215,495 research outputs found
Network Density of States
Spectral analysis connects graph structure to the eigenvalues and
eigenvectors of associated matrices. Much of spectral graph theory descends
directly from spectral geometry, the study of differentiable manifolds through
the spectra of associated differential operators. But the translation from
spectral geometry to spectral graph theory has largely focused on results
involving only a few extreme eigenvalues and their associated eigenvalues.
Unlike in geometry, the study of graphs through the overall distribution of
eigenvalues - the spectral density - is largely limited to simple random graph
models. The interior of the spectrum of real-world graphs remains largely
unexplored, difficult to compute and to interpret.
In this paper, we delve into the heart of spectral densities of real-world
graphs. We borrow tools developed in condensed matter physics, and add novel
adaptations to handle the spectral signatures of common graph motifs. The
resulting methods are highly efficient, as we illustrate by computing spectral
densities for graphs with over a billion edges on a single compute node. Beyond
providing visually compelling fingerprints of graphs, we show how the
estimation of spectral densities facilitates the computation of many common
centrality measures, and use spectral densities to estimate meaningful
information about graph structure that cannot be inferred from the extremal
eigenpairs alone.Comment: 10 pages, 7 figure
Sampling and Reconstruction of Sparse Signals on Circulant Graphs - An Introduction to Graph-FRI
With the objective of employing graphs toward a more generalized theory of
signal processing, we present a novel sampling framework for (wavelet-)sparse
signals defined on circulant graphs which extends basic properties of Finite
Rate of Innovation (FRI) theory to the graph domain, and can be applied to
arbitrary graphs via suitable approximation schemes. At its core, the
introduced Graph-FRI-framework states that any K-sparse signal on the vertices
of a circulant graph can be perfectly reconstructed from its
dimensionality-reduced representation in the graph spectral domain, the Graph
Fourier Transform (GFT), of minimum size 2K. By leveraging the recently
developed theory of e-splines and e-spline wavelets on graphs, one can
decompose this graph spectral transformation into the multiresolution low-pass
filtering operation with a graph e-spline filter, and subsequent transformation
to the spectral graph domain; this allows to infer a distinct sampling pattern,
and, ultimately, the structure of an associated coarsened graph, which
preserves essential properties of the original, including circularity and,
where applicable, the graph generating set.Comment: To appear in Appl. Comput. Harmon. Anal. (2017
The Grone-Merris Conjecture
In spectral graph theory, Grone and Merris conjecture that the spectrum of
the Laplacian matrix of a finite graph is majorized by the conjugate degree
sequence of this graph. We give a complete proof for this conjecture.Comment: The paper is accepted by Transactions of the American Mathematical
Societ
Spectral Theory of Infinite Quantum Graphs
We investigate quantum graphs with infinitely many vertices and edges without
the common restriction on the geometry of the underlying metric graph that
there is a positive lower bound on the lengths of its edges. Our central result
is a close connection between spectral properties of a quantum graph and the
corresponding properties of a certain weighted discrete Laplacian on the
underlying discrete graph. Using this connection together with spectral theory
of (unbounded) discrete Laplacians on infinite graphs, we prove a number of new
results on spectral properties of quantum graphs. Namely, we prove several
self-adjointness results including a Gaffney type theorem. We investigate the
problem of lower semiboundedness, prove several spectral estimates (bounds for
the bottom of spectra and essential spectra of quantum graphs, CLR-type
estimates) and study spectral types.Comment: Dedicated to the memory of M. Z. Solomyak (16.05.1931 - 31.07.2016
Tensor Spectral Clustering for Partitioning Higher-order Network Structures
Spectral graph theory-based methods represent an important class of tools for
studying the structure of networks. Spectral methods are based on a first-order
Markov chain derived from a random walk on the graph and thus they cannot take
advantage of important higher-order network substructures such as triangles,
cycles, and feed-forward loops. Here we propose a Tensor Spectral Clustering
(TSC) algorithm that allows for modeling higher-order network structures in a
graph partitioning framework. Our TSC algorithm allows the user to specify
which higher-order network structures (cycles, feed-forward loops, etc.) should
be preserved by the network clustering. Higher-order network structures of
interest are represented using a tensor, which we then partition by developing
a multilinear spectral method. Our framework can be applied to discovering
layered flows in networks as well as graph anomaly detection, which we
illustrate on synthetic networks. In directed networks, a higher-order
structure of particular interest is the directed 3-cycle, which captures
feedback loops in networks. We demonstrate that our TSC algorithm produces
large partitions that cut fewer directed 3-cycles than standard spectral
clustering algorithms.Comment: SDM 201
- …
