consequent decisions, with minimal human interven-
tion. The range of applications of ML methodologies is extremely
vast5–8, and still growing at a steady pace due to the pressing need
to cope with the efficiently handling of big data9. Biomimetic
approaches to sub-symbolic AI10 inspired the design of powerful
algorithms. These latter sought to reproduce the unconscious
process underlying fast perception, the neurological paths for
rapid decision making, as e.g. employed for faces11 or spoken
words12 recognition.

An early example of a sub-symbolic brain-inspired AI was the
perceptron13, the influential ancestor of deep neural networks
(NN)14,15. The perceptron is indeed an algorithm for supervised
learning of binary classifiers. It is a linear classifier, meaning that
its forecasts are based on a linear prediction function which
combines a set of weights with the feature vector. Analogous to
neurons, the perceptron adds up its input: if the resulting sum is
above a given threshold the perceptron fires (returns the output
value one) otherwise it does not (and the output equals zero).
Modern multilayer perceptrons account for multiple hidden
layers with non-linear activation functions. The learning is
achieved via minimising the classification error. Single or multi-
layered perceptrons should be trained by examples14,16,17.
Supervised learning requires indeed a large set of positive and
negative examples, the training set, labelled with their reference
category.

The perceptrons’ acquired ability to perform classification is
eventually stored in a finite collection of numbers, the weights
and thresholds that were learned during the successive epochs of
the supervised training. To date, it is not clear how such a huge
collection of numbers (hundred-millions of weights in state of the
art ML applications) are synergistically interlaced for the deep
networks to execute the assigned tasks, with an exceptional degree
of robustness and accuracy18–20.

Starting from these premises, the aims of this paper are mul-
tifold. On the one side, we develop a novel learning scheme which
is anchored on reciprocal space. Instead of iteratively adjusting
the weights of the edges that define the connection among nodes,
we modify the spectra of a collection of suitably engineered
matrices that bridge adjacent layers. To eventually recover a
multilayered feedforward architecture in direct space, we postu-
late a nested indentation of the associated eigenvectors. These
latter act as the effective gears of a processing device operated in
reciprocal space. The directed indentation between stacks of
adjacent eigenvectors yield a compression of the activation pat-
tern, which is eventually delivered to the detection nodes. As a
starting point, assume eigenvectors are frozen to a reference
setting which fulfils the prescribed conditions. The learning is
hence solely restricted to the eigenvalues, a choice which amounts
to performing a global training, targeted to identifying key col-
lective modes, the selected eigen-directions, for carrying out the
assigned classification task. The idea of conducting a global
training on a subset of parameters has been also proposed in
other works21,22. This is at odds with the usual approach to
machine learning where local adjustments of pairwise weights are
implemented in direct space. As we shall prove, by tuning the
eigenvalues, while freezing the eigenvectors, yields performances
superior to those reached with usual (local) techniques bound to
operate with an identical number of free parameters, within an
equivalent network architecture. Eigenvalues are therefore iden-
tified as key targets of the learning process, proving more

fundamental than any other (randomly selected) set of identical
cardinality, allocated in direct space. Remarkably, the distribution
of weights obtained when applying the spectral learning techni-
que restricted to the eigenvalues is close to that recovered when
training the neural network in direct space, with no restrictions
on the parameters to be adjusted. In this respect, spectral learning
bound to the eigenvalues could provide a viable strategy for pre-
training of deep neural networks. Further, the set of trainable
eigenvalues can be expanded at will by inserting linear processing
units between the adjacent layers of a non-linear multilayered
perceptron. Added linear layers act as veritable booms of a tele-
scopic neural network, which can be extracted during the learning
phase and retracted in operational mode, yielding compact net-
works with improved classification skills. The effect of the linear
expansion is instead negligible, if applied to neural learning of
standard conception. The entries of the indented eigenvectors can
be also trained resulting in enhanced performance, as compared
to the setting where eigenvalues are exclusively modulated by the
learning algorithm. To demonstrate the principles which underly
spectral training, we employ the MNIST database, a collection of
handwritten digits to be classified. The examined problem is
relatively simple: a modest number of tunable parameters is
indeed necessary for achieving remarkable success rates. When
allowing for the simultaneous training of the eigenvalues and (a
limited fraction of) eigenvectors, the neural networks quickly
saturates to accuracy scores which are indistinguishable from
those obtained via conventional approaches to supervised learn-
ing. More challenging tasks should be probably faced to fully
appreciate the role played by a progressive optimisation of the
eigenmodes, the collective directions in reciprocal space where
information flows (see e.g. an application to Fashion NMIST
database as reported in the Supplementary Material). As
remarked above, the eigenvectors are here constructed so as to
yield a feedforward multilayered architecture in direct space. By
relaxing this assumption, comes to altering the network topology
and thus exporting the spectral learning strategy to other fra-
meworks, as e.g. reservoir computing. In general terms, working
in the spectral domain corresponds to optimising a set of non-
orthogonal directions (in the high dimensional space of the
nodes) and associated weights (the eigenvalues), a global outlook
which could contribute to shed novel light on the theoretical
foundations of supervised learning.

Results
To introduce and test the proposed method we will consider a
special task, i.e. recognition of handwritten digits. To this end, we
will make use of the MNIST database23 which has a training set of
60,000 examples, and a test set of 10,000 examples. Each image is
made of N1= 28 × 28 pixels and each pixel bears an 8-bit
numerical intensity value, see Fig. 1. A deep neural network can
be trained using standard backpropagation14 algorithms to assign
the weights that link the nodes (or perceptrons) belonging to
consecutive layers. The first layer has N1 nodes and the input is
set to the corresponding pixel’s intensity. The highest error rate
reported on the original website of the database23 is 12%, which is
achieved using a simple linear classifier, with no preprocessing. In
early 2020, researchers announced 0.16% error24 with a deep
neural network made of branching and merging convolutional
networks. Our goal here is to contribute to the analysis with a
radically different approach to the learning, rather than joining
the efforts to break current limit in terms of performance and
classification accuracy. More specifically, and referring to the
MNIST database as a benchmark application, we will assemble a
network made of N nodes, organized in successive ℓ layers, tying
the training to reciprocal space.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-21481-0

2 NATURE COMMUNICATIONS |         (2021) 12:1330 | https://doi.org/10.1038/s41467-021-21481-0 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


Directed connections between nodes belonging to consecutive
layers are encoded in a set of ℓ− 1, N ×N adjacency matrices. The
eigenvectors of these latter matrices are engineered so as to favour
the information transfer from the reading frame to the output
layer, upon proper encoding. The associated eigenvalues repre-
sent the primary target of the novel learning scheme. In the fol-
lowing we will set up the method, both with reference to its linear
and non-linear versions. Tests performed on the MNIST database
are discussed in the next section. In the annexed Supplementary
Material we report the results of the analysis carried out for
Fashion NMIST database.

Linear spectral learning: single-layer perceptron trained in
reciprocal space. Assume Ni to label the nodes assigned to layer i,
and define N ¼ P‘

i¼1 Ni. For the specific case here inspected the
output layer is composed of ten nodes (Nℓ= 10), where recog-
nition takes eventually place. Select one image from the training
set and be n1(=0, 1, 2..., 9) the generic number therein displayed.
We then construct a column vector n!1, of size N, whose first N1

entries are the intensities displayed on the pixels of the selected
image (from the top-left to the bottom-right, moving horizon-
tally), as illustrated in Fig. 1. All other entries are initially set to
zero. As we shall explain in the following, our goal is to transform
the input n!1 into an output vector with the same dimension. The
last Nℓ elements of this latter vector represent the output nodes
where reading is eventually performed.

To set the stage, we begin by reporting on a simplified scenario
that, as we shall prove in the following, yields a single-layer
perceptron. The extension to multilayered architectures will be
discussed right after.

Consider the entry layer made of N1 nodes and the outer one
composed of N2 elements. In this case N=N1+N2. The input
vector n!1 undergoes a linear transformation to yield n!2 ¼
A1 n

!
1 where A1 is a N ×N matrix that we shall characterise in the

following. Introduce matrix Φ1: this is the identity matrix 1N ´N
modified by the inclusion of a sub-diagonal block N2 ×N1, e.g.
filled with uniformly distributed random numbers, defined in a

bounded interval, see Fig. 2. The columns of Φ1, hereafter ϕ
!

1

� �
k

with k= 1, ...,N, define a basis of the N-dimensional space to
which n!1 and n!2 belong. Then, we introduce the diagonal
matrix Λ1. The entries of Λ1 are set to random (uniform)
numbers spanning a suitable interval. A straightforward calcula-
tion returns Φ1ð Þ�1 ¼ 21N ´N �Φ1. We hence define A1 ¼
Φ1Λ1 21N ´N �Φ1ð Þ as the matrix that transforms n!1 into n!2.
Because of the specific structure of the input vector, and owing to
the nature of A1, the information stored in the first N1 elements of
n!1 is passed to the N2 successive entries of n!2, in a compact
form which reflects both the imposed eigenvectors’ indentation
and the chosen non-trivial eigenvalues.

To see this more clearly, expand the N-dimensional input

vector n!1 on the basis made of ϕ
!

1

� �
k

to yield n!1 ¼
PN

k¼1 ck ϕ
!

1

� �
k

where ck stands for the coefficients of the

expansion. The first N1 vectors are necessarily engaged to explain
the non-zero content of n!1 and, because of the imposed
indentation, rebound on the successive N2 elements of the basis.
These latter need to adjust their associated weights ck to
compensate for the echoed perturbation. The action of matrix
A1 on the input vector n!1 can be exemplified as follows:

n!2 ¼ A1 n
!

1 ¼ A1

XN

k¼1

ck ϕ
!

1

� �
k
¼

XN1þN2

k¼1

ck Λ1ð Þk ϕ
!

1

� �
k

ð1Þ

where Λ1ð Þk are the element of matrix Λ1. In short, the entries of
n!2 from position N1+ 1 to position N1+N2 represent a
compressed (if N2 <N1) rendering of the supplied input signal,
the key to decipher the folding of the message being stored in the
N2 ×N1 sub-diagonal block of Φ1 (i.e. the eigenvector indenta-
tion) and in the first set of N=N1+N2 eigenvalues Λ1ð Þk. The
key idea is to propagate this message passing scheme, from the
input to the output in a multilayer setting, and adjust (a subset of)
the spectral parameters involved so as to optimise the encoding of
the information.

To this end, we introduce the N ×N matrix operator Φk, for
k= 2, ..., ℓ− 1. In analogy with the above, Φk is the identity
matrix 1N ´N modified with a sub-diagonal block Nk+1 ×Nk,
which extends from rows Nk to Nk+Nk+1, and touches
tangentially the diagonal, as schematically illustrated in Fig. 2a.
Similarly, we introduce Λk, for k= 2, ..., ℓ− 1, which is obtained
from the identity matrix 1N ´N upon mutating to uniformly
distributed random entries the diagonal elements that range fromPk

i¼1 Ni (not included) to
Pkþ1

i¼1 Ni (included). Finally, we define
Ak ¼ ΦkΛk 21N ´N �Φkð Þ, as the matrix that transforms n!k into
n!kþ1, with k= 2, ..., ℓ− 1. In principle, both non-trivial eigen-
values’ and eigenvectors’ input can be self-consistently adjusted
by the envisaged learning strategy. The input signal n!1 is hence
transformed into an output vector n!‘ following a cascade of
linear transformations implemented via matrices Ak. In formulae:

n!‘ ¼ A‘�1:::A1 n
!

1 ¼ Π‘�1
k¼1ΦkΛk 21N ´N �Φkð Þ� �

n!1 ð2Þ
where in the last step we made use of the representation of Ak in
dual space. The generic vector n!kþ1, for k= 1,..., ℓ− 1 is
obtained by applying matrix Ak to n!k. The first N1+N2+ ...
+Nk components of n!kþ1 coincide with the corresponding
entries of n!k, namely n!kþ1

� �
m � n!k

� �
m for m <N1+N2+ ...+

Nk. Here, �!ð Þ½ �m identifies the m-th component of the vector
�!ð Þ. Recall that, by construction, n!k

� �
m ¼ 0 for m >N1+N2

+ ...+Nk. On the contrary, the components n!kþ1

� �
m with N1+

N2+ ...+Nk+ 1 <=m <=N1+N2+ ...+Nk+Nk+1 are

Fig. 1 From images to vectors. Each image of the training set is mapped
into a column vector n!1, of size N, whose first N1= 28 × 28 entries are the
intensities displayed on the pixels of the image.
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populated by non-trivial values which reflect the eigenvectors
indentation, as well as the associated eigenvalues. This observa-
tion can be mathematically proven as follows. Write n!k on the

basis formed by the eigenvectors ϕ
!

k

� �
l
to eventually get:

n!k ¼
XN1þN2þ:::þNkþ1

l¼1

cl ϕ
!

k

� �
l
�

XN1þN2þ:::þNk

l¼1

cl e
!

l ð3Þ

where e!1; e
!

2:::
� �

stand for the canonical basis and the last
inequality follows the specific structure of the eigenvectors
(remark that the leftmost sum in the above equation includes
Nk+1 more elements than the second). By definition:

n!kþ1 ¼ Ak n
!

k ¼
XN1þN2::þNkþ1

l¼1

cl Λkð Þl ϕ
!

k

� �
l

ð4Þ

From the above relation, one gets for m ≤N1+N2+ ...+Nk

n!kþ1

� �
m ¼

XN1þN2::þNk

l¼1

cl e!l

� �
m � n!k

� �
m

ð5Þ

where the first equality sign follows from the observation that

ϕ
!

k

� �
l
coincides with e!l and Λkð Þl ¼ 1, over the explored range

of m. For N1+N2+ ...+Nk+ 1 ≤m ≤N1+N2+ ...+Nk+Nk+1,

we obtain instead:

n!kþ1

� �
m ¼

XN1þN2::þNkþ1

l¼N1þN2::þNk�1þ1

cl Λkð Þl ϕ
!

k

� �
l

h i
m

ð6Þ

Finally, it is immediate to show that n!kþ1

� �
m ¼ 0 for m >N1

+N2+ ...+Nk+Nk+1, because of the specific form of the
employed eigenvectors. In short, the information contained in
the last non-trivial Nk entries of n!k rebound on the successive
Nk+1 elements of n!kþ1, funnelling the information downstream
from the input to the output. The successive information
processing relies on the indented (non-orthogonal) eigenvectors
and the associated eigenvalues, which hence define the target of
the training in reciprocal space.

To carry out the learning procedure one needs to introduce a
loss function Lð n!1Þ. For illustrative purposes this latter can be
written as:

Lð n!1Þ ¼ jjlð n!1Þ � σ Π‘
k¼1ΦkΛk 21N ´N �Φkð Þ� �

n!1

� �jj2 ð7Þ
where σ( ⋅ ) is the softmax operation applied to the last entries of
the ℓ-th image of the input vector n!1. In the above expression,
lð n!1Þ stands for the label attached to n!1 depending on its
category. More into details, the k-th entry of lð n!1Þ is equal unit
(and the rest identically equal to zero) if the number supplied as
an input is identical to k, with k= 0, 1, ... , 9. The loss function can
be minimized by acting on the free parameters of the learning

:Trainable

:Trainable

Fig. 2 The choice of the eigenvectors. a The structure of matrixΦk is schematically depicted. The diagonal entries of Φk are unities. The sub-diagonal block
of size Nk+1 × Nk for k= 1, ℓ− 1 is filled with uniform random numbers in [a, b], with a; b 2 R. These blocks yield an effective indentation between
successive stacks of linearly independent eigenvectors. The diagonal matrix of the eigenvalues Λk is also represented. The sub-portions of Φk and Λk that
get modified by the training performed in spectral domain are highlighted (see legend). In the experiments reported in this paper, the initial eigenvectors
entries are uniform random variables distributed in [−0.5, 0.5]. The eigenvalues are uniform random numbers distributed in the interval [−0.01, 0.01].
Optimising the range to which the initial guesses belong (for both eigenvalues and eigenvectors) is an open problem that we have not tackled. b A (N1+
Nℓ) × (N1+ Nℓ) matrix Ac can be obtained from A ¼ Π‘�1

k¼1Ak

� �
, which provides the weights for a single-layer perceptron, that maps the input into the

output, in direct space.
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scheme. Specifically, the learning can be restricted to the set of N
non-trivial eigenvalues, split in ℓ distinct groups, each referred to
one of the Ak matrices (i.e. N1+N2 eigenvalues of A1, N3

eigenvalues of A2, ...., Nℓ eigenvalues of Aℓ−1). In addition, the
sub-diagonal block entries of Φk, the elements of the basis which
dictate the successive indentation between adjacent layers, can be
adjusted as follows the training scheme. In the following section
we will report about the performance of the method, implemen-
ted in its different modalities, against those obtained with a
classical approach to the learning anchored in direct space. In the
actual implementation we have chosen to deal with a categorical
cross-entropy loss function.

Before ending this section a few remarks are mandatory.
Introduce A ¼ Π‘

k¼1Ak. The linear transformation that links the
input vector n!1 to the generated output n!‘, can be compactly
expressed as n!‘ ¼ A n!1. Then, recall that the classification relies
on examining the last Nℓ entries of n!‘. Hence, for the specific
setting here examined, where the mapping is obtained as a
cascade of linear transformations, one can imagine recasting the
whole procedure in a space of reduced dimensionality. Be z! a
column vector made of N1+Nℓ elements. The first N1 entries of
z! are the intensities on the pixels of the selected image, as for the
homologous n!1 quantity. The other elements are set to zero.
Then, consider the (N1+Nℓ) × (N1+Nℓ) matrix Ac (the label c
stands for compact), constructed from A by trimming out all the
information that pertain to the intermediate layers, as introduced
in the reciprocal space (see Fig. 2b). Stated differently, matrix Ac
provides the weighted links that feed from the input to the output
layer in direct space, via the linear transformation Ac z

!: this is a
single-layer perceptron, shown in Fig. 2b, which was trained by
endowing reciprocal space with an arbitrary number of additional
dimensions, the intermediate stacks responsible for the sequential
embedding of the information. Intermediate layers can be literally
extracted, during the training phase, and subsequently retracted
in operational mode. The importance of allowing for additional
layers, and so provide the neural network of a telescopic attribute,
will be assessed in the forthcoming sections.

From the algorithmic point of view the process outlined above
can be rephrased in simpler, although equivalent terms. For all
practical purposes, one could take the (column) input vector n!1
to have N1+N2 elements. Following the scheme depicted above,
the first N1 entries are the intensities on the pixels of the selected
image, while the remaining N2 elements are set to zero. We now
introduce a (N1+N2) × (N1+N2) matrix A1. This is the identity
matrix 1ðN1þN2Þ ´ ðN1þN2Þ with the inclusion of a sub-diagonal
block N2 ×N1, which handles the information processing that will
populate the second N2 elements of the output vector
n!2 ¼ A1n1

!. Then, we formally replace the (N1+N2) column
vector n!2 with a column vector made of (N2+N3) elements,
termed n!2t , whose first N2 elements are the final entries of n!2.
The remaining N3 elements of n!2t are set to zero. Now, rename
n!2t as n!2 and presents it as the input of a (N2+N3) × (N2+N3)
matrix A2, with a non-trivial sub-diagonal N3 ×N2 block. This
latter maps the first N2 elements of the input vector, into the
successive N3 of the output one, by completing the second step of
an algorithmic scheme which can be iteratively repeated. In
analogy with the above, each (Nk+Nk+1) × (Nk+Nk+1) matrix

Ak can be written as Ak ¼ ΦkΛk 21ðNkþNkþ1Þ ´ ðNkþNkþ1Þ �Φk

� �
,

where now the column vectors of Φk are the eigevenctors of Ak

and form a non-orthogonal basis of the (Nk+Nk+1) space where
input and output vectors belong. Λk is a diagonal matrix of the
eigenvalues: the first Nk are set to one, while the other Nk+1 are
non-trivial entries to be adjusted self-consistently via the learning

scheme. Framing the process in the augmented space of N
dimensions, as done earlier, allows us to avoid adapting the
dimensions of the involved vectors at each iteration. On the
contrary, this is a convenient procedure to be followed when
aiming at a numerical implementation of the envisaged scheme.
Notice that to discuss the algorithmic variant of the method, we
made use of the same symbols employed earlier. The notation
clash is however solely confined to this paragraph.

In the following, we will discuss how these ideas extend to the
more general setting of non-linear multilayered neural networks.

Training non-linear multilayered neural networks in the
spectral domain. In analogy with the above, the image to be
processed is again organised in a N × 1 column vector n!1. This
latter is transformed into n!2 ¼ A1 n

!
1, where matrix N ×Nmatrix

A1 is recovered from its spectral properties, respectively encoded in
Φ1 and Λ1. The output vector n!2 is now filtered via a suitable non-
linear function f( ⋅ ). This step marks a distinction between,
respectively, the linear and non-linear versions of the learning
schemes. For the applications here reported we have chosen to work
with a rectified linear unit (ReLU) f( ⋅ )=max(0, ⋅ ). Another pos-
sibility is to set f ð�; β1Þ ¼ tanh½β1ð�Þ�, where β1 is a control para-
meter which could be in principle self-consistently adjusted all
along the learning procedure. We are now in a position to iterate
the same reasoning carried out in the preceding section, adapted to
the case at hand. More specifically, we introduce the generic N ×N
matrix Ak ¼ ΦkΛk 21N ´N � Φk

� �
which transforms n!k into

n!kþ1, with k= 2, ... , ℓ− 1. The outcome of this linear transfor-
mation goes through the non-linear filter. The loss function Lð n!Þ
generalises to:

Lð n!Þ ¼ jjlð n!1Þ � σ f A‘�1::::f A2f A1n1
!; β1

� �
; β2

� �
; β‘�1

� �� �jj2
ð8Þ

with an obvious meaning of the involved symbols. In the set of
experiments reported below we assume, in analogy with the
above, a categorical cross-entropy loss function. The loss function
is minimised upon adjusting the free parameters of the learning
scheme: the ℓ− 1 blocks of tunable eigenvalues, the elements that
define the successive indentation of the nested basis which
commands the transfer of the information (and e.g. the quantities
βk, if the sigmoidal hyperbolic function is chosen as a non-linear
filter). This eventually yields a fully trained network, in direct
space, which can be unfolded into a layered architecture to
perform pattern recognition (see Fig. 3). Remarkably, self-loop
links are also present. The limit of a linear single-layer perceptron
is recovered when silencing the non-linearities: a (N1+Nℓ) × (N1

+Nℓ) matrix Ac can be generated from the N ×N matrices Ak,
following the same strategy outlined above. A sequence of linear
layers can be also interposed between two consecutive non-linear
stacks. The interposed layers allow to enlarge the space of
parameters employed in the learning scheme, and can be
retracted when operating the deep neural network after comple-
tion of the learning stage. Their role is de facto encapsulated in
the entries of the linear operator that bridges the gap between the
adjacent non-linear stacks, as explained above when referring to
the telescopic operational modality.

Testing the performance of the method. To build and train the
aforementioned models we used TensorFlow and created a cus-
tom spectral layer matrix that could be integrated into virtually
every TensorFlow or Keras model. That allowed us to leverage on
the automatic differentiation capabilities and the built-in opti-
misers of TensorFlow. Recall that we aim at training just a
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portion of the diagonal of Λk and a block of Φk. To reach this goal
we generated two fully trainable matrices, for each layer in the
spectral domain, and applied a suitably designed mask to filter
out the sub-parts of the matrices to be excluded from the training.
This is easy to implement and, although improvable from the
point of view of computational efficiency, it works perfectly, given
the size of the problem to be handled. We then trained all our
models with the AdaMax optimizer25 by using a learning rate of
0.03 for the linear case and 0.01 for the non-linear one. The
training proceeded for about 20 epochs and during each epoch
the network was fed with batches of images of different size,
ranging from 300 to 800. These hyperparameters have been
chosen so as to improve on GPU efficiency, accuracy and stabi-
lity. However, we did not perform a systematic study to look for
the optimal setting. All our models have been trained on a virtual
machine hosted by Google Colaboratory. Standard neural net-
works have been trained on the same machine using identical
software and hyperparameters, for a fair comparison. Further
details about the implementation, as well as a notebook to
reproduce our results, can be found in the public repository of
this project (https://github.com/Buffoni/spectral_learning).

We shall start by reporting on the performance of the linear
scheme. The simplest setting is that of a perceptron made of two
layers: the input layer with N1= 28 × 28= 784 nodes and the
output one made of N2= 10 elements. The perceptron can be
trained in the spectral domain by e.g. tuning the N=N1+N2=
794 eigenvalues of A1, the matrix that links the input ( n!1) and
output ( n!2) vectors. The learning restricted to the eigenvalues
returns a perceptron which performs the sought classification task
with an accuracy (the fraction of correctly recognised images in the
test set) of (82 ± 2)% (averaging over 5 independent runs). This
figure is to be confronted with the accuracy of a perceptron trained
with standard techniques in direct space. For a fair comparison,
the number of adjustable weights should be limited to N. To this
aim, we randomly select a subset of weights to be trained and carry
out the optimisation on these later (constrained neural network
(NN)). The process is repeated a few (5 in this case) times and, for
each realisation, the associated accuracy computed. Combining the
results yields an average performance of (79 ± 3)%, i.e. a slightly

smaller score (although compatible within error precision) than
that achieved when the learning takes place in the spectral domain.
When the training extends to all the N1 ×N2 weights (plus N1+N2

bias), conventional learning yields a final accuracy of (92.7 ± 0.1)%.
This is practically identical to the score obtained in the spectral
domain, specifically (92.5 ± 0.2)%, when the sub-diagonal entries
of the eigenvectors matrix are also optimised (for a total of N1+
N2+N1 ×N2 free parameters). The remarkable observation is
however that the distribution of the weights as obtained when the
learning is restricted on the eigenvalues (i.e. using about the 10% of
the parameters employed for full training in direct space) matches
quite closely that retrieved by means of conventional learning
schemes, see Fig. 4. This is not the case when the learning in direct
space acts on a subset of N, randomly selected, weights (data not

Fig. 3 The non-linear setting. The non-linear version of the training scheme returns a multilayered architecture with self-loops links in direct space. Linear
and non-linear transformation can be combined at will, matrices Ak providing the connection between successive layers. Linear layers can be retracted in
operational mode, following a straightforward variant of the compactification procedure described in the main body of the paper.

Fig. 4 The distribution of weights. Distribution of the weights of a
perceptron. The red line follows the spectral training limited the N1+N2

eigenvalues. The black line follows the training in direct space. Here, N1 ×N2

parameters are adjusted in the space of the nodes. The distribution is very
similar, but the spectral learning employs about 10% of the parameters
used in direct space. The distributions obtained when forcing the training in
direct space to operate on a subset of N1+ N2 weights are very different
from the one displayed (for every choice of the randomly selected family of
weights to be trained).
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shown). Based on the above, it can be therefore surmised that
optimising the eigenvalues constitutes a rather effective pre-
training strategy, which engages a modest computational load.

To further elaborate on the potentiality of the proposed
technique, we modify the simple two-layers perceptron, with the
inclusion of supplementary computing layers. As explained above
the newly added layers plays an active role during the learning
stage, but can be retracted in operating mode so as to return a
two-layers perceptron. The weights of this latter bear however an
imprint of the training carried out for the linear network in the
expanded configuration. Two alternative strategies will be in
particular contemplated. On the one side, we will consider a sole
additional layer, endowed with N2 nodes, interposed between the
input and output layers made of, respectively, N1= 784 and Nℓ≡
N3= 10 nodes. We will refer to this as to the wide linear
configuration. The performance of the method can be tested by
letting N2 to progressively grow. On the other side, the deep linear
configuration is obtained when interposing a sequence of
successive (linear) stacks between the input (N1= 784) and the
output (Nℓ= 10) layers.

In Fig. 5, we report on the performance of the wide learning
scheme as a function of N2+N3. As we shall clarify, this latter
stands for the number of trained parameters for (i) the spectral
learning acted on a subset of the tunable eigenvalues and for (ii)
the conventional learning in direct space restricted to operate on
a limited portion of the weights. The red line in the main panel of
Fig. 5 refers to the simplified scheme where a subset of the
eigenvalues are solely tuned (while leaving the eigenvectors fixed
at the random realisation set by the initial condition). We have in
particular chosen to train the second bunch of N2 eigenvalues of
the transfer matrix A1 and the N3= 10 non-trivial eigenvalues of

matrix A2, in line with the prescriptions reported in the preceding
section. The blue line reports on the accuracy of the neural
network trained in direct space: the target of the optimisation is a
subset of cardinality N2+N3 of the N1N2+N2N3 weights which
could be in principle adjusted in the space of the nodes. The
performance of the spectral method proves clearly superior, as it
can be readily appreciated by visual inspection of Fig. 5. The black
line displays the accuracy of the linear neural network when the
optimisation acts on the full set of N1N2+N2N3 trainable
parameters (unconstrained neural network (NN)). No improve-
ment is detectable when increasing the size of the intermediate
layer: the displayed accuracy is substantially identical to that
obtained for the basic perceptron trained with N1N2= 7840
parameters. The spectral learning allows to reach comparable
performance already at N2= 1000 (13% of the parameters used
for the standard two-layers perceptron with N1 ×N2 parameters,
as discussed above). In the inset of Fig. 5, the distribution of the
entries of matrix Ac, the equivalent perceptron, is depicted in red
for the setting highlighted in the zoom. The black line refers to
the two-layers equivalent of the neural network trained in direct
space, employing the full set of trainable parameters (black dot
enclosed in the top-left dashed rectangle drawn in the main panel
of Fig. 5). The two distributions look remarkably close, despite the
considerable reduction in terms of training parameters, as
implemented in the spectral domain (for the case highlighted,
0.13% of the parameters employed under the standard training).
Similarly to the above, the distribution obtained when forcing the
training in direct space to act on a subset of N1+N2 weights are

Fig. 5 Wide linear scheme. A three layers neural network is considered.
The accuracy of the neural network is plotted as a function of the number of
parameters that we chose to train with the spectral algorithm, N2+ N3. The
red line reports on the performance of the spectral training. The blue line
refers to the neural network trained in direct space: the optimisation runs
on N2+ N3 parameters, a subset of the total number of adjustable weights
N1N2+ N2N3. The black line stands for the accuracy of the linear neural
network when training the full set of N1N2+ N2N3 parameters. Notice that
the reported accuracy is comparable to that obtained for a standard two-
layers perceptron. Inset: the distribution of the entries of the equivalent
perceptrons are plotted. The red curve refer to the spectral learning
restricted to operate on the eigenvalues; the black profile to the neural
network trained in direct space, employing the full set of adjustable
parameters. In both cases, the weights refer to the two-layers configuration
obtained by retracting the intermediate linear layer employed during the
learning stage.

Fig. 6 Deep linear scheme. The performance of the spectral algorithm is
tested for a multilayered linear configuration. Symbols are chosen in
analogy to Fig. 5. In all cases, the input layer is made of N1= 784 elements
and the output layer has Nℓ= 10 nodes. The first five points, from left to
right in each of the curves depicted in the main panel, refer to a three layers
(linear) neural network. The size of the intermediate layer is progressively
increased, as N2= 20, 80, 100, 500, 800. The total number of trained
eigenvalues is N2+N3. The subsequent four points are obtained by
considering a four layers architecture. In particular, N2= 800 while N3

takes values in the interval (100, 200, 400, 600). The training acts on N2

+ N3+ N4 eigenvalues. The final point in each curve is obtained with a four
layers deep neural network. Here, N2= 800, N3= 600 and N3= 500, for a
total of N2+ N3+ N4+ N5 tunable parameters in the spectral setting. Inset:
the distribution of the entries of the equivalent perceptrons are displayed,
with the same colour code adopted in Fig. 5. Also, in this case, the weights
refer to the two-layers configuration obtained by retracting the
intermediate linear layers employed in the learning stage.
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just a modest modulation of the initially assigned profile, owing
to the local nature of the learning in the space of the nodes.

In Fig. 6, we report the results of the tests performed when
operating under the deep linear configuration. Symbols are analogous
to those employed in Fig. 5. In all inspected cases, the entry layer is
made of N1= 784 elements and the output one has Nℓ= 10 nodes.
The first five points, from left to right, refer to a three layers (linear)
neural network. Hence, ℓ= 3 and the size of the intermediate layer is
progressively increased, N2= 20, 80, 100, 500, 800. The total number
of trained eigenvalues is N2+N3, and gets therefore larger as the size
of the intermediate layer grows. The successive four points of the
collections are obtained by setting ℓ= 4. Here, N2= 800 while N3 is
varied (=100, 200, 400, 600). The training impacts on N2+N3+N4

parameters. Finally, the last point in each displayed curve is obtained
by working with a five layers deep neural network, ℓ= 5. In
particular, N2= 800, N3= 600 and N4= 500, for a total of N2+N3

+N4+N5 tunable parameters. Also in this case, the spectral
algorithm performs better than conventional learning schemes
constrained to operate with an identical number of free parameters.
Similarly, the distribution of the weights of an equivalent perceptron
trained in reciprocal space matches that obtained when operating in
the space of the nodes and resting on a considerably larger number of
training parameters. To sum up, eigenvalues are parameters of key
importance for neural networks training, way more strategic than any
other set of equivalent cardinality in the space of the nodes. As such,
they allow for a global approach to the learning, with significant
reflexes of fundamental and applied interest. In all cases here
considered, the learning can extend to the eigenvectors: an optimised
indentation of the eigen-directions contribute to enhance the overall
performance of the trained device.

We now turn to considering a non-linear architecture. More
specifically, we will assume a four layers network with,
respectively, N1= 784, N2, N3= 120, N4= 10. The non-linear
ReLU filter acts on the third layer of the collection, while the
second is a linear processing unit. As in the spirit of the wide
network configuration evoked above, we set at testing the
performance of the neural network for increasing N2. For every
choice of N2, the linear layer can be retracted yielding a three-
layered effective non-linear configurations. We recall however
that training the network in the enlarged space where the linear
unit is present leaves a non-trivial imprint in the weights that set
the strength of the links in direct space.

In Fig. 7, we plot the computed accuracy as a function of N2, the
size of the linear layer. In analogy with the above analysis, the red
curve refers to the training restricted to N2+N3+N4 eigenvalues;
the blue profile is obtained when the deep neural network is trained
in direct space by adjusting an identical number of inter-nodes
weights. As for the case of a fully linear architecture, by adjusting
the eigenvalues yields better classification performances. The black
line shows the accuracy of the neural network when the full set of
N1N2+N2N3+N3N4 is optimised in direct space. The green line
refers instead to the spectral learning when the eigenvalues and
eigenvectors are trained simultaneously. The accuracies estimated
for these two latter settings agree within statistical error, even if the
spectral scheme seems more robust to overfitting (the black circles
declines slightly when increasing N2, while the collection of green
points appears rather stable). To sum up, we enclose Table 1 where
the obtained scores are compared. We display in particular the best
(average) performance of the different training schemes, applied to
the aforementioned distinct architectures, and over the explored
range of sizes.

Discussion
Summing up, we have here proposed a novel approach to the
training of deep neural networks which is bound to the spectral,

hence reciprocal, domain. The eigenvalues and eigenvectors of the
adjacency matrices that connects consecutive layers via directed
feedforward links are trained, instead of adjusting the weights that
bridge each pair of nodes of the collection, as it is customarily
done in the framework of conventional ML approaches.

The first conclusion of our analysis is that optimising the
eigenvalues, when freezing the eigenvectors, yields performances
which are superior to those attained with conventional methods
restricted to operate with an identical number of free parameters.
It is therefore surmised that eigenvalues are key target parameters
for neural networks training, in that they allow for a global
handling of the learning. This is at variance with conventional
approaches which seek at modulating the weights of the links
among mutually connected nodes. Secondly, the spectral learning
restricted to the eigenvalues yields a distribution of the weights
which resembles quite closely that obtained with conventional
algorithms bound to operate in direct space. For this reason, the
proposed method could be used in combination with existing ML
algorithms for an effective (and computationally advantageous)
pre-training of deep neural networks. We have also shown that
linear processing units inserted in between consecutive, non-
linearly activated layers produce an enlargement of the learning
parameters space, with beneficial effects in terms of performance
of the trained device. Extending the learning so as to optimise the
eigenvectors enhances the ability of the network to operate the

Fig. 7 Deep non-linear scheme. The accuracy of the non-linear deep neural
network is tested. We assume a four layers network with, respectively,
N1= 784, N2, N3= 120, N4= 10; N2 is changed so as to enlarge the set of
parameters to be trained. The red line refers to the spectral training, with
N2+ N3+ N4 adjusted eigenvalues. The blue line stands for a neural
network trained in direct space, the target of the optimisation being a
subset made of N2+ N3+ N4 weights, randomly selected from the available
pool of N1N2+ N2N3+ N3N4 tunable parameters. The black line reports the
accuracy of the linear neural network when training the full set of N1N2+
N2N3+ N3N4 weights. The green line refers to the spectral learning when
eigenvalues and eigenvectors are simultaneously trained.

Table 1 Average performance.

MNIST best mean accuracy
over the explored range

Linear wide Linear deep Non-linear

Constrained NN 87.8% 90.8% 88.9%
Train Λ 90.9% 91.5% 93.5%
Unconstrained NN 91.0% 91.2% 96.4%
Train Λ, Φ 92.2% 91.8% 97.3%

The best (average) performance of the different training schemes is displayed.
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sought classification. In the proposed implementation, and to
recover a feedforward architecture in direct space, we have
assumed a nested indentation of the eigenvectors. Entangling the
eigenvectors referred to successive stacks is the key for a recursive
processing of the data, from the input to the output layer.
Employing other non-orthogonal basis could eventually allow to
challenge different topologies in direct space and shed novel light
on the surprising ability of deep networks to cope with the
assigned tasks.

In future perspective, it would be interesting to characterise the
solutions attained with the spectral method, following the strategy
outlined in ref. 26. Further, it could be interesting to combine the
spectral approach to other existing schemes which have been
devised to improve the computational performance of deep neural
networks, without significant loss in final recognition accuracy21,27.
As a side remark, we notice that the authors of ref. 22 propose a
single value decomposition of the rectangular matrix of the weights
that links two adjacent layers. In our setting, the problem is
reformulated in a space of extended dimensions which enables one
to deal with square matrices and so invoke the spectral theorem.
The eigenvalues are therefore stemming from the adjacency matrix
that sets the architecture of the underlying neural network. The
similitude of the two approaches solely resides in the idea of
highlighting a (different) subset of parameters to be optimized. Our
analysis is specifically aimed at implementing and testing an effi-
cient learning scheme anchored to reciprocal space (which we have
challenged against standard approaches to the learning). The focus
of ref. 22 is on testing the behaviour of entropies and mutual
information throughout learning.
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