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Spectral Theory of Infinite Quantum Graphs

Pavel Exner, Aleksey Kostenko , Mark Malamud and
Hagen Neidhardt

Dedicated to the memory of M. Z. Solomyak (16.05.1931–31.07.2016).

Abstract. We investigate quantum graphs with infinitely many vertices
and edges without the common restriction on the geometry of the under-
lying metric graph that there is a positive lower bound on the lengths of
its edges. Our central result is a close connection between spectral prop-
erties of a quantum graph and the corresponding properties of a certain
weighted discrete Laplacian on the underlying discrete graph. Using this
connection together with spectral theory of (unbounded) discrete Lapla-
cians on infinite graphs, we prove a number of new results on spectral
properties of quantum graphs. Namely, we prove several self-adjointness
results including a Gaffney-type theorem. We investigate the problem of
lower semiboundedness, prove several spectral estimates (bounds for the
bottom of spectra and essential spectra of quantum graphs, CLR-type
estimates) and study spectral types.
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1. Introduction

During the last two decades, quantum graphs became an extremely popular
subject because of numerous applications in mathematical physics, chemistry
and engineering. Indeed, the literature on quantum graphs is vast and exten-
sive and there is no chance to give even a brief overview of the subject here.
We only mention a few recent monographs and collected works with a compre-
hensive bibliography: [13,14,35,51,89]. The notion of quantum graph refers to
a graph G considered as a one-dimensional simplicial complex and equipped
with a differential operator (“Hamiltonian”). The idea has it roots in the 1930s
when it was proposed to model free electrons in organic molecules [88,99]. It
was rediscovered in the late 1980s and since that time it found numerous ap-
plications. Let us briefly mention some of them: superconductivity theory in
granular and artificial materials [6,97], microelectronics and waveguide the-
ory [38,81,82], Anderson localization in disordered wires [1,2,34], chemistry
(including studying carbon nanostructures) [10,33,61,70,90], photonic crystal
theory [11,41,68], quantum chaotic systems [51,62] and others. These applica-
tions of quantum graphs usually involve modeling of waves of various nature
propagating in thin branching media which looks like a thin neighborhood Ω
of a graph G. A rigorous justification of such a graph approximation is a non-
trivial problem. It was first addressed in the situation where the boundary of
the “fat graph” is Neumann (see, e.g., [71,98]); a full solution was obtained
only recently [22,37]. The Dirichlet case is more difficult, and work remains to
be done (see, e.g., [48,89]).

From the mathematical point of view, quantum graphs are interesting be-
cause they are a good model to study properties of quantum systems depending
on geometry and topology of the configuration space. They exhibit a mixed
dimensionality being locally one-dimensional but globally multi-dimensional
of many different types. To the best of our knowledge, however, their analysis
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usually includes the assumption that there is a positive lower bound on the
lengths of the graph edges. (We are aware only of a few works dealing with
metric graphs having edges of arbitrarily small length, however, with some
other additional rather restrictive assumptions, e.g., radially symmetric trees
[18,104], some classes of fractals [7–9], graphs having finite total length or
diameter [19].) Our main aim is to investigate spectral properties of quan-
tum graphs avoiding this rather restrictive hypothesis on the geometry of the
underlying metric graph G.

To proceed further, we need to introduce briefly some notions and struc-
tures (a detailed description is given in Sect. 2). Let Gd = (V, E) be a (com-
binatorial) graph with finite or countably infinite sets of vertices V and edges
E . For two different vertices u, v ∈ V, we shall write u ∼ v if there is an edge
e ∈ E connecting u with v. For every v ∈ V, Ev denotes the set of edges incident
to the vertex v. To simplify our considerations, we assume that the graph Gd

is connected and there are no loops or multiple edges. (Let us mention that
these assumptions can be made without loss of generality, see Remark 2.1.) In
what follows, we shall also assume that Gd is equipped with a metric, that is,
each edge e ∈ E is assigned with the length |e| = le ∈ (0,∞) in a suitable way.
A graph Gd equipped with a metric | · | is called a metric graph and is denoted
by G = (Gd, | · |). Identifying every edge e with the interval (0, |e|), one can
introduce the Hilbert space L2(G) =

⊕
e∈E L2(e) and then the Hamiltonian

H which acts in this space as the (negative) second derivative − d2

dx2
e

on every
edge e ∈ E . To give H the meaning of a quantum mechanical energy operator,
it must be self-adjoint. To make it symmetric, one needs to impose appropri-
ate boundary conditions at the vertices. Kirchhoff conditions (4.1) or, more
generally, δ-type conditions with interactions strength α : V → R

{
f is continuous at v,
∑

e∈Ev
f ′

e(v) = α(v)f(v),
v ∈ V,

are the most standard ones (cf. [14]). Restricting further to functions vanish-
ing everywhere except finitely many edges, we end up with the pre-minimal
symmetric operator H0

α (see Sect. 3 for a precise definition). The first question
which naturally appears in this context is, of course, whether this operator is
essentially self-adjoint in L2(G) (which is the same that its closure Hα = H0

α

is self-adjoint). To the best of our knowledge, in the case when both sets V
and E are countably infinite, the self-adjointness of Hα was established when
infe∈E |e| > 0 and the interactions strength α : V → R is bounded from below
in a suitable sense (see, e.g., [14, Chapter I] and [72]). The subsequent analysis
of Hα was then naturally performed under these rather restrictive assumptions
on G and α.

We propose a new approach to investigate spectral properties of infinite
quantum graphs. To this goal, we exploit the boundary triplets machinery
[28,47,101], a powerful approach to extension theory of symmetric operators
(see Appendix A for further details and references). Consider in L2(G) the
following operator
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Hmin =
⊕

e∈E
He,min, He,min = − d2

dx2
e

, dom(He,min) = W 2,2
0 (e), (1.1)

where W 2,2
0 (e) denotes the standard Sobolev space on the edge e ∈ E . Clearly,

Hmin is a closed symmetric operator in L2(G) with deficiency indices
n±(Hmin) = 2#(E). In particular, the deficiency indices are infinite when
G contains infinitely many edges and hence in this case the description of self-
adjoint extensions and the study of their spectral properties is a very nontrivial
problem. Despite some skepticism (see, e.g., [35, p.483]), we are indeed able to
construct a suitable boundary triplet for the maximal operator Hmax := H∗

min

in the case when infe∈E |e| = 0. As an immediate outcome, the boundary
triplets approach enables us to parameterize the set of all self-adjoint (respec-
tively, symmetric) extensions of Hmin in terms of self-adjoint (respectively,
symmetric) “boundary linear relations.” Furthermore, it turns out (see Propo-
sition 3.3) that the boundary relation (to be more precise, its operator part)
parameterizing the quantum graph operator Hα is unitarily equivalent to the
weighted discrete Laplacian hα defined in �2(V;m) by the following expression

(τG,αf)(v) :=
1

m(v)

(
∑

u∈V
b(u, v)(f(v) − f(u)) + α(v)f(v)

)

, v ∈ V, (1.2)

where the weight functions m : V → (0,∞) and b : V × V → [0,∞) are given
by

m : v �→
∑

e∈Ev

|e|, b : (u, v) �→
{

|eu,v|−1, u ∼ v,

0, u �∼ v.
(1.3)

Therefore, spectral properties of the quantum graph Hamiltonian Hα and the
discrete Laplacian hα are closely connected. For example, we show that (see
Theorem 3.5):

(i) The deficiency indices of Hα and hα are equal. In particular, Hα is self-
adjoint if and only if hα is self-adjoint.

Assume additionally that the operator Hα (and hence also the operator hα)
is self-adjoint. Then:
(ii) Hα is lower semibounded if and only if hα is lower semibounded.
(iii) The total multiplicities of negative spectra of Hα and hα coincide. In par-

ticular, Hα is nonnegative if and only if the operator hα is nonnegative.
Moreover, negative spectra of Hα and hα are discrete simultaneously.

(iv) Hα is positive definite if and only if hα is positive definite.
(v) If in addition hα is lower semibounded, then inf σess(Hα) > 0

(inf σess(Hα) = 0) exactly when inf σess(hα) > 0 (respectively,
inf σess(hα) = 0).

(vi) The spectrum of Hα is purely discrete if and only if the number #{e ∈
E : |e| > ε} is finite for every ε > 0 and the spectrum of hα is purely
discrete.
Spectral theory of discrete Laplacians on graphs has a long and venerable

history due to its numerous applications in probability (e.g., random walks on
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graphs) and physics (see the monographs [23,25,30,74,75,105,107] and refer-
ences therein). If infe∈E |e| = 0, then the corresponding discrete Laplacian hα

might be unbounded even if α ≡ 0. A significant progress in the study of un-
bounded discrete Laplacians has been achieved during the last decade (see the
surveys [58,59]) and we apply these recent results to investigate spectral prop-
erties of quantum graphs in the case when infe∈E |e| = 0. For example, using
(i), we establish a Gaffney-type theorem (see Corollary 4.9 and Remark 4.10)
by simply applying the corresponding result for discrete operators (see [54,
Theorem 2]): if G equipped with a natural path metric is complete as a met-
ric space, then H0 is self-adjoint. Notice that by a Hopf–Rinow-type theorem
from [54], (V, �0) is complete as a metric space if and only if G satisfies the
so-called finite ball condition (see, e.g., [14, Assumption 1.3.5]). Combining
(iv) and (v) with the Cheeger-type and the volume growth estimates for dis-
crete Laplacians (see [12,42,58,60]), we prove several spectral estimates for
H0. In particular, we prove necessary (Theorem 4.21(iii)) and sufficient (The-
orem 4.20(iii)) discreteness conditions for H0. In the case #E = ∞, it follows
from (vi) that the condition infe∈E |e| = 0 is necessary for the spectrum of H0

to be discrete and this is the very reason why the discreteness problem has not
been addressed previously for quantum graphs (perhaps, the only exception is
the case of radially symmetric trees since for this class of quantum graphs it
is possible to reduce the spectral analysis to the analysis of Sturm–Liouville
operators, see [104, §5.3]).

Let us also stress that some of our results are new even if infe∈E |e| > 0.
In this case, the discrete Laplacian h0 is bounded and hence we immediately
conclude by applying (i) that Hα is self-adjoint for any α : V → R (Corol-
lary 5.2). On the other hand, h0 is bounded if and only if the weighted degree
function Deg : V → R defined by

Deg : v �→ 1
m(v)

∑

u∈Ev

b(u, v) =

∑
e∈Ev

|e|−1

∑
e∈Ev

|e|

is bounded on V (see [27]). Therefore, Hα is self-adjoint for any α : V → R

in this case too (Lemma 5.1). Let us stress that the condition infe∈E |e| > 0
is sufficient for Deg to be bounded on V, however, it is not necessary (see
Example 4.7).

The duality between spectral properties of continuous and discrete oper-
ators on finite graphs and networks was observed by physicists in the 1960s
and then by mathematicians in the 1980s [20,32,85,92,106]. For a particular
class, the so-called equilateral graphs, it is even possible to prove a sort of
unitary equivalence between continuous and discrete operators [16,86,87] (ac-
tually, this can also be viewed as the analog of Floquet theory for periodic
Sturm–Liouville operators, cf. [3]). However, in all those cases infe∈E |e| > 0
is satisfied and the corresponding difference Laplacian in contrast to (1.2) is
given by

(τf)(v) :=
1

deg(v)

(
∑

u∼v

f(v) − f(u)
|eu,v| + α(v)f(v)

)

, v ∈ V, (1.4)
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that is, the weight function m is replaced by the combinatorial degree function
(see, e.g., [89, Chapter II], [95]). These functions coincide only if the graph is
equilateral and then both (1.2) and (1.4) (with α ≡ 0) reduce to the combina-
torial Laplacian on Gd. Moreover, in the case infe∈e |e| = 0, spectral properties
of operators defined by (1.2) and (1.4) can completely be different and spectral
properties of (1.4) do not correlate with those of the quantum graph operator
Hα (this can be seen by simple examples of Jacobi matrices, see Remark 3.7).

In fact, it is not difficult to discover certain connections just by con-
sidering the corresponding quadratic forms. Namely, let f be a continuous
compactly supported function on the metric graph G, which is linear on every
edge. Setting fV := f �V , we then get (see Remark 3.8 for more details)

tHα
[f ] :=

(
Hαf, f

)
L2(G)

=
1
2

∑

u,v∈V
b(v, u)|f(v) − f(u)|2 +

∑

v∈V
α(v)|f(v)|2

=
(
hαfV , fV

)
�2(V;m)

=: thα
[fV ]. (1.5)

If α : V → [0,∞), then the closures of both forms tHα
and thα

are regular
Dirichlet forms whenever the corresponding graph G is locally finite (cf. [45]).
Clearly, (1.5) establishes a close connection between the corresponding Mar-
kovian semigroups as well as between Markov processes on the corresponding
graphs. However, let us stress that it was exactly the above statement (iii)
which helped us to improve and complete one result of G. Rozenblum and M.
Solomyak [95] on the behavior of the heat semigroups generated by H0 and
h0 (see Theorem 5.17 and Remark 5.18): for D > 2 the following equivalence
holds

‖e−tH0‖L1→L∞ ≤ C1t
−D/2, t > 0 ⇐⇒ ‖e−th0‖�1→�∞ ≤ C2t

−D/2, t > 0.

Here C1 and C2 are positive constants, which do not depend on t. Let us also
mention that the estimates of this type are crucial in proving Rozenblum–
Cwikel–Lieb (CLR)-type estimates for both Hα and hα (see Sect. 5.2).

Our results continue and extend the previous work [63–66] on 1-D
Schrödinger operators and matrix Schrödinger operators with point interac-
tions, respectively. Notice that (see Example 3.6) in this case the line or a half
line can be considered as the simplest metric graph (a regular tree with d = 2)
and then the corresponding discrete Laplacian is simply a Jacobi (tri-diagonal)
matrix (with matrix coefficients in the case of matrix Schrödinger operators).

Let us now finish the introduction by briefly describing the content of the
article. The core of the paper is Sect. 2, where we construct a suitable boundary
triplet for the operator Hmax (Theorem 2.3 and Corollary 2.5) by applying
an efficient procedure suggested recently in [64,78] (see also Appendix A.4).
The central result of Sect. 2 is Theorem 2.9, which describes basic spectral
properties (self-adjointness, lower semiboundedness, spectral estimates, etc.)
of proper extensions HΘ of Hmin given by

HΘ := Hmax � dom(HΘ),

dom(HΘ) := {f ∈ dom(Hmax) : {Γ0f,Γ1} ∈ Θ},
(1.6)
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in terms of the corresponding properties of the boundary relation Θ. In par-
ticular, (1.6) establishes a one-to-one correspondence between self-adjoint (re-
spectively, symmetric) linear relations in an auxiliary Hilbert space H and
self-adjoint (respectively, symmetric) extensions of the minimal operator Hmin.

In Sect. 3, we specify Theorem 2.9 to the case of the Hamiltonian Hα.
First of all, we find the boundary relation parameterizing the operator Hα in
the sense of (1.6). As it was already mentioned, its operator part is unitarily
equivalent to the discrete Laplacians (1.2)–(1.3) and hence this fact establishes
a close connection between spectral properties of Hα and hα (Theorem 3.5).

In Sects. 4 and 5, we exploit recent advances in spectral theory of un-
bounded discrete Laplacians and prove a number of results on quantum graphs
with Kirchhoff and δ-couplings at vertices avoiding the standard restriction
infe∈E |e| > 0. More specifically, the case of Kirchhoff conditions is considered
in Sect. 4, where we prove several self-adjointness results and also provide es-
timates on the bottom of the spectrum as well as on the essential spectrum of
H0. We discuss the self-adjointness of Hα in Sect. 5.1. On the one hand, we
show that Hα is self-adjoint for any α : V → R whenever the weighted degree
function Deg is bounded on V. In the case when Deg is locally bounded on
V, we prove self-adjointness and lower semiboundedness of Hα under certain
semiboundedness assumptions on α. We also demonstrate by simple examples
that these results are sharp. Section 5.2 is devoted to CLR-type estimates for
quantum graphs. In Sect. 5.3, we investigate spectral types of Hα. Moreover,
using the Cheeger-type estimates for hα, we prove several spectral bounds for
Hα.

As it was already mentioned, Theorem 2.9 is valid for all self-adjoint
extensions of Hmin, however, the corresponding boundary relation may have
a complicated structure when we go beyond the δ couplings. In Sect. 6, we
briefly discuss the case of the so-called δ′

s-couplings, cf. [31]. It turns out that
the corresponding boundary operator is a difference operator, however, its
order depends on the vertex degree function of the underlying discrete graph.

In Appendix A, we collect necessary definitions and facts about linear
relations in Hilbert spaces, boundary triplets and Weyl functions.

Notation

N, Z, R, C have standard meaning; Z≥0 = Z ∩ [0,∞).
a ∨ b = max(a, b), a ∧ b = min(a, b).
H and H denote separable complex Hilbert spaces; IH and OH are, re-

spectively, the identity and the zero maps on H; In := ICn and On := OCn . By
B(H) and C(H) we denote, respectively, the sets of bounded and closed linear
operators in H; C̃(H) is the set of closed linear relations in H; Sp(H) is the
two-sided von Neumann–Schatten ideal in H, p ∈ (0,∞]. In particular, S1(H),
S2(H) and S∞(H) denote the trace ideal, the Hilbert–Schmidt ideal and the
set of compact operators in H.
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Let T = T ∗ be a self-adjoint linear operator (relation) in H. For a Borel set
Ω ⊆ R, by ET (Ω) we denote the corresponding orthogonal spectral projection
of T . Moreover, we set

T− := T ET

(
(−∞, 0)

)
, κ−(T ) = dim ran(T−) = tr(T−),

that is, κ−(T ) is the total multiplicity of the negative spectrum of T . Note
that κ−(T ) is the number (counting multiplicities) of negative eigenvalues
of T if the negative spectrum of T is discrete. In this case, we denote by
λj(T ) := λj(|T−|) their absolute values numbered in the decreasing order and
counting their multiplicities.

2. Boundary Triplets for Graphs

Let us set up the framework. Let Gd = (V, E) be a (undirected) graph, that is,
V is a finite or countably infinite set of vertices and E is a finite or countably
infinite set of edges. For two vertices u, v ∈ V we shall write u ∼ v if there is
an edge eu,v ∈ E connecting u with v. For every v ∈ V, we denote the set of
edges incident to the vertex v by Ev and

deg(v) := #{e : e ∈ Ev} (2.1)

is called the degree (or combinatorial degree) of a vertex v ∈ V. A path P of
(combinatorial) length n ∈ Z≥0 is a subset of vertices {v0, v1, . . . , vn} ⊂ V
such that n vertices {v0, v1, . . . , vn−1} are distinct and vk−1 ∼ vk for all k ∈
{1, . . . , n}. A graph Gd is called connected if for any two vertices there is a path
connecting them.

We also need the following assumptions on the geometry of Gd:

Hypothesis 2.1. Gd is connected and there are no loops or multiple edges.

Remark 2.1. Let us stress that the above assumptions can be made without loss
of generality. Namely, if Gd is not connected, then one simply needs to consider
each connected component separately. The simplicity assumption can always
be achieved by adding the so-called inessential vertices (vertices of degree two
and equipped with Kirchhoff conditions) to the corresponding metric graph.
Indeed, adding or removing such a vertex does not change spectral properties
of the corresponding quantum graph (see, e.g., [14, Remark 1.3.3]).

Let us assign each edge e ∈ E with length |e| ∈ (0,∞)1 and direction,2

that is, each edge e ∈ E has one initial vertex eo and one terminal vertex ei.
In this case G = (V, E , | · |) = (Gd, | · |) is called a metric graph. Moreover,
every edge e ∈ E can be identified with the interval (0, |e|) and hence we can
introduce the Hilbert space L2(G) of functions f : G → C such that

L2(G) =
⊕

e∈E
L2(e) =

{

f = {fe}e∈E : fe ∈ L2(e),
∑

e∈E
‖fe‖2

L2(e) < ∞
}

.

1 We shall always assume that there are no edges having an infinite length, however, see
Remark 3.1(ii).
2 This means that the graph Gd is directed.
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Let us equip G with the Laplace operator. For every e ∈ E , consider the
maximal operator He,max acting on functions f ∈ W 2,2(e) as a negative second
derivative. Now consider the maximal operator on G defined by

Hmax =
⊕

e∈E
He,max, He,max = − d2

dx2
e

, dom(He,max) = W 2,2(e). (2.2)

For every fe ∈ W 2,2(e) the following quantities

fe(eo) := lim
x→eo

fe(x), fe(ei) := lim
x→ei

fe(x), (2.3)

and

f ′
e(eo) := lim

x→eo

fe(x) − fe(eo)
|x − eo|

, f ′
e(ei) := lim

x→ei

fe(x) − fe(ei)
|x − ei|

, (2.4)

are well defined.
We begin with a simple and well known fact (see, e.g., [64]).

Lemma 2.2. Let e ∈ E and He,max be the corresponding maximal operator. The
triplet Π0

e = {C2,Γ0
0,e,Γ

0
1,e}, where the mappings Γ0

0,e, Γ0
1,e : W 2,2(e) → C

2 are
defined by

Γ0
0,e : f �→

(
fe(eo)
fe(ei)

)

, Γ0
1,e : f �→

(
f ′

e(eo)
f ′

e(ei)

)

, (2.5)

is a boundary triplet for He,max. Moreover, the corresponding Weyl function
M0

e : C\R → C
2×2 is given by3

M0
e : z �→

√
z

(
− cot(|e|√z) csc(|e|√z)
csc(|e|√z) − cot(|e|√z)

)

. (2.6)

Proof. The proof is straightforward and we leave it to the reader. �
It is easy to see that the Green’s formula

(Hmaxf, g)L2(G) − (f,Hmaxg)L2(G) =
∑

e∈E
f ′

e(ei)ge(ei)∗ − fe(ei)(g′
e(ei))∗

+
∑

e∈E
f ′

e(eo)ge(eo)∗ − fe(eo)(g′
e(eo))∗

=
∑

v∈V

∑

e∈Ev

f ′
e(v)ge(v)∗ − fe(v)(g′

e(v))∗,

(2.7)

holds for all f , g ∈ dom(Hmax) ∩ L2
c(G), where L2

c(G) is a subspace consist-
ing of functions from L2(G) vanishing everywhere on G except finitely many
edges, and the asterisk denotes complex conjugation. One would expect that
a boundary triplet for Hmax can be constructed as a direct sum Π = ⊕e∈EΠ0

e

of boundary triplets Π0
e, however, it is not true once infe∈E |e| = 0 (see [64]

for further details). Using Theorem A.10, we proceed as follows (see also [64,

3 Here
√
z denotes the principal branch of the square root with the cut along the negative

semi-axis.
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Section 4]). First of all, (2.6) extends to a meromorphic function with simple
poles π2

|e|2 k2, k ∈ N. Hence for every e ∈ E , we set

Re :=
√

|e|I2, Qe := lim
z→0

M0
e (z) =

1
|e|

(
−1 1
1 −1

)

, (2.8)

and then we define the new mappings Γ0,e, Γ1,e : W 2,2(e) → C
2 by

Γ0,e := ReΓ0
0,e, Γ1,e := R−1

e (Γ0
1,e − QeΓ0

0,e), (2.9)

that is,

Γ0,e : f �→
(√

|e|fe(eo)
√

|e|fe(ei)

)

, Γ1,e : f �→ 1
|e|3/2

(
|e|f ′

e(eo) + fe(eo) − fe(ei)
|e|f ′

e(ei) − fe(eo) + fe(ei)

)

.

(2.10)

Clearly, Πe = {C2,Γ0,e,Γ1,e} is also a boundary triplet for Hmax,e. In addition,
the following claim holds.

Theorem 2.3. Suppose supe∈E |e| < ∞. Then the direct sum of boundary
triplets

Π =
⊕

e∈E
Πe = {H,Γ0,Γ1}, H =

⊕

e∈E
C

2, Γj :=
⊕

e∈E
Γj,e, j ∈ {0, 1},

(2.11)
is a boundary triplet for the operator Hmax. Moreover, the corresponding Weyl
function is given by

M(z) =
⊕

e∈E
Me(z), Me(z) = R−1

e (M0
e (z) − Qe)R−1

e , (2.12)

for all z ∈ C\R.

Proof. By Theorem A.10, we need to verify either of conditions (A.19) or
(A.20). However, this can be done as in the proof of [64, Theorem 4.1] line by
line since

Me(z) =
√

z

|e|

(
− cot(|e|√z) + 1

|e| csc(|e|√z) − 1
|e|

csc(|e|√z) − 1
|e| − cot(|e|√z) + 1

|e|

)

, z ∈ C\R,

and we omit the details. �

Moreover, similarly to [64, Proposition 4.4], one can also prove the fol-
lowing

Lemma 2.4. Suppose supe∈E |e| < ∞. Then the Weyl function M(x) given by
(2.12) uniformly tends to −∞ as x → −∞, that is, for every N > 0 there is
xN < 0 such that

M(x) < −N · IH

for all x < xN .
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We shall also need another boundary triplet for Hmax, which can be
obtained from the triplet Π by regrouping all its components with respect to
the vertices:

HG =
⊕

v∈V
C

deg(v), Γ̃j =
⊕

v∈V
Γ̃j,v, j ∈ {0, 1}, (2.13)

where
Γ̃0,v : f �→

{√
|e|fe(v)

}
e∈Ev

, (2.14)

and

Γ̃1,v : f �→
{
|e|−1/2f ′

e(v) + (−1)qe(v)|e|−3/2(fe(eo) − fe(ei))
}

e∈Ev
, (2.15)

with

qe(v) :=

{
1, v = eo,

−1, v = ei.
(2.16)

Corollary 2.5. If supe∈E |e| < ∞, then the triplet ΠG = {HG , Γ̃0, Γ̃1} given by
(2.13)–(2.16) is a boundary triplet for Hmax.

Proof. Every f ∈ H and f̃ ∈ HG can be written as follows f = {(feo, fei)}e∈E
and f̃ = {(f̃e,v)e∈Ev

}v∈V , respectively. Define the operator U : H → HG by

U : {(feo, fei)}e∈E �→ {(fe,v)e∈Ev
}v∈V , fe,v :=

{
feo, v = eo,

fei, v = ei.
(2.17)

Clearly, U is a unitary operator and moreover

Γ̃j = UΓj , j ∈ {0, 1}. (2.18)

This completes the proof. �

Let us also mention other important relations.

Corollary 2.6. The Weyl function MG corresponding to the boundary triplet
(2.13)–(2.16) is given by

MG(z) = UM(z)U−1, (2.19)

where M is the Weyl function corresponding to the triplet Π constructed in
Theorem 2.3 and U is the operator defined by (2.17).

Remark 2.7. If

Γ0
0 :=

⊕

e∈E
Γ̃0

j,e, Γ0
1 :=

⊕

e∈E
Γ̃0

1,e,

where Γ0
0 and Γ0

1 are given by (2.5), then

Γ̃0
0 := UΓ0

0, Γ̃0
1 := UΓ0

1, (2.20)
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have the following form

Γ̃0
0 =

⊕

v∈V
Γ̃0

0,v, Γ̃0
0,v : f �→ {fe(v)}e∈Ev

, (2.21)

and
Γ̃0

1 =
⊕

v∈V
Γ̃0

1,v, Γ̃0
1,v : f �→ {f ′

e(v)}e∈Ev
. (2.22)

Corollary 2.8. Let MG be the Weyl function corresponding to the boundary
triplet ΠG. Then MG(x) uniformly tends to −∞ as x → −∞.

Proof. It is an immediate consequence of Lemma 2.4 and (2.19). �

Let Θ be a linear relation in HG and define the following operator

HΘ := Hmax � dom(HΘ),

dom(HΘ) :=
{
f ∈ dom(Hmax) : {Γ̃0f, Γ̃1f} ∈ Θ

}
,

(2.23)

where the mappings Γ̃0 and Γ̃1 are defined by (2.13)–(2.15). Since ΠG is a
boundary triplet for Hmax, every proper extension of the operator Hmin has
the form (2.23). Moreover, by Theorem A.3, (2.23) establishes a bijective corre-
spondence between the set Ext(Hmin) of proper extensions of Hmin and the set
of all linear relations in HG . The next result summarizes basic spectral prop-
erties of operators HΘ characterized in terms of the corresponding boundary
relation Θ. In particular, we are able to describe all self-adjoint extensions of
the minimal operator Hmin.

Theorem 2.9. Suppose supe∈E |e| < ∞. Also, let Θ be a linear relation in HG
and let HΘ be the corresponding operator (2.23). Then:

(i) H∗
Θ = HΘ∗ .

(ii) HΘ is closed if and only if the linear relation Θ is closed.
(iii) HΘ is symmetric if and only if Θ is symmetric and, moreover,

n±(HΘ) = n±(Θ).

In particular, HΘ is self-adjoint if and only if so is Θ.

Assume in addition that Θ is a self-adjoint linear relation (hence HΘ is
also self-adjoint). Then:

(iv) HΘ is lower semibounded if and only if the same is true for Θ.
(v) HΘ is nonnegative (positive definite) if and only if Θ is nonnegative

(positive definite).
(vi) The total multiplicities of negative spectra of HΘ and Θ coincide,

κ−(HΘ) = κ−(Θ). (2.24)

(vii) For every p ∈ (0,∞], the following equivalence holds

H−
Θ ∈ Sp(L2(G)) ⇐⇒ Θ− ∈ Sp(HG). (2.25)
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(viii) If the negative spectrum of HΘ (or equivalently Θ) is discrete, then for
every γ ∈ (0,∞) the following equivalence holds

λj(HΘ) = j−γ(a + o(1)) ⇐⇒ λj(Θ) = j−γ(b + o(1)), (2.26)

as j → ∞, where either ab �= 0 or a = b = 0.
(ix) If, in addition, Θ is lower semibounded, then inf σess(HΘ) > 0

(inf σess(HΘ) = 0) holds exactly when inf σess(Θ) > 0 (respectively,
inf σess(Θ) = 0).

(x) Also, let Θ̃ = Θ̃∗ ∈ C̃(HG). Then for every p ∈ (0,∞] the following
equivalence holds for the corresponding Neumann–Schatten ideals

(HΘ − i)−1 − (HΘ̃ − i)−1 ∈ Sp(L2(G)) ⇐⇒ (Θ − i)−1 − (Θ̃ − i)−1 ∈ Sp(HG).
(2.27)

If dom(Θ) = dom(Θ̃) holds in addition, then

Θ − Θ̃ ∈ Sp(HG) =⇒ (HΘ − i)−1 − (HΘ̃ − i)−1 ∈ Sp(L2(G)). (2.28)

(xi) The spectrum of HΘ is purely discrete if and only if #{e ∈ E : |e| > ε}
is finite for every ε > 0 and the spectrum of the linear relation Θ is
purely discrete.

Proof. Consider the boundary triplet Π constructed in Theorem 2.3. Items (i),
(ii), (iii) and (x) follow from Theorem A.3. Item (iv) follows from Theorem A.8
and Corollary 2.8.

Next consider the corresponding Weyl function M given by (2.12). Clearly,

Me(0) = R−1
e (M0

e (0) − Qe)R−1
e = R−1

e (Qe − Qe)R−1
e = O2

for all e ∈ E . Then (2.12) together with (A.10) implies that M(0) = OH ∈
B(H). Moreover, in view of (2.19), we get

MG(0) = UM(0)U−1 = OHG ∈ [HG ].

Noting that

H0
e := He,max � ker(Γ0,e) = HF

e

is the Friedrichs extension of He,min = (He,max)∗, we immediately conclude
that

H0 := Hmax � ker(Γ̃0) = Hmax � ker(Γ0) =
⊕

e∈E
H0

e = HF (2.29)

is the Friedrichs extension of Hmin = (Hmax)∗. Moreover,

σ(H0
e) =

{
π2n2

|e|2
}

n∈N

(2.30)

and hence

inf σ(HF ) = inf
e∈E

inf σ(HF
e ) = inf

e∈E
π2

|e|2 =
π2

(supe∈E |e|)2 > 0.

Now items (v)–(viii) follow from Theorem A.6 and item (ix) follows from
Theorem A.9.
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Finally, it follows from (2.29) and (2.30) that the spectrum of HF is
purely discrete if and only if #{e ∈ E : |e| > ε} is finite for every ε > 0. This
fact together with Theorem A.3(iv) implies item (xi). �

Remark 2.10. The assumption supe∈E |e| < ∞ in Theorem 2.9 can be dropped
either by modifying the underlying graph G by adding additional vertices or by
modifying the construction of the boundary triplet in Theorem 2.3. However,
both options lead to a more cumbersome form of the corresponding boundary
relation Θ and we decided to exclude this case from our considerations in order
to keep the exposition as transparent as possible.

Remark 2.11. The analogs of statements (iii) and (iv) of Theorem 2.9 were
obtained in [72] under the additional restrictive assumption infe∈E |e| > 0.
Notice that if the latter holds, then the regularization (2.8)–(2.10) is not needed
and one can construct a boundary triplet for the maximal operator Hmax by
summing up the triplets (2.5).

3. Parameterization of Quantum Graphs with δ-Couplings

Turning to a more specific problem, we need to make further assumptions on
the geometry of a connected metric graph G.

Hypothesis 3.1. G is locally finite, that is, every vertex v ∈ V has finitely many
neighbors, 1 ≤ deg(v) < ∞ for all v ∈ V. Moreover, there is a finite upper
bound on the lengths of edges,

sup
e∈E

|e| < ∞. (3.1)

Let α : V → R be given and equip every vertex v ∈ V with the so-called
δ-type vertex condition:

{
f is continuous at v,
∑

e∈Ev
f ′

e(v) = α(v)f(v),
(3.2)

Let us define the operator Hα as the closure of the operator H0
α given by

H0
α =Hmax � dom(H0

α),

dom(H0
α) = {f ∈ dom(Hmax) ∩ L2

c(G) : f satisfies (3.2), v ∈ V},
(3.3)

where L2
c(G) consists of functions from L2(G) vanishing everywhere on G except

finitely many edges.

Remark 3.1. A few remarks are in order:

(i) If deg(v0) = ∞ for some v0 ∈ V, then it was shown in [72, Theorem 5.2]
that a Kirchhoff-type boundary condition at v0 [as well as (3.2)] leads to
an operator which is not closed. Moreover, it turns out that its closure
gives rise to Dirichlet boundary condition at v0, i.e., disconnected edges.
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(ii) Assumption (3.1) is of a technical character. Of course, the case of edges
having an infinite length would require separate considerations in Sect. 2
and this will be done elsewhere. On the other hand, the case when all
edges have finite length but there is no uniform upper bound can be
reduced to the case of graphs satisfying (3.1) either by adding additional
inessential vertices or by slight modifications in the considerations of
Sect. 2. Note also that those allow to include situations when the graph
is not simple, that is, it has loops and multiple edges (cf. Hypothesis 2.1).

Let us emphasize that the operator Hα is symmetric. Moreover, simple
examples show that Hα might not be self-adjoint.

Example 3.2. (1-D Schrödinger operator with δ-interactions) Consider the pos-
itive semi-axis (0,∞) and let {xk}k≥0 ⊂ [0,∞) be a strictly increasing sequence
such that x0 = 0 and xk ↑ +∞. Considering xk as vertices and the intervals
ek = (xk−1, xk) as edges, we end up with the simplest infinite metric graph.
Notice that for every real sequence α = {αk}k≥0 with α0 = 0 conditions (3.2)
take the following form: f ′(0) = 0 and

f(xk−) = f(xk+) =: f(xk),

f ′(xk+) − f ′(xk−) = αkf(xk), k ∈ N.
(3.4)

The operator Hα is known as the one-dimensional Schrödinger operator with δ-
interactions on X = {xk}k∈N (see, e.g., [4]), and the corresponding differential
expression is given by

HX,α = − d2

dx2
+

∑

k∈N

αkδ(x − xk). (3.5)

It was proved in [64] that HX,α is self-adjoint if
∑

k |ek|2 = ∞ (the latter is
known in the literature as the Ismagilov condition, see [55]). On the other hand
(see [64, Proposition 5.9]), if

∑
k |ek|2 < ∞ and in addition |ek−1| · |ek+1| ≥

|ek|2 for all sufficiently large k, then the operator HX,α is symmetric with
n±(HX,α) = 1 whenever α = {αk}k∈N satisfies the following condition

∞∑

k=1

|ek+1|
∣
∣
∣αk +

1
|ek| +

1
|ek+1|

∣
∣
∣ < ∞.

This effect was discovered by C. Shubin Christ and G. Stolz [103, pp. 495–496]
in the special case |ek| = 1/k and αk = −(2k + 1), k ∈ N. For further details
and results, we refer to [65,80]. �

Our main aim is to find a boundary relation Θα parameterizing the op-
erator Hα in terms of the boundary triplet ΠG given by (2.13)–(2.15). First of
all, notice that at each vertex v ∈ V the boundary conditions (3.2) have the
following form

DvΓ̃0
1,vf = Cv,αΓ̃0

0,vf, (3.6)

where Γ̃0
0,vf = {fe(v)}e∈Ev

, Γ̃0
1,vf = {f ′

e(v)}e∈Ev
(see (2.21) and (2.22)) and

the matrices Cv,α, Dv ∈ C
deg(v)×deg(v) are given by
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Cv,α =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 −1 0 0 . . . 0
0 1 −1 0 . . . 0
0 0 1 −1 . . . 0

. . . . . . . . . . . . . . . . . .
0 0 0 0 . . . −1

α(v) 0 0 0 . . . 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

Dv =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0 . . . 0
0 0 0 0 . . . 0
0 0 0 0 . . . 0

. . . . . . . . . . . . . . . . . .
0 0 0 0 . . . 0
1 1 1 1 . . . 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

(3.7)

It is easy to check that these matrices satisfy the Rofe–Beketov conditions (see
Proposition A.1), that is

Cv,αD∗
v = DvC∗

v,α, rank(Cv,α|Dv) = deg(v), (3.8)

and hence

Θv,α :=
{
{f, g} ∈ C

deg(v) × C
deg(v) : Cv,αf = Dvg

}

is a self-adjoint linear relation in C
deg(v). Now set

C0
α :=

⊕

v∈V
Cv,α, D0 :=

⊕

v∈V
Dv.

Clearly, f ∈ dom(Hmax) ∩ L2
c(G) satisfies

D0Γ̃0
1f = C0

αΓ̃0
0f,

if and only if f ∈ dom(H0
α) = dom(Hα) ∩ L2

c(G). In view of (2.20), we get

Γ̃0 = R̃Γ̃0
0, Γ̃1 = R̃−1(Γ̃0

1 − Q̃Γ̃0
0)

where

R̃ = URU−1, Q̃ = UQU−1,

and R = ⊕e∈ERe, Q = ⊕e∈EQe and U are defined by (2.8) and (2.17), respec-
tively. Hence we conclude that f ∈ dom(H0

α) if and only if f satisfies

DΓ̃1f = CαΓ̃0f,

where

D = D0R̃, Cα = (C0
α − D0Q̃)R̃−1.

Thus we are led to specification of the boundary relation parameterizing
the operator H0

α. Namely, consider now the linear relation Θ0
α defined in HG

by
Θ0

α = {{f, g} ∈ HG,c × HG,c : Cαf = Dg}, (3.9)
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where HG,c consists of vectors of HG having only finitely many nonzero coor-
dinates. It is not difficult to see that Θ0

α is symmetric and hence it admits the
decomposition (see Appendix A.1)

Θ0
α = Θ0

op ⊕ Θ0
mul , Θ0

mul = {0} × mul (Θ0
α),

and Θ0
op is the operator part of Θ0

α. Clearly,

mul (Θ0
α) = ker(D) ∩ HG,c = R̃−1 ker(D0) ∩ HG,c.

Let f = {fv}v∈V ∈ HG , where fv = {fv,e}e∈Ev
. Next we observe that

R̃ =
⊕

v∈V
R̃v, R̃v = diag(

√
|e|)e∈Ev

,

and

Q̃ =
⊕

v∈V
Q̃v + Q̃0, Q̃v = −diag(|e|−1)e∈Ev

,

where

(Q̃0f)v,e = |ev,u|−1fu,e, u :=

{
ei, v = eo,

eo, v = ei.

Noting that

Hop = dom(Θ0
α) = ran(D∗) = ran(R̃(D0)∗),

we get

Hop = span{fv}v∈V , fv = {fv
u,e}, fv

u,e =

{√
|e|, u = v,

0, u �= v.

Let us now show that fv ∈ dom(Θ0
α) for every v ∈ V. Denote by Pv the

orthogonal projection in HG onto Hv
G := span{fv}. Next notice that

PuCαfv = Pu(C0
α − D0Q̃)R̃−1fv =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
0, 0, . . . , 0, α(v) +

∑

e∈Ev

|e|−1

︸ ︷︷ ︸
deg(v)

)
, u = v,

(
0, 0, . . . , 0, −|eu,v|−1

︸ ︷︷ ︸
deg(u)

)
, u ∼ v,

0, u �∼ v, u �= v.

Finally, take g ∈ HG,c and consider

(Dg)u = (D0R̃g)u =
(
0, 0, . . . , 0,

∑

e∈Eu

√
|e|gu,e

︸ ︷︷ ︸
deg(u)

)
.

Therefore, define gv ∈ Hop by

Pugv = {
√

|e|}e∈Eu
×

⎧
⎪⎪⎨

⎪⎪⎩

1
m(v) (α(v) +

∑
e∈Ev

|e|−1), u = v,

− 1√
|eu,v|m(u)

, u ∼ v,

0, u �∼ v, u �= v,

(3.10)
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where the function m : V → (0,∞) is given by

m : v �→
∑

e∈Ev

|e|, v ∈ V. (3.11)

Clearly,

Cαfv = Dgv,

and hence fv ∈ dom(Θ0
α). Moreover, (3.10) immediately implies that

gv =
1

m(v)

(

α(v) +
∑

e∈Ev

|e|−1

)

fv −
∑

u∼v

1
√

|eu,v|m(u)
fu =: Θ0

opfv. (3.12)

Noting that {fv}v∈V is an orthogonal basis in Hop and ‖fv‖2 = m(v) for all
v ∈ V, we conclude that the operator part Θ0

op of Θ0
α is unitarily equivalent to

the following pre-minimal difference operator h0
α defined in �2(V) by

(τG,αf)(v) =
1

√
m(v)

(
∑

u∈V
b(v, u)

( f(v)
√

m(v)
− f(u)

√
m(u)

)
+

α(v)
√

m(v)
f(v)

)

, v ∈ V,

(3.13)
where b : V × V → [0,∞) is given by

b(v, u) =

{
|ev,u|−1, v ∼ u,

0, v �∼ u.
(3.14)

More precisely, we define the operator h0
α in �2(V) on the domain dom(h0

α) :=
Cc(V) by

h0
α : dom(h0

α) → �2(V)
f �→ τG,αf

. (3.15)

Here and below Cc(V) is the space of finitely supported functions on V. Notice
that Hypothesis 3.1 guarantees that h0

α is well defined since τG,αf ∈ �2(V) for
every f ∈ Cc(V). Moreover, h0

α is symmetric and let us denote its closure by
hα.

Thus we proved the following result.

Proposition 3.3. Assume that Hypotheses 2.1 and 3.1 are satisfied. Also, let Hα

be the closure of the pre-minimal operator (3.3) and let ΠG be the boundary
triplet (2.13)–(2.15). Then

dom(Hα) = {f ∈ dom(Hmax) : {Γ̃0f, Γ̃1f} ∈ Θα}, (3.16)

where Θα is a linear relation in HG defined as the closure of Θ0
α given by (3.9).

Moreover, the operator part Θop
α of Θα is unitarily equivalent to the operator

hα = h0
α acting in �2(V).

We also need another discrete Laplacian. Specifically, in the weighted
Hilbert space �2(V;m), we consider the minimal operator defined by the fol-
lowing difference expression

(τ̃G,αf)(v) :=
1

m(v)

(
∑

u∈V
b(v, u)(f(v) − f(u)) + α(v)f(v)

)

, v ∈ V. (3.17)
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Lemma 3.4. The pre-minimal operator h̃0
α associated with (3.17) in �2(V;m)

is unitarily equivalent to the operator h0
α defined by (3.13), (3.15) and acting

in �2(V).

Proof. It suffices to note that

h̃0
α = U−1h0

αU,

where the operator

U : �2(V;m) → �2(V)
f �→ √

mf

isometrically maps �2(V;m) onto �2(V). �

In the following we shall use hα as the symbol denoting the closures of
both operators. Now we are ready to formulate our main result.

Theorem 3.5. Assume that Hypotheses 2.1 and 3.1 are satisfied. Let α : V →
R and Hα be a closed symmetric operator associated with the graph G and
equipped with the δ-type coupling conditions (3.2) at the vertices. Also, let hα

be the discrete Laplacian defined either by (3.13) in �2(V) or by (3.17) in
�2(V;m), where the functions m : V → (0,∞) and b : V ×V → [0,∞) are given
by (3.11) and (3.14), respectively. Then:

(i) The deficiency indices of Hα and hα are equal and

n+(Hα) = n−(Hα) = n±(hα) ≤ ∞. (3.18)

In particular, Hα is self-adjoint if and only if hα is self-adjoint.
Assume in addition that Hα (and hence also hα) is self-adjoint. Then:
(ii) The operator Hα is lower semibounded if and only if the operator hα is

lower semibounded.
(iii) The operator Hα is nonnegative (positive definite) if and only if the op-

erator hα is nonnegative (respectively, positive definite).
(iv) The total multiplicities of negative spectra of Hα and hα coincide,

κ−(Hα) = κ−(hα). (3.19)

(v) Moreover, the following equivalence

H−
α ∈ Sp(L2(G)) ⇐⇒ h−

α ∈ Sp(�2(V;m)), (3.20)

holds for all p ∈ (0,∞]. In particular, negative spectra of Hα and hα are
discrete simultaneously.

(vi) If h−
α ∈ S∞(�2(V;m)), then the following equivalence holds for all γ ∈

(0,∞)

λj(Hα) = j−γ(a + o(1)) ⇐⇒ λj(hα) = j−γ(b + o(1)), (3.21)

as j → ∞, where either ab �= 0 or a = b = 0.
(vii) If, in addition, hα is lower semibounded, then inf σess(Hα) > 0

(inf σess(Hα) = 0) exactly when inf σess(hα) > 0 (respectively,
inf σess(hα) = 0).
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(viii) The spectrum of Hα is purely discrete if and only if the number #{e ∈
E : |e| > ε} is finite for every ε > 0 and the spectrum of the operator hα

is purely discrete.
(ix) If α̃ : V → R is such that hα̃ = h∗

α̃, then the following equivalence

(Hα − i)−1−(Hα̃ − i)−1 ∈ Sp(L2(G)) ⇐⇒ (hα − i)−1−(hα̃ − i)−1 ∈ Sp(�2(V)),
(3.22)

holds for all p ∈ (0,∞].

Proof. We only need to comment on the first equality in (3.18) since the rest
immediately follows from Theorem 2.9 and Proposition 3.3. However, the first
equality in (3.18) follows from the equality of deficiency indices of the oper-
ator hα. Indeed, n+(hα) = n−(hα) by the von Neumann theorem since hα

commutes with the complex conjugation. �

Let us demonstrate Theorem 3.5 by applying it to the 1-D Schrödinger
operator with δ-interactions (3.5) considered in Example 3.2.

Example 3.6. Let HX,α be the Schrödinger operator (3.5) with δ-interactions
on the positive semi-axis (0,∞). Recall that in this case V = {xk}k≥0 and
E = {ek}k∈N, where ek = (xk−1, xk). By (3.11) and (3.14), we get

m(xk) =

{
|e1|, k = 0,

|ek| + |ek+1|, k ∈ N,

where |ek| = xk − xk−1 for all k ∈ N, and

b(xk, xn) =

{
|xk − xn|−1, |n − k| = 1,

0, |n − k| �= 1.

Setting f = {fk}k≥0 with fk := f(xk), we see that the difference expression
(3.13) is just a three-term recurrence relation

(τ̃αf)k =

{
b1(f0 − f1), k = 0,

−bkfk−1 + akfk − bk+1fk+1, k ∈ N,

where

ak =
αk + |ek|−1 + |ek+1|−1

m(xk)
, bk =

|ek|−1

√
m(xk−1)m(xk)

, (3.23)

for all k ∈ N. Hence the corresponding operator hα is the minimal operator
associated in �2(Z≥0) with the Jacobi (tri-diagonal) matrix

J =

⎛

⎜
⎜
⎜
⎜
⎝

b1 −b1 0 0 . . .
−b1 a1 −b2 0 . . .
0 −b2 a2 −b3 . . .
0 0 −b3 a3 . . .

. . . . . . . . . . . . . . .

⎞

⎟
⎟
⎟
⎟
⎠

. (3.24)

In this particular case, Theorem 3.5 is established in [64] and in the recent
paper [66] it was extended to the case of Schrödinger operators in a space of
vector-valued functions. �
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Remark 3.7. Let us emphasize the difference between the operators generated
by (1.2) and (1.4) in the case infe∈E |e| = 0. Indeed, replacing m by deg in
(3.23) and noting that deg(xk) = 2 for all k ∈ N, we end up with the Jacobi
matrix, which does not reflect spectral properties of the Hamiltonian HX,α.
For example, setting |ek| = 1/k, k ∈ N, (3.13) with deg in place of m then
gives rise to the matrix

J̃ =
1
2

⎛

⎜
⎜
⎜
⎜
⎝

√
2 −

√
2 0 0 . . .

−
√

2 α1 + 3 −2 0 . . .
0 −2 α2 + 5 −3 . . .
0 0 −3 α3 + 7 . . .

. . . . . . . . . . . . . . .

⎞

⎟
⎟
⎟
⎟
⎠

. (3.25)

The Carleman test shows that the minimal operator associated with J̃ in
�2(Z≥0) is always self-adjoint, however, J with αk := −(2k + 1) for all k ∈ N

defines in �2(Z≥0) the minimal symmetric operator with deficiency indices
(1, 1) (cf. Example 3.2). In particular, in this case, the spectrum of every self-
adjoint extension of J (and hence of HX,α!) is purely discrete, however, the
spectrum of J̃ with this choice of α is purely absolutely continuous and covers
the whole real line R (cf. [56]). The latter shows that one cannot replace (1.2)
by (1.4) in Theorem 3.5 if infe∈E |e| = 0.

Remark 3.8. One can notice a connection between the discrete Laplacian (3.17)
and the operator Hα without the boundary triplets approach. Namely, consider
the kernel L = ker(Hmax) of Hmax, which consists of piecewise linear functions
on G. Every f ∈ L can be identified with its values {f(ei), f(eo)}e∈E on V.
First of all, notice that

‖f‖2
L2(G) =

∑

e∈E
|e| |f(ei)|2 + Re(f(ei)f(eo)∗) + |f(eo)|2

3
. (3.26)

Now restrict ourselves to the subspace Lcont of L which consists of continuous
functions vanishing everywhere on G except finitely many edges. Clearly,

∑

e∈E
|e|(|f(ei)|2 + |f(eo)|2) =

∑

v∈V
|f(v)|2

∑

e∈Ev

|e| = ‖f‖2
�2(V;m)

defines an equivalent norm on Lcont. On the other hand, for every f ∈ Lcont

we get

(Hαf, f) =
∑

e∈E

∫

e

|f ′(xe)|2dxe +
∑

v∈V
α(v)|f(v)|2

=
∑

e∈E

|f(eo) − f(ei)|2
|e| +

∑

v∈V
α(v)|f(v)|2

=
1
2

∑

u,v∈V
b(v, u)|f(v) − f(u)|2 +

∑

v∈V
α(v)|f(v)|2 =: tG,α[f ].
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However, one can easily check that the latter is the quadratic form of the dis-
crete operator hα defined in �2(V;m) by (3.17), that is, the following equality

(
hαf, f

)
�2(V;m)

= tG,α[f ] =
1
2

∑

u,v∈V
b(v, u)|f(v) − f(u)|2 +

∑

v∈V
α(v)|f(v)|2

(3.27)
holds for every f ∈ Cc(V).

4. Quantum Graphs with Kirchhoff Vertex Conditions

As in Sect. 3, if it is not explicitly stated, we shall always assume that G
satisfies Hypotheses 2.1 and 3.1. In this section, we restrict ourselves to the
case α ≡ 0, that is, we consider the quantum graph with Kirchhoff vertex
conditions {

f is continuous at v,
∑

e∈Ev
f ′

e(v) = 0,
(4.1)

at every vertex v ∈ V. Let us denote by H0 the closure of the corresponding
operator H0

0 given by (3.3). By Theorem 3.5, the spectral properties of H0 are
closely connected with those of h0, where h0 is the discrete Laplacian defined
in �2(V;m) by the difference expression

(τG,0f)(v) =
1

m(v)

∑

u∼v

b(u, v)(f(v) − f(u)), v ∈ V, (4.2)

and the functions m : V → (0,∞), b : V ×V → [0,∞) are defined by (3.11) and
(3.14), respectively,

m(v) =
∑

e∈Ev

|e|, b(u, v) =

{
|eu,v|−1, u ∼ v,

0, u �∼ v.
(4.3)

Note that both operators H0 and h0 are symmetric and nonnegative. Moreover,
Theorem 3.5 immediately implies the following result.

Corollary 4.1. Assume that Hypotheses 2.1 and 3.1 are satisfied. Then:
(i) The deficiency indices of H0 and h0 are equal and

n+(H0) = n−(H0) = n±(h0) ≤ ∞.

In particular, H0 is self-adjoint if and only if h0 is self-adjoint.
Assume in addition that H0 (and hence also h0) is self-adjoint. Then:

(ii) H0 is positive definite if and only if the same is true for h0.
(iii) inf σess(H0) > 0 if and only if inf σess(h0) > 0.
(iv) The spectrum of H0 is purely discrete if and only if the number #{e ∈

E : |e| > ε} is finite for every ε > 0 and the spectrum of the operator h0

is purely discrete.

Our next goal is to use the spectral theory of discrete Laplacian (4.2) to
prove new results for quantum graphs.
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4.1. Intrinsic Metrics on Graphs

During the last decades, a lot of attention has been paid to the study of spectral
properties of the discrete Laplacian (4.2). Let us recall several basic concepts.
Suppose that the metric graph G = (V, E , | · |) satisfies Hypotheses 2.1 and 3.1.
The function Deg : V → (0,∞) defined by

Deg : v �→ 1
m(v)

∑

u∈Ev

b(u, v) =

∑
e∈Ev

|e|−1

∑
e∈Ev

|e| , (4.4)

is called the weighted degree. Notice that by [27, Lemma 1] (see also [59, Theo-
rem 11]), h0 is bounded on �2(V;m) (and hence self-adjoint) if and only if the
weighted degree Deg is bounded on V. In this case (see [27, Lemma 1]),

sup
v∈V

Deg(v) ≤ ‖h0‖ ≤ 2 sup
v∈V

Deg(v). (4.5)

A pseudometric � on V is a symmetric function � : V × V → [0,∞) such
that �(v, v) = 0 for all v ∈ V and satisfies the triangle inequality. Notice that
every function p : E → (0,∞) generates a path pseudometric �p on V with
respect to the graph G via

�p(u, v) := inf
P={v0,...,vn} : u=v0, v=vn

∑

k

p(evk−1,vk
). (4.6)

Here the infimum is taken over all paths connecting u and v.
Following [43] (see also [12,58]), a pseudometric � on V is called intrinsic

with respect to the graph G if
∑

u∈Ev

b(u, v)�(u, v)2 ≤ m(v) (4.7)

holds on V. Notice that for any given locally finite graph an intrinsic metric
always exists.

Example 4.2. (a) Let p : E → (0,∞) be defined by

p : eu,v �→
(
Deg(u) ∨ Deg(v)

)−1/2
. (4.8)

It is straightforward to check that the corresponding path pseudometric
�p is intrinsic (see [54, Example 2.1], [58]).

(b) Another pseudometric was suggested in [24]. Namely, let � be a path
pseudometric generated by the function p : E → (0,∞)

p : eu,v �→
(

m(u) ∧ m(v)
b(eu,v)

)1/2

. (4.9)

It was shown in [54] that this metric is equivalent to the metric (4.8) if
and only if the combinatorial degree deg is bounded on V.

�

It turns out that for the discrete operator h0 given by (4.2), (4.3) the
natural path metric induced by the metric graph G is intrinsic.
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Lemma 4.3. The function p0 : E → (0,∞) given by

p0(e) := |e|, e ∈ E , (4.10)

generates an intrinsic (with respect to the graph G) path metric �0 on V.

Proof. First of all, notice that for functions (4.3) condition (4.7) takes the
following form

∑

u∼v

�(u, v)2

|eu,v| ≤
∑

u∼v

|eu,v| (4.11)

for every v ∈ V. Clearly (4.11) holds with � = �0 for all v ∈ V with equality
instead of inequality since

�0(u, v) =
1

b(u, v)
= |eu,v|

whenever u ∼ v. �

For any v ∈ V and r ≥ 0, the distance ball Br(v) with respect to a
pseudometric � is defined by

Br(v) := {u ∈ V : �(u, v) ≤ r}. (4.12)

Finally for a set X ⊂ V, the combinatorial neighborhood of X is given by

Ω(X) := {u ∈ V : u ∈ X or there exists v ∈ X such that u ∼ v}. (4.13)

4.2. Self-Adjointness of H0

In this and the following subsections we shall always assume that the metric
graph G satisfies Hypotheses 2.1 and 3.1. We begin with the following result.

Theorem 4.4. If the weighted degree Deg is bounded on V,

sup
v∈V

Deg(v) = sup
v∈V

∑
e∈Ev

|e|−1

∑
e∈Ev

|e| < ∞, (4.14)

then the operator H0 is self-adjoint.

Proof. Consider the corresponding boundary operator h0 defined by (4.2).
Since Deg is bounded on V, the operator h0 is bounded on �2(V;m) (see (4.5))
and hence self-adjoint. It remains to apply Corollary 4.1(i). �

As an immediate corollary of this result, we obtain the following widely
known sufficient condition (cf. [14, Theorem 1.4.19]).

Corollary 4.5. If infe∈E |e| > 0, then the operator H0 is self-adjoint.

Proof. By Theorem 4.4, it suffices to check that Deg is bounded on V:

sup
v∈V

∑
e∈Ev

|e|−1

∑
e∈Ev

|e| ≤ sup
v∈V

deg(v)(infe∈E |e|)−1

deg(v) infe∈E |e| =
1

(infe∈E |e|)2 < ∞. �

A few remarks are in order:
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Remark 4.6. (i) Numerous graphs considered both in theoretical purposes
and in applications belong to this category [14]. Prominent examples are
equilateral graphs (see, e.g., [20,86,87]) and periodic graphs (with a finite
number of edges in the period cell).

(ii) Notice that under Hypothesis 3.1, the conditions infe∈E |e| > 0 and (4.14)
are equivalent only if supv∈V deg(v) < ∞. It is not difficult to construct
examples of graphs such that infe∈E |e| = 0 and condition (4.14) is satis-
fied (see Example 4.7).

Example 4.7. Let {nk}k∈N be a strictly increasing sequence of natural numbers.
Consider the following metric graph: Let o be a distinguished vertex which has
n1 emanating edges. Moreover, suppose that one of those edges has length 1

n1

and the other edges have a fixed length, say 1. Next, suppose every vertex in
the first combinatorial sphere (i.e., every v ∼ o) has n2 emanating edges and
again their lengths equal 1 except one edge having length 1

n2
. Continuing this

procedure to infinity, we end up with an infinite metric graph (called a rooted
tree) such that

inf
e∈E

|e| = inf
k≥1

1
nk

= 0, sup
e∈E

|e| = 1.

It is easy to see that

sup
v∈V

Deg(v) = sup
v∈V

∑
e∈Ev

|e|−1

∑
e∈Ev

|e| = sup
k≥1

nk+1 − 1 + nk + nk+1

nk+1 − 1 + 1
nk

+ 1
nk+1

< 4.

Hence, by Theorem 4.4, the corresponding Hamiltonian H0 is self-adjoint.
Moreover, we shall prove below (see Lemma 5.1) that in this case the corre-
sponding Hamiltonian Hα with δ interactions is self-adjoint for any α : V → R.

�

The next result shows that we can replace uniform boundedness of the
weighted degree function by the local one (in a suitable sense of course).

Theorem 4.8. Let � be an intrinsic pseudometric on V such that the weighted
degree Deg is bounded on every distance ball in V. Then H0 is self-adjoint.

Proof. By [54, Theorem 1], the operator h0 is self-adjoint. Hence by Corol-
lary 4.1(i) so is H0. �

As an immediate corollary we arrive at the following Gaffney-type theo-
rem for quantum graphs.

Corollary 4.9. Let �0 be a natural path metric on V defined in Lemma 4.3. If
(V, �0) is complete as a metric space, then H0 is self-adjoint.

Proof. By Hypothesis 3.1, the discrete graph Gd = (V, E) is locally finite. Hence
by a Hopf–Rinow-type theorem [54], (V, �0) is complete as a metric space if and
only if the distance balls in (V, �0) are finite. The latter immediately implies
that the weighted degree Deg is bounded on every distance ball in (V, �0). It
remains to apply Theorem 4.8. �
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Remark 4.10. Notice that Corollary 4.9 can be seen as the analog of the clas-
sical result of Gaffney [46] (see also [49, Chapter 11] for further details), who
established self-adjointness of the Dirichlet Laplacian on a complete Riemann-
ian manifold. Indeed, | · | generates a natural path metric on a metric graph
G = (V, E , | · |) and it is easy to check that G equipped with this metric is
complete as a metric space if and only if (V, �0) is complete as a metric space.

Let us also mention that Corollary 4.9 proves the self-adjointness of H0

if the metric graph G satisfies the finite ball condition (see [14, Assumption
1.3.5]), which is equivalent to the completeness of (V, �0).

On the one hand, simple examples demonstrate that Corollary 4.9 is
sharp. Indeed, consider the second derivative on an interval (0, �) with � ∈
(0,∞]. As in Example 3.2, let {xk}k≥0 be a strictly increasing sequence such
that xk ↑ � as k → ∞. In this case, Kirchhoff conditions are equivalent to the
continuity of a function and its derivative at every vertex xk (see (3.4)). The
corresponding operator is self-adjoint only if � = ∞. However, we can improve
Corollary 4.9 by replacing the natural path metric �0 by another path metric
(which is not intrinsic!) generated by the weight function m.

Theorem 4.11. Let pm : E → (0,∞) be defined by

pm : eu,v �→ m(u) + m(v), (4.15)

where m is given by (4.3), and let �m be the corresponding path metric (4.6).
If (V, �m) is complete as a metric space, then H0 is self-adjoint.

Proof. Applying the Hopf–Rinow theorem from [54] once again, (V, �m) is
complete as a metric space if and only if all infinite geodesics have infinite
length, which is further equivalent to the fact that distance balls in (V, �m)
are finite. The former statement implies, in particular, that for every infinite
path P = {vn}n≥0 ⊂ V its length

|P| =
∑

n≥0

pm(evn,vn+1)

is infinite. However, (4.15) implies the following estimate
N∑

n=0

m(vn) ≤
N∑

n=0

pm(evn,vn+1) ≤ 2
N∑

n=0

m(vn),

for every finite path PN = {vn}N
n=0 in V. Hence for every infinite path P, we

conclude that the sum
∑

n≥0

m(vn)

is infinite. By Theorem 6 from [60], the latter implies that the operator h0 is
self-adjoint in �2(V;m). It remains to apply Corollary 4.1(i). �

As an immediate corollary of Theorem 4.11, we obtain the following im-
provement in Corollary 4.5.
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Corollary 4.12. If
inf
v∈V

m(v) = inf
v∈V

∑

e∈Ev

|e| > 0, (4.16)

then the operator H0 is self-adjont.

Proof. Clearly, every infinite geodesic in (V, �m) has infinite length if (4.16)
is satisfied. According to Hypothesis 3.1, G is a locally finite graph and hence
combining the Hopf–Rinow-type theorem [54] with Theorem 4.11 we finish the
proof. �

Remark 4.13. (i) Notice that the self-adjointness of h0 in �2(V;m) under
Assumption (4.16) was first mentioned in [52, Corollary 9.2].

(ii) Clearly, �0(u, v) ≤ �m(u, v) for all u, v ∈ V and hence every infinite
geodesic in (V, �0) with infinite length will have an infinite length in
(V, �m). However, the converse statement is not true which can be seen
by simple examples.

Example 4.14. Let G ⊂ R
2 be a planar graph constructed as follows (see the

figure depicted below). Let X = {xk}k≥1 ⊂ [0,∞) be a strictly increasing
sequence with x1 = 0. We set V = X × {−1, 0, 1} and denote vk,n = (xk, n),
k ∈ N and n ∈ {−1, 0, 1}. Now we define the set of edges by the following rule:
vn,k ∼ vm,j if either n = m and |k − j| = 1 or k = j = 0 and |n − m| = 1.
Finally, we assign lengths as the usual Euclidean length in R

2: the length
of every vertical edge is equal to 1, and the length of the horizontal edge
evk,0,vk+1,0 is equal to xk+1 − xk.

•

v1,0

•

v2,0

•

v3,0

•

v4,0

•

v5,0

•

v1,1

•

v2,1

•

v3,1

•

v4,1

•

v5,1

•

v1,−1

•

v2,−1

•

v3,−1

•

v4,−1

•

v5,−1

Clearly, (V, �0) is complete as a metric space if and only if
∑

k≥0

|evk,0,vk+1,0 | =
∑

k≥1

(xk+1 − xk) = lim
k→∞

xk = ∞.

On the other hand,

m(v) =
∑

u∼v

|eu,v| ≥ 1

for all v ∈ V = X×{−1, 0, 1}, and hence (V, �m) is always complete. Therefore,
the corresponding operator H0 is always self-adjoint in view of Corollary 4.12.

�
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Remark 4.15. The graphs considered in Examples 4.7 and 4.14 belong to
a special class of graphs, the so-called trees. More precisely, a path P =
{v0, v1, . . . , vn} ⊂ V is called a cycle if v0 = vn. A connected graph Gd = (V, E)
without cycles is called a tree. Notice that for any two vertices u, v on a tree
T = (V, E) there is exactly one path P connecting u and v and hence every
path on a tree is a geodesic with respect to a path metric.

Let us finish this subsection with some sufficient conditions for H0 to
have nontrivial deficiency indices. Let �1/2 be a path metric on V generated
by the function p1/2 : E → (0,∞) defined by

p1/2 : e �→
√

|e|. (4.17)

If (V, �1/2) is not complete as a metric space, we then denote the metric com-
pletion of (V, �1/2) by V and V∞ := V\V. By [24, Lemma 2.1], every function
f : V → R such that the corresponding quadratic form

tG,0[f ] =
1
2

∑

u,v∈V
b(v, u)|f(v) − f(u)|2

is finite, is uniformly Lipschitz with respect to the metric �1/2 and hence
admits a continuation F to V as a Lipschitz function. Following [24], we set
f∞ := F � V∞.

Proposition 4.16. If (V, �1/2) is not complete as a metric space and there is
f : V → R such that tG,0[f ] < ∞ and f∞ �= 0, then H0 is not a self-adjoint
operator.

Proof. Follows from [24, Theorem 3.1] and Corollary 4.1(i). �

A few remarks are in order.

Remark 4.17. (i) The question on deficiency indices of h0 in this case was
left in [24] as an open problem.

(ii) Clearly, Proposition 4.16 provides only a sufficient condition for H0 to
have nontrivial deficiency indices.

Example 4.18. Let us slightly modify the metric graph considered in Exam-
ple 4.14 by shrinking the vertical edges. It is not difficult to show (see, e.g.,
[18,19]) that the corresponding operator H0 is not self-adjoint if the graph G
has finite total length,

∑

e∈E
|e| < ∞. (4.18)

On the other hand, the latter is further equivalent to the fact that (V; �m) is
not complete as a metric space. Thus, Theorem 4.11 provides a self-adjointness
criterion in this case.

Let us also mention that we expect that the deficiency indices of the
operator H0 in the case (4.18) are equal to one. ♦
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Remark 4.19. Taking into account the above example, it is a rather natural
guess that Theorem 4.11 provides a self-adjointness criterion not only in the
special case considered in Example 4.18 but also for arbitrary graphs. However,
for radially symmetric trees, the operator H0 is not self-adjoint exactly when
the corresponding tree has finite total length, that is, (4.18) holds true (see
[104, §3.4] and also [18]). Moreover, it is easy to check that in this case (4.18)
is not equivalent to non-completeness of (V; �m).

4.3. Uniform Positivity and the Essential Spectrum of H0

For any vertex set X ⊂ V, the boundary ∂X of X is defined by

∂X := {(u, v) ∈ X × (V\X) : u ∼ v}. (4.19)

For every subset Ṽ ⊆ V, one defines the isoperimetric constant

C(Ṽ) := inf
X⊂Ṽ

#(∂X)
m(X)

, (4.20)

where

#(∂X) =
∑

(u,v)∈∂X

1, m(X) =
∑

v∈X

m(v) =
∑

v∈X

∑

e∈Ev

|e|. (4.21)

Moreover, we need the isoperimetric constant at infinity

Cess(V) := sup
X⊂V is finite

C(V\X). (4.22)

Theorem 4.20. Suppose that the operator H0 is self-adjoint. Then:

(i) H0 is uniformly positive whenever C(V) > 0.
(ii) inf σess(H0) > 0 if Cess(V) > 0.
(iii) The spectrum of H0 is purely discrete if the number #{e ∈ E : |e| > ε} is

finite for every ε > 0 and Cess(V) = ∞.

Proof. Let �0 be a natural path metric on V (see Lemma 4.3). Noting that �0

is an intrinsic metric on V, let us apply the Cheeger estimates from [12] to the
discrete Laplacian h0 given by (4.2), (4.3). First of all (see [12, Section 2.3]),
observe that the weighted area with respect to �0 is given by

Area(∂X) =
∑

(u,v)∈∂X

b(u, v)�0(u, v) =
∑

(u,v)∈∂X

1

|eu,v| |eu,v| =
∑

(u,v)∈∂X

1 = #(∂X).

Hence in this case, the Cheeger estimate for discrete Laplacians (see Theorems
3.1 and 3.3 in [12]) implies the following estimates

inf σ(h0) ≥ 1
2
C(V)2, inf σess(h0) ≥ 1

2
Cess(V)2. (4.23)

Combining these estimates with Corollary 4.1(ii)–(iii), we prove (i) and (ii),
respectively.

Applying [12, Theorem 3.3] once again, we see that the spectrum of h0 is
purely discrete if Cess(V) = ∞. Corollary 4.1(iv) finishes the proof of (iii). �
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Let Br(u) be a distance ball with respect to the natural path metric �0.
Following [53] (see also [58]), we define

μ := lim inf
r→∞

1
r

log m(Br(v)) (4.24)

for a fixed v ∈ V, and

μ := lim inf
r→∞

1
r

inf
v∈V

log
m(Br(v))
m(B1(v))

. (4.25)

Notice that μ does not depend on v ∈ V if V = ∪r≥0Br(v).

Theorem 4.21. Let (V, �0) be complete as a metric space. Then:

(i) inf σ(H0) = 0 if μ = 0.

If in addition m(V) = ∞, then

(ii) inf σess(H0) = 0 if μ = 0.
(iii) The spectrum of H0 is not discrete if μ < ∞.

Proof. By Corollary 4.9, the operator H0 is self-adjoint. The proof follows
from the growth volume estimates on the spectrum of h0. More precisely, the
following bounds were established in [53] (see also [42,58]):

inf σ(h0) ≤ 1
8
μ2, inf σess(h0) ≤ 1

8
μ2.

It remains to apply Corollary 4.1(ii)–(iv). �

We finish this section with a remark.

Remark 4.22. Connections between inf σ(H0) and inf σ(h0) and also between
inf σess(H0) and inf σess(h0) by means of Theorem A.6 and Theorem A.9 are
rather complicated since they involve the corresponding Weyl function, which
in our case has the form (2.19). In particular, it would be a rather complicated
task to use these connections and then apply the Cheeger-type bounds for
h0 to estimate inf σ(H0) and inf σess(H0). For example, the following upper
estimate, which easily follows from (2.29),

inf σ(H0) ≤ inf σ(HF ) =
π2

supe∈E |e|2

seems to be unrelated to inf σ(h0).

5. Spectral Properties of Quantum Graphs with δ-Couplings

In this section, we are going to investigate spectral properties of the Hamil-
tonian Hα with δ-couplings (3.2) at the vertices. Namely, let α : V → R and
the operator Hα be defined in L2(G) as the closure of (3.3). By Theorem 3.5,
its spectral properties correlate with the corresponding properties of the dis-
crete operator hα defined in �2(V;m) by (3.17). In this section, we shall always
assume Hypotheses 2.1 and 3.1.
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5.1. Self-Adjointness and Lower Semiboundedness

We begin with the study of the self-adjointness of the operator Hα. Our first
result can be seen as a straightforward extension of Theorem 4.4.

Lemma 5.1. If the weighted degree function Deg defined by (4.4) is bounded
on V, that is, (4.14) is satisfied, then the operator Hα is self-adjoint for any
α : V → R. Moreover, in this case the operator Hα is bounded from below if
and only if

inf
v∈V

α(v)
m(v)

> −∞. (5.1)

Proof. The operator of multiplication A defined in �2(V,m) on the maximal
domain dom(A) = �2(V; α2

m ) by

A : dom(A) → �2(V;m)
f �→ α

mf
(5.2)

is clearly self-adjoint. If Deg is bounded on V, then the operator h0 is bounded
and self-adjoint in �2(V;m) (see (4.5)). It remains to note that hα = h0 + A
and hence hα is a self-adjoint operator since the self-adjointness is stable under
bounded perturbations. Moreover, hα is bounded from below if and only if so
is A. The latter is clearly equivalent to (5.1). Theorem 3.5(i)–(ii) completes
the proof. �

As an immediate corollary, we arrive at the following result.

Corollary 5.2. If infe∈E |e| > 0, then the operator Hα is self-adjont for any
α : V → R. Moreover, Hα is bounded from below if and only if α satisfies
(5.1).

Proof. As in the proof of Corollary 4.5, we get

sup
v∈V

Deg(v) ≤ 1
(infe∈E |e|)2 < ∞.

It remains to apply Lemma 5.1. �

Remark 5.3. A few remarks are in order.
(i) Using the form approach, the self-adjointness claim in Corollary 5.2 is

proved in [14, Section I.4.5] under the additional assumption that α
deg : V

→ R is bounded from below,

inf
v∈V

α(v)
deg(v)

> −∞. (5.3)

If 0 < infe∈E |e| ≤ supe∈E |e| < ∞, then it is easy to see that (5.3) is
equivalent to (5.1).

(ii) Let us also mention that the graphs constructed in Examples 4.7 and
4.14 do not satisfy the condition of Corollary 5.2, however, they satisfy
(4.14) and hence, by Lemma 5.1, the corresponding Hamiltonian Hα is
self-adjoint for any α : V → R.
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The next result allows us to replace the boundedness assumption on the
weighted degree by the local boundedness, however, now we need to assume
some semiboundedness on α. We begin with the following result.

Proposition 5.4. If the operator H0 with Kirchhoff vertex conditions is self-
adjoint in L2(G), then the operator Hα with δ-couplings on V is self-adjoint
whenever the function α : V → R satisfies (5.1).

Proof. By Corollary 4.1(i), the discrete Laplacian h0 given by (4.2), (4.3)
is a nonnegative self-adjoint operator in �2(V;m). On the other hand, (5.1)
implies that the multiplication operator A defined by (5.2) is a self-adjoint
lower semibounded operator in �2(V;m). Noting that Cc(V) is a core for both
h0 and A since the graph is locally finite, we conclude that the operator hα

defined as a closure of the sum of h0 and A is a lower semibounded self-
adjoint operator in �2(V;m) (see [57, Chapter VI.1.6]). It remains to apply
Theorem 3.5(i). �

Remark 5.5. It follows from the proof of Proposition 5.4 and Theorem 3.5(ii)
that the operator Hα is lower semibounded in this case.

Combining Proposition 5.4 with the self-adjointness results from Sect. 4.2,
we can extend Corollary 5.2 to a much wider setting. Let us present only one
result in this direction.

Corollary 5.6. Let �m be the path metric (4.15), (4.6) on V. If (V, �m) is
complete as a metric space and α : V → R satisfies (5.1), then Hα is a lower
semibounded self-adjoint operator.

In particular, if the weight function m satisfies (4.16) and infv∈V α(v) >
−∞, then Hα is a lower semibounded self-adjoint operator.

Proof. Straightforward from Proposition 5.4, Theorem 4.11 and Corollary 4.12.
�

Remark 5.7. Let us stress that both conditions (completeness of (V, �m) and
(5.1)) are important. Indeed, 1-D Schrödinger operators with δ-type interac-
tions (see Example 3.2) immediately provide counterexamples. First of all, in
this setting completeness of (V, �m) means that we consider a Schrödinger
operator on an unbounded interval (either on the whole line R or on a semi-
axis). Clearly, in the case of a compact interval, the minimal operator is not
self-adjoint even in the case of trivial couplings α ≡ 0. On the other hand, it
was proved in [5] that in the case when all δ-interactions are attractive (αk < 0
for all k ∈ N), the operator Hα given by (3.5) is bounded from below if and
only if

sup
n∈N

∑

xk∈[n,n+1]

|αk| < ∞. (5.4)

In the case infk∈N(xk+1 −xk) > 0, the latter is equivalent to infk∈N αk > −∞.
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5.2. Negative Spectrum: CLR-Type Estimates

Let α : V → [0,∞) be a nonnegative function on V. The main focus of this sec-
tion is to obtain the estimates on the number of negative eigenvalues κ−(H−α)
of the operator H−α in terms of the interactions α : V → [0,∞). Note that by
Theorem 3.5(iv),

κ−(H−α) = κ−(h−α), (5.5)

where h−α is the (self-adjoint) discrete Laplacian defined either by (3.13) in
�2(V) or by (3.17) in �2(V;m).

Suppose that the discrete Laplacian h0 defined by (3.17) with α ≡ 0 is a
self-adjoint operator in �2(V;m) (see Sect. 4.2). It is well known (cf., e.g., [45])
that in this case h0 generates a symmetric Markovian semigroup e−th0 (one
can easily check that the Beurling–Deny conditions [26,45] are satisfied). Let
us consider the corresponding quadratic form in �2(V;m):

t0[f ] :=
1
2

∑

u,v∈V
b(v, u)|f(v) − f(u)|2, f ∈ dom(t0) := dom(h1/2

0 ), (5.6)

which is a regular Dirichlet form since G is locally finite (see [45,60]). Recall
that the functions m and b are given by (4.3).

The following theorem is a particular case of [73, Theorems 1.2–1.3] (see
also [44, Theorem 2.1]). As it was already mentioned, h0 generates a symmetric
Markovian semigroup e−th0 in �2(V;m). Noting that h−αf = h0f −Af for all
f ∈ Cc(V), where A is a multiplication operator (5.2), and then applying [73,
Theorems 1.2–1.3] (see also [44, Theorem 2.1]) to the operator h0, we arrive
at the following result.

Theorem 5.8 ([73]). Assume that h0 is a self-adjoint operator in �2(V;m).
Then the following conditions are equivalent:

(i) There are constants D > 2 and K > 0 such that

‖f‖2
�q(V;m) :=

(
∑

v∈V
|f(v)|qm(v)

)2/q

≤ Kt0[f ] (5.7)

for all f ∈ dom(t0) with q = 2D
D−2 .

(ii) There are constants C > 0 and D > 2 such that for all α : V → [0,∞)
belonging to �D/2(V;m1−D/2) the form

t−α[f ] = t0[f ] −
∑

v∈V
α(v)|f(v)|2, dom(t−α) := dom(t0),

is bounded from below and closed in �2(V;m) and, moreover, the negative
spectrum of h−α is discrete and the following estimate holds

κ−(h−α) ≤ C
∑

v∈V

(
α(v)
m(v)

)D/2

m(v). (5.8)

Remark 5.9. (i) The constants K and C in Theorem 5.8 are connected by
KD ≤ C ≤ eD−1KD (see [44]).
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(ii) Since Cc(V) is a core for both h0 and A whenever h0 is essentially self-
adjoint, it follows from Theorem 5.8 that the operator h−α is bounded
from below and self-adjoint for all α ∈ �D/2(V;m1−D/2) if (5.7) is satis-
fied.

Combining Theorem 3.5(iv) with Theorem 5.8, we immediately arrive
at the following CLR-type estimate for quantum graphs with δ-couplings at
vertices.

Theorem 5.10. Assume that h0 is a self-adjoint operator in �2(V;m). Then
the following conditions are equivalent:
(i) There are constants D > 2 and K > 0 such that (5.7) holds for all

f ∈ dom(t0) with q = 2D
D−2 .

(ii) There are constants C > 0 and D > 2 such that for all α : V → [0,∞)
belonging to �D/2(V;m1−D/2) the operator H−α is self-adjoint, bounded
from below, its negative spectrum is discrete and the following estimate
holds

κ−(H−λα) ≤ CλD/2
∑

v∈V

(
α(v)
m(v)

)D/2

m(v), λ > 0. (5.9)

The constants K and C are connected by KD ≤ C ≤ eD−1KD.

Of course, the most difficult part is to check the validity of the Sobolev-
type inequality (5.7). However, there are several particular cases of interest
when (5.7) is known to be true (see [50,100,105] and references therein).

Corollary 5.11. Let the metric graph G = (V, E , | · |) be such that the discrete
graph Gd = (V, E) is a Cayley graph of a group of polynomial growth D with
D ≥ 3. If α : V → [0,∞) belongs to �D/2(V;m1−D/2), then

κ−(H−λα) ≤ C(G)λD/2
∑

v∈V

(
α(v)
m(v)

)D/2

m(v), λ > 0, (5.10)

with some constant C(G), which depends only on G.

Proof. By Theorem 5.10, we only need to show that (5.7) holds true. The
argument is similar to [73, Theorem 3.7]. Indeed, by [105, Theorem VI.5.2],
since Gd is a Cayley graph of the group of polynomial growth, there is a C > 0
such that

‖f‖�q(V) ≤ C
∑

v∈V

∑

u∼v

|f(v) − f(u)|2, (5.11)

for all f ∈ Cc(V) with q = 2D
D−2 . Since supe∈E |e| < ∞ (see Hypothesis 3.1),

we get

t0[f ] =
1
2

∑

u,v∈V
b(v, u)|f(v) − f(u)|2 =

1
2

∑

v∈V

∑

u∼v

1
|eu,v| |f(v) − f(u)|2

≥ 1
2 supe∈E |e|

∑

v∈V

∑

u∼v

|f(v) − f(u)|2,
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for all f ∈ Cc(V). Combining this inequality with (5.11) and noting that

‖f‖q
�q(V;m) =

∑

v∈V
|f(v)|qm(v) =

∑

v∈V
|f(v)|q

∑

e∈Ev

|e|

≤ sup
e∈E

|e|
∑

v∈V
|f(v)|q deg(v) ≤ ‖f‖q

�q(V) sup
e∈E

|e| sup
v∈V

deg(v),

we get (5.7). �

Remark 5.12. Notice that in Corollary 5.11 we did not make any additional
assumptions on the weight function m. Namely, we only assumed that the
edges lengths satisfy (3.1).

In particular, in the case Gd = Z
N , we get the following estimate.

Corollary 5.13. Let Gd = Z
N with N ≥ 3. Also, assume that (3.1) is satisfied.

If α : V → [0,∞) belongs to �
N
2 (ZN ;m1−N/2), then

κ−(H−λα) ≤ CNλN/2
∑

v∈V

(
α(v)
m(v)

)N/2

m(v), λ > 0, (5.12)

with some constant CN , which depends only on N and m.

It was first noticed by G. Rozenblum and M. Solomyak (see [94, Theorem
3.1] and also [95]) that in contrast to Schrödinger operators on R

N , in the case
Gd = Z

N for every q ∈ (0,D/2) the following holds

κ−(h−λα) = O(λq), λ → +∞, (5.13)

whenever infe∈E |e| > 0 and α ∈ �q
w(V), that is,

#{v ∈ V : |α(v)| > n} = O(n−q)

as n → ∞ or equivalently α̃n = O(n−1/q) as n → ∞, where {α̃n}n∈N is a
re-arrangement of {α(v)}v∈V in a decreasing order. Define

‖α‖�q
w

:= sup
n

n1/qα̃n.

It turns out that the later holds in a wider setting and hence we arrive at the
following result.

Proposition 5.14. Assume the conditions of Theorem 5.10. If G satisfies (4.14),
then for every q ∈ (0,D/2)

κ−(H−λα) ≤ Cλq‖α‖q
�q

w
, λ > 0, (5.14)

whenever α ∈ �q
w(V). Here the constant C depends only on q, D and V.

Proof. By Theorem 3.5(iv), we only need to show that

κ−(h−λα) ≤ Cλq‖α‖q
�q

w
, λ > 0. (5.15)

The validity of (5.15) is established in [95, Theorem 3.1] under the additional
assumptions infe∈E |e| > 0 and supv∈V deg(v) < ∞. In fact, this proof (see
also [94, §3]) can be extended line by line to the case of graphs G satisfying
(4.14). �
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Remark 5.15. For a further discussion of eigenvalue estimates for discrete op-
erators and quantum graphs on the lattice Z

N we refer to [96].

Remark 5.16. To a large extent, the behavior of the negative spectrum of h−α

is determined by the behavior of the following function

g(t) := sup
u,v∈V

|P (t;u, v)| = ‖e−th0‖�1→�∞ , (5.16)

where P (t; ·, ·) := e−th0(·, ·) is the heat kernel (see [93,95] and also [44,83,84]).
In particular, the exponents d and D determined by

g(t) = O(t−d/2), t → 0, g(t) = O(t−D/2), t → +∞, (5.17)

and called the local dimension and the global dimension, respectively, are very
important in the analysis of κ−(h−α) (see Section 2 in [93]). By [105, Theorem
II.5.2], (5.7) is equivalent to the following estimate

g(t) ≤ Ct−D/2, t > 0, (5.18)

with some positive constant C > 0. On the other hand, d = 0 if (4.14) holds,
that is, if h0 is a bounded operator and, moreover, �1(V) ⊂ �2(V) ⊂ �∞(V).
It is precisely this fact which allows to prove Proposition 5.14. Note that
d = D = N for Schrödinger operators on R

N and hence the estimates of the
type (5.14) have no analogues in this case.

Equality (5.5) together with Remark 5.16 indicates that there is a close
connection between the heat semigroups e−th0 and e−tH0 . In fact, the following
holds true.

Theorem 5.17. Assume that h0 and H0 are self-adjoint operators in �2(V;m)
and L2(G), respectively. Then the following statements are equivalent

(i) ‖e−th0‖�1→�∞ ≤ C1t
−D/2 holds for all t > 0 with some C1 > 0 and

D > 2,
(ii) ‖e−tH0‖L1→L∞ ≤ C2t

−D/2 holds for all t > 0 with some C2 > 0 and
D > 2.

Here the constants C1 and C2 might be different.

Proof. By Varopoulos’s theorem (see [105, Theorem II.5.2]), (i) and (ii) are
equivalent to the validity of the corresponding Sobolev-type inequalities.
Namely, (i) is equivalent to (5.7) and (ii) is equivalent to the inequality

(∫

G
|f(x)|qdx

)2/q

≤ C

∫

G
|f ′(x)|2dx, f ∈ H1(G), (5.19)

where H1(G) is the Sobolev space on G, which coincides with the form domain
of the operator H0, and q = 2D

D−2 and D > 2. Hence it suffices to show that
(5.7) is equivalent to (5.19).

First observe that every f ∈ H1(G) admits a unique decomposition f =
flin + f0, where flin ∈ H1(G) is piecewise linear on G and f0 ∈ H1(G) takes
zero values at the vertices V. It is easy to check that

tH0 [f ] =
∫

G
|f ′(x)|2dx =

∫

G
|f ′

lin(x)|2dx +
∫

G
|f ′

0(x)|2dx = tH0 [flin] + tH0 [f0].
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Moreover, we have (see Remark 3.8):

tH0 [flin] = th0 [flin], flin ∈ H1(G) ∩ L.

Next it is easy to see that (5.19) holds for all f = f0 ∈ H1(G) with q > 2
and with a constant C(G) which depends only on supe∈E |e| and q > 2. Noting
that every piecewise linear function f = flin ∈ H1(G) ∩ L satisfies

‖f‖q
Lq(G) =

∑

e∈E

∫

e

|f(x)|qdx ≤
∑

e∈E
|e|max

x∈e
|f(x)|q

≤
∑

e∈E
|e|(|fe(ei)|q + |fe(eo)|q) = 2

∑

v∈V
|f(v)|qm(v) = 2‖f‖q

�q(V;m),

we conclude that (i) implies (ii).
Clearly, to prove that (ii) implies (i) it suffices to show that every linear

function f on a finite interval (a, b) satisfies the estimate

(|f(a)|q + |f(b)|q) ≤ C

b − a

∫ b

a

|f(x)|qdx, (5.20)

where C > 0 is a positive constant which depends only on q > 2. Indeed, we
have (cf. Remark 3.8)

∫ b

a

|f(x)|2dx = (b − a)
|f(a)|2 + Re(f(a)f(b)) + |f(b)|2

3
. (5.21)

Applying the Hölder inequality to the left-hand side in (5.21), one gets
∫ b

a

|f(x)|2dx ≤ (b − a)1/p

(∫ b

a

|f(x)|qdx

)2/q

,
1
p

= 1 − 2
q
. (5.22)

On the other hand, applying the Cauchy–Schwarz inequality to the right-hand
side in (5.21), we arrive at

|f(a)|2 + Re(f(a)f(b)) + |f(b)|2
3

≥ |f(a)|2 + |f(b)|2
6

≥ (|f(a)|q + |f(b)|q)2/q

6c(q)
,

where c(q) > 0 depends only on q > 2. Combining this estimate with (5.21)
and (5.22), we obtain (5.20), which implies that

(6c(q))−q/2‖f‖q
�q(V;m) ≤ ‖f‖q

Lq(G)

holds for all f = flin ∈ H1(G) ∩ L. �

Remark 5.18. The implication (i) ⇒ (ii) in Theorem 5.17 was observed by
Rozenblum and Solomyak (see [95, Theorem 4.1]), however, for a different dis-
crete Laplacian defined by (1.4), where the weight function m : v �→

∑
e∈Ev

|e|
is replaced by the vertex degree function deg : v �→ #(Ev). Since

m(v) ≤ deg(v) sup
e∈E

|e|

for all v ∈ V and supe∈E |e| < ∞, �2(V; deg) is continuously embedded into
�2(V;m), however, the converse is not true. This together with Theorem 5.8
imply that one cannot replace (4.2) by (1.4) in Theorem 5.17 and the converse
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statement to Theorem 4.1 in [95] is not true without further assumptions on
the function m.

5.3. Spectral Types

In this subsection we plan to investigate the structure of the spectrum of Hα.

5.3.1. Resolvent Comparability. We begin with the following simple corollary
of Theorem 3.5(viii).

Corollary 5.19. Assume the conditions of Theorem 3.5.
(i) If α−α̃

m ∈ c0(V), then σess(Hα) = σess(Hα̃). In particular, if α
m ∈ c0(V),

then σess(Hα) = σess(H0).
(ii) If α−α̃

m ∈ �1(V), then σac(Hα) = σac(Hα̃). In particular, if α
m ∈ �1(V),

then σac(Hα) = σac(H0).

Here α ∈ c0(V) means that the set {v ∈ V : |α(v)| > ε} is finite for every
ε > 0.

Proof. It suffices to note that hαf − hα̃f = α−α̃
m f for all f ∈ Cc(V). Hence

(hα − i)−1 − (hα̃ − i)−1 ∈ S∞ if α−α̃
m ∈ c0(V) and then, by the Weyl theorem

and Theorem 3.5(viii), we prove the first claim.
Moreover, (hα−i)−1−(hα̃−i)−1 ∈ S1 whenever α−α̃

m ∈ �1(V). It remains
to apply Theorem 3.5(viii) and the Birman–Krein theorem. �

The presence (or absence) of an absolutely continuous spectrum for quan-
tum graphs H0 with Kirchhoff vertex conditions at vertices is a challenging
open problem. To the best of our knowledge, some partial results have been
obtained in the cases of radially symmetric trees and for some special classes of
(equilateral) graphs that originate from groups, e.g., the corresponding Cay-
ley graphs or Schreier graphs (see, e.g., [15,35,36,40,104]). In particular, it is
shown in [40, Theorem 5.1] that in the case when G is a rooted radial tree with
a finite complexity of the geometry, the absolutely continuous spectrum of H0

is nonempty if and only if G is eventually periodic.
Our next result provides a sufficient condition for Hα to have purely

singular spectrum.

Theorem 5.20. Assume that infe∈E |e| > 0 and supe∈E |e| < ∞. If α : V → R

is such that for any infinite path P ⊂ G without cycles

sup
v∈P

|α(v)|
deg(v)

= ∞, (5.23)

then σac(Hα) = ∅.

Proof. The proof is based on the standard trace class argument [102]. By
Corollary 5.2, the operator Hα is self-adjoint. Since (5.23) holds for every
infinite path P ⊂ G, we can find a subset Ṽ ⊂ V such that

∑

v∈Ṽ

deg(v)
|α(v)| < ∞ (5.24)
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and the graph G is a countable union of finite subgraphs Gk, k ∈ N such
that the boundary ∂Gk of every subgraph Gk is contained in Ṽ. Define a new
function α̃ : V → R ∪ {∞} by

α̃(v) =

{
α(v), v ∈ V\Ṽ,

∞, v ∈ Ṽ,
(5.25)

that is, at every vertex v ∈ V\Ṽ the corresponding boundary condition for
Hα̃ is given by (3.2) and at every vertex v ∈ Ṽ it has the Dirichlet boundary
condition. Let us show that

(Hα − i)−1 − (Hα̃ − i)−1 ∈ S1. (5.26)

It is easy to see that under the assumptions infe∈E |e| > 0 and supe∈E |e|
< ∞ the triplet Π̃ = {HG , Γ̃0

0, Γ̃
0
1} given by (2.21), (2.22) is a boundary triplet

for Hmax. Next we set

Cα :=
⊕

v∈V
Cv,α, Dα :=

⊕

v∈V
Dv, (5.27)

where Cv,α and Dv are given by (3.7), and

C̃α̃ :=
⊕

v∈V
C̃v,α̃, D̃α̃ :=

⊕

v∈V
D̃v, (5.28)

where

C̃v,α̃ =

{
Cv,α, v ∈ V\Ṽ
Ideg(v), v ∈ Ṽ

, D̃v =

{
Dv, v ∈ V\Ṽ
Odeg(v), v ∈ Ṽ

. (5.29)

Observe that the corresponding boundary relations Θα and Θα̃ parameterizing
Hα and Hα̃ via the boundary triplet ΠG = {HG , Γ̃0

0, Γ̃
0
1} are the closures of

Θ0
α = {{f, g} ∈ HG × HG : Cαf = Dαg}, Θ0

α̃ = {{f, g} ∈ HG × HG : C̃α̃f = D̃α̃g}.

Straightforward calculations show that

tr
(
(Θα − i)−1 − (Θα̃ − i)−1

)
=

∑

v∈Ṽ

( α(v)
deg(v)

− i
)−1

,

which is finite according to (5.24). Therefore, by Theorem A.3(iv), (5.26) holds
true. It remains to note that Hα̃ is the orthogonal sum of operators having
discrete spectra and hence the spectrum of Hα̃ is pure point. The Birman–
Krein theorem then yields σac(Hα) = σac(Hα̃) = ∅. �

Corollary 5.21. Let G be a rooted radially symmetric tree with the root o and
such that infe∈E |e| > 0 and supe∈E |e| < ∞. Also, let α : V → R be radially
symmetric, that is, α(v) = αk for all v ∈ V such that d(o, v) = k, where d(o, v)
is the combinatorial distance from v to the root o. If

sup
k∈N

|αk|
deg(vk)

= ∞, (5.30)

then σac(Hα) = ∅.
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Remark 5.22. Corollary 5.21 can be seen as the analog of [103, Theorem 3] and
[79, Theorem 1]. Moreover, the assumption supe∈E |e| < ∞ in Theorem 5.20
and Corollary 5.21 can be removed by adding inessential vertices.

5.3.2. Bounds on the Spectrum of Hα . Throughout this subsection we shall
assume that α : V → [0,∞), that is, all interactions at vertices are nonneg-
ative. Let � be an intrinsic metric. In order to include α into Cheeger-type
estimates, we need to modify the definition of Cheeger constants (4.20) and
(4.22) following [12,59]. For every subgraph Ṽ ⊆ V, one defines the modified
isoperimetric constant

Cα(Ṽ) := inf
X⊂Ṽ

Areaα(∂X)
m(X)

, (5.31)

where

Areaα(∂X) :=
∑

(u,v)∈∂X

b(u, v)�0(u, v) +
∑

v∈X

α(v) =
∑

(u,v)∈∂X

1 +
∑

v∈X

α(v),

(5.32)
and

m(X) =
∑

v∈X

m(v). (5.33)

Moreover, we need the isoperimetric constant at infinity

Cess,α(V) := sup
X⊂V is finite

Cα(V\X). (5.34)

Theorem 5.23. Suppose that the operator Hα is self-adjoint. Then:

(i) Hα is uniformly positive if Cα(V) > 0.
(ii) inf σess(Hα) > 0 if Cess,α(V) > 0.
(iii) The spectrum of Hα is discrete if the number #{e ∈ E : |e| > ε} is finite

for every ε > 0 and Cess,α(V) = ∞.

Proof. The proof is analogous to that of Theorem 4.20 and we only need to
use the corresponding modifications of Cheeger-type bounds for the discrete
operator hα from [12]. �

6. Other Boundary Conditions

In the present paper, our main focus was on the Kirchhoff and δ-type couplings
at vertices (see (3.2)). There are several other physically relevant classes of cou-
plings (see, e.g., [14,21,31]). Our main result, Theorem 2.9, covers all possible
cases, however, the key problem is to calculate the boundary operator and then
to investigate its spectral properties. It turned out that for δ-couplings the cor-
responding boundary operator is given by the discrete Laplacian (3.17), which
attracted an enormous attention during the last three decades. However, for
other boundary conditions, new nontrivial discrete operators of higher order
may arise. For example, this happens in the case of the so-called δ′

s-couplings,
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cf. [31]. Namely (see [21,31]), let β : V → R and consider the following bound-
ary conditions at the vertices v ∈ V:

{
df

dxe
(v) does not depend on e at the vertex v,

∑
e∈Ev

f(v) = β(v) df
dxe

(v).
(6.1)

Define the corresponding operator Hβ as the closure of the operator H0
β given

by

H0
β = Hmax � dom(H0

β),

dom(H0
β) =

{
f ∈ dom(Hmax) ∩ L2

c(G) : f satisfies (6.1), v ∈ V
}
. (6.2)

To avoid lengthy and cumbersome calculations of the corresponding
boundary relation Θβ parameterizing Hβ with the help of the boundary triplet
Π constructed in Corollary 2.5, let us consider the kernel L = ker(Hmax) of
Hmax as in Remark 3.8. Recall that L = ker(Hmax) consists of piecewise lin-
ear functions on G and every f ∈ L can be identified with its values on V,
{f(ei), f(eo)}e∈E . Moreover, the L2 norm of f ∈ L is equivalent to

∑

e∈E
|e|(|f(ei)|2 + |f(eo)|2).

It is not difficult to see that (see also [14, p.27])

(Hβf, f) =
∑

e∈E

∫

e

|f ′(x)|2dx +
∑

v∈V

1
β(v)

∣
∣
∣
∑

e∈Ev

fe(v)
∣
∣
∣
2

, f ∈ L ∩ L2
c(G).

Therefore, for every f ∈ L ∩ L2
c(G), we get

(Hβf, f) =
∑

e∈E

|f(eo) − f(ei)|2
|e| +

∑

v∈V

1
β(v)

∣
∣
∣
∑

e∈Ev

fe(v)
∣
∣
∣
2

. (6.3)

Clearly, the right-hand side in (6.3) is a form sum of two difference operators,
where the first one is the standard discrete Laplacian, however, the second
one gives rise to a difference expression of higher order. In particular, its order
at every vertex equals the degree deg(v) of the corresponding vertex v ∈ V.
Unfortunately, we are not aware of the literature where the difference operators
of this type have been studied.
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Appendix A. Boundary Triplets and Weyl Functions

A.1. Linear Relations

Let H be a separable Hilbert space. A (closed) linear relation in H is a (closed)
linear subspace in H × H. The set of all closed linear relations is denoted by
C̃(H). Since every linear operator in H can be identified with its graph, the
set of linear operators can be seen as a subset of all linear relations in H. In
particular, the set of closed linear operators C(H) is a subset of C̃(H).

Recall that the domain, the range, the kernel and the multivalued part
of a linear relation Θ are given, respectively, by

dom(Θ) = {f ∈ H : ∃g ∈ H such that {f, g} ∈ Θ},

ran(Θ) = {g ∈ H : ∃f ∈ H such that {f, g} ∈ Θ},

ker(Θ) = {f ∈ H : {f, 0} ∈ Θ},

mul (Θ) = {g ∈ H : {0, g} ∈ Θ}.

The adjoint linear relation Θ∗ is defined by

Θ∗ =
{
{f̃ , g̃} ∈ H × H : (g, f̃)H = (f, g̃)H for all {f, g} ∈ Θ

}
. (A.1)

Θ is called symmetric if Θ ⊂ Θ∗. If Θ = Θ∗, then it is called self-adjoint.
Note that mul (Θ) is orthogonal to dom(Θ) if Θ is symmetric. Setting Hop :=
dom(Θ), we obtain the orthogonal decomposition of a symmetric linear relation
Θ:

Θ = Θop ⊕ Θ∞, (A.2)

where Θ∞ = {0} × mul (Θ) and Θop is a symmetric linear operator in Hop,
called the operator part of Θ.

The inverse of the linear relation Θ is given by

Θ−1 = {{g, f} ∈ H × H : {f, g} ∈ Θ}.

The sum of linear relations Θ1 and Θ2 is defined by

Θ1 + Θ2 = {{f, g1 + g2} : {f, g1} ∈ Θ1, {f, g2} ∈ Θ2}.

Hence one can introduce the resolvent (Θ−z)−1 of the linear relation Θ, which
is well defined for all z ∈ C. However, the set of those z ∈ C for which (Θ−z)−1

is a graph of a closed bounded operator in H is called the resolvent set of Θ
and is denoted by ρ(Θ). Its complement σ(Θ) = C\ρ(Θ) is called the spectrum
of Θ. If Θ is symmetric, then taking into account (A.2), we obtain

(Θ − z)−1 = (Θop − z)−1 ⊕ Omul (Θ). (A.3)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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This immediately implies that ρ(Θ) = ρ(Θop), σ(Θ) = σ(Θop) and, moreover,
one can introduce the spectral types of Θ as those of its operator part Θop.

Let us mention that self-adjoint linear relations admit a very convenient
representation, which was first obtained by Rofe–Beketov [91] in the finite-
dimensional case (see also [101, Exercises 14.9.3-4]).

Proposition A.1. Let C and D be bounded operators on H and

ΘC,D :=
{
{f, g} ∈ H × H : Cf = Dg

}
. (A.4)

Then ΘC,D is self-adjoint if and only if

CD∗ = DC∗, ker
(

C −D
D C

)

= {0}. (A.5)

If dim H = N < ∞, then the second condition in (A.5) is equivalent to
rank(C|D) = N .

Further details and facts about linear relations in Hilbert spaces can be
found in, e.g., [29, Chapter 6.1], [101, Chapter 14].

A.2. Boundary Triplets and Proper Extensions

Let A be a densely defined closed symmetric operator in a separable Hilbert
space H with equal deficiency indices n±(A) = dimN±i ≤ ∞, Nz := ker(A∗ −
z).

Definition A.2 ([47]). A triplet Π = {H,Γ0,Γ1} is called a boundary triplet for
the adjoint operator A∗ if H is a Hilbert space and Γ0,Γ1 : dom(A∗) → H are
bounded linear mappings such that the abstract Green’s identity

(A∗f, g)H − (f,A∗g)H = (Γ1f,Γ0g)H − (Γ0f,Γ1g)H (A.6)

holds for all f, g ∈ dom(A∗) and the mapping

Γ: dom(A∗) → H × H
f �→ {Γ0f,Γ1f} (A.7)

is surjective.

A boundary triplet for A∗ exists if and only if the deficiency indices of
A are equal (see, e.g., [29, Prop.7.4], [101, Prop. 14.5]). Moreover, n±(A) =
dim(H) and A = A∗ � ker(Γ). Note also that the boundary triplet for A∗ is
not unique.

An extension Ã of A is called proper if dom(A) ⊂ dom(Ã) ⊂ dom(A∗).
The set of all proper extensions is denoted by Ext(A).

Theorem A.3 ([28,77]). Let Π = {H,Γ0,Γ1} be a boundary triplet for A∗.
Then the mapping Γ defines a bijective correspondence between Ext(A) and
the set of all linear relations in H:

Θ �→ AΘ := A∗ � {f ∈ dom(A∗) : Γf = {Γ0f,Γ1f} ∈ Θ}. (A.8)

Moreover, the following holds:
(i) A∗

Θ = AΘ∗ .
(ii) AΘ ∈ C(H) if and only if Θ ∈ C̃(H).
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(iii) AΘ is symmetric if and only if Θ is symmetric and n±(AΘ) = n±(Θ)
holds. In particular, AΘ is self-adjoint if and only if Θ is self-adjoint.

(iv) If AΘ = A∗
Θ and AΘ̃ = A∗

Θ̃
, then for every p ∈ (0,∞] the following

equivalence holds

(AΘ − i)−1 − (AΘ̃ − i)−1 ∈ Sp(H) ⇐⇒ (Θ − i)−1 − (Θ̃ − i)−1 ∈ Sp(H).

If additionally dom(Θ) = dom(Θ̃), then

Θ − Θ̃ ∈ Sp(H) =⇒ (AΘ − i)−1 − (AΘ̃ − i)−1 ∈ Sp(H).

Notice that according to (A.3), the deficiency indices of a symmetric
linear relation Θ can be defined as the deficiency indices of its operator part
Θop. Moreover, a self-adjoint linear relation Θ is said to belong to the von
Neumann–Schatten ideal Sp if its operator part Θop belongs to Sp(Hop).

Remark A.4. The proof of Theorem A.3(i)–(ii) can be found in, e.g., [29,
Prop. 7.8], [101, Prop. 14.7]; (iii) is obtained in [77, Prop. 3], see also [29,
Prop. 7.14]; for the proof of item (iv) see [28, Theorem 2].

A.3. Weyl Functions and Extensions of Semibounded Operators

With every boundary triplet Π = {H,Γ0,Γ1}, one can associate two linear
operators

A0 := A∗ � ker(Γ0), A1 := A∗ � ker(Γ1).

Clearly, (A.8) implies A0 = AΘ0 and A1 = AΘ1 , where Θ0 = {0} × H and
Θ1 = H × {0}. It easily follows from Theorem A.3(iii) that A0 = A∗

0 and
A1 = A∗

1.

Definition A.5 ([28]). Let Π = {H,Γ0,Γ1} be a boundary triplet for A∗. The
operator-valued function M : ρ(A0) → B(H) defined by

M(z) := Γ1(Γ0 � Nz)−1, z ∈ ρ(A0), (A.9)

is called the Weyl function corresponding to the boundary triplet Π.

The Weyl function is well defined and holomorphic on ρ(A0). Moreover,
it is a Herglotz–Nevanlinna function (see [28, §1], [29, §7.4.2] and also [101,
§14.5]).

Assume now that A ∈ C(H) is a lower semibounded operator, i.e., A ≥
a IH with some a ∈ R. Let a0 be the largest lower bound for A,

a0 := inf
f∈dom(A)\{0}

(Af, f)H
‖f‖2

H

.

The Friedrichs extension of A is denoted by AF . If Π = {H,Γ0,Γ1} is a
boundary triplet for A∗ such that A0 = AF , then the corresponding Weyl
function M is holomorphic on C\[a0,∞). Moreover, M is strictly increasing
on (−∞, a0) (that is, for all x, y ∈ (−∞, a0), M(x) − M(y) is positive definite
whenever x > y) and the following strong resolvent limit exists (see [28])

M(a0) := s − R − lim
x↑a0

M(x). (A.10)
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However, M(a0) is in general a closed linear relation which is bounded from
below.

Theorem A.6 ([28,76]). Let A ≥ a IH with some a ≥ 0 and let Π = {H,Γ0,Γ1}
be a boundary triplet for A∗ such that A0 = AF . Also, let Θ = Θ∗ ∈ C̃(H) and
AΘ be the corresponding self-adjoint extension (A.8). If M(a) ∈ B(H), then:

(i) AΘ ≥ a IH if and only if Θ − M(a) ≥ OH.
(ii)

κ−(AΘ − a I) = κ−(Θ − M(a)).

If additionally A is positive definite, that is, a > 0, then:
(iii) AΘ is positive definite if and only if Θ(0) := Θ−M(0) is positive definite.
(iv) For every p ∈ (0,∞], the following equivalence holds

A−
Θ ∈ Sp(H) ⇐⇒ Θ(0)− ∈ Sp(H),

where Θ(0)− := Θ(0)−
op ⊕ Θ(0)∞.

(v) For every γ ∈ (0,∞) the following equivalence holds

λj(AΘ) = j−γ(a + o(1)) ⇐⇒ λj(Θ(0)) = j−γ(b + o(1))

as j → ∞. Moreover, either ab �= 0 or a = b = 0.

Remark A.7. For the proofs of (i) and (ii) consult Theorems 5 and 6 in [28];
the proofs of (iii)–(v) can be found in [76, Theorem 3].

We also need the following important statement (see [28, Theorem 3] and
[29, Theorem 8.22]).

Theorem A.8 ([28]). Assume the conditions of Theorem A.6. Then the follow-
ing statements

(i) Θ ∈ C̃(H) is lower semibounded,
(ii) AΘ is lower semibounded,

are equivalent if and only if M(x) tends uniformly to −∞ as x → −∞, that
is, for every N > 0 there exists xN < 0 such that M(x) < −N · IH for all
x < xN .

The implication (ii) ⇒ (i) always holds true (cf. Theorem A.6(i)), how-
ever, the validity of the converse implication requires that M tends uniformly
to −∞. Let us mention in this connection that the weak convergence of M(x)
to −∞, i.e., the relation

lim
x→−∞(M(x)h, h)H = −∞

holds for all h ∈ H\{0} whenever A0 = AF . Moreover, this relation character-
izes Weyl functions of the Friedrichs extension AF among all nonnegative (and
even lower semibounded) self-adjoint extensions of A (see [67], [28, Proposition
4]).

The next new result establishes a connection between the essential spectra
of AΘ and Θ and also it can be seen as an improvement in Theorem A.6 (iv).
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Theorem A.9. Let A ≥ a0 IH > 0 and let Π = {H,Γ0,Γ1} be a boundary triplet
for A∗ such that A0 = AF . Also, let M be the corresponding Weyl function
and let Θ = Θ∗ ∈ C̃(H) be such that AΘ = A∗

Θ is lower semibounded. Then
the following equivalences hold:

inf σess(AΘ) ≥ 0 ⇐⇒ inf σess(Θ − M(0)) ≥ 0, (A.11)

inf σess(AΘ) > 0 ⇐⇒ inf σess(Θ − M(0)) > 0, (A.12)

inf σess(AΘ) = 0 ⇐⇒ inf σess(Θ − M(0)) = 0. (A.13)

Proof. First observe that (A.11) easily follows from Theorem A.6(iv). Hence
it remains to prove (A.12) since (A.13) follows from (A.11) and (A.12).

Since A is uniformly positive and A0 = AF , we can assume without loss
of generality that M(0) = OH. Indeed, M(0) ∈ B(H) and hence we can replace
the boundary triplet Π = {H,Γ0,Γ1} by the triplet Π0 = {H,Γ0,Γ1−M(0)Γ0}
and in this case the Weyl function M(·) and the boundary relation Θ are
replaced respectively by M(·) − M(0) and Θ − M(0). Moreover, for simplicity
we shall assume that Θ = B ∈ C(H) is a self-adjoint linear operator (cf. (A.3)).

We divide the proof of (A.12) into two parts.
(i) Let us first establish the implication “⇐” in (A.12). For a := inf

σess(B) > 0, we set

H1 := ranEB

(
[a,∞)

)
, H2 := ranEB

(
(−∞, a)

)
= H⊥

1 ,

and then define the operators Bj := B � Hj , j ∈ {1, 2}. Since both subspaces
H1 and H2 are reducing for B, B = B1 ⊕ B2. Moreover, we set

B̃ := B1 ⊕ aIH2 ≥ aIH > 0. (A.14)

Combining this inequality with the assumption M(0) = OH and applying
Theorem A.6(iii), we obtain that AB̃ ≥ ã IH for some ã > 0.

On the other hand, B is lower semibounded since so is AB (see a remark
after Theorem A.8). Hence the operator B2 is lower semibounded too and
by the definition of B2 either B2 is finite rank or the point a is the only
accumulation point for σ(B2), i.e., (B2 − a IH2) ∈ S∞(H2). Therefore,

B − B̃ = OH1 ⊕ (B2 − a IH2) ∈ S∞(H). (A.15)

By Theorem A.3 (iv), this relation yields

(AB − i)−1 − (AB̃ − i)−1 ∈ S∞(H), (A.16)

which, in turn, implies σess(AB) = σess(AB̃). Hence

inf σess(AB) = inf σess(AB̃) ≥ ã > 0. (A.17)

This proves the implication “⇐” in (A.12).
(ii) To prove the remaining implication “⇒” in (A.12), let b := inf

σess(AB) > 0 and assume the contrary, that is a = inf σess(B) ≤ 0. Then
at least one of the following two conditions is satisfied:

dim ranEB

(
(−∞, 0)

)
= ∞, dim ranEB

(
[0, δ)

)
= ∞ for all δ > 0.
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In the first case, Theorem A.6(ii) implies κ−(AB) = κ−(B) = ∞. Since AB

is lower semibounded, we get b = inf σess(AB) ≤ 0, which contradicts the
assumption b > 0.

In the second case, recall that A ≥ a0 IH with a0 > 0. The corresponding
Weyl function M is analytic on (−∞, a0) and M(x) = M(x)−M(0) is positive
definite for all x ∈ (0, a0). Fix some x ∈ (0, a0 ∧ b) and let ε > 0 be such that
M(x) ≥ ε IH. Noting that

(Bf, f)H < δ‖f‖2
H

for all f ∈ ranEB([0, δ)
)
\{0}, we get

((B − M(x))f, f)H < (δ − ε)‖f‖2
H < 0

for all f ∈ ranEB([0, δ))\{0} whenever δ < ε. By Theorem A.6(ii),

κ−(AB − x) = κ−(B − M(x)) = ∞,

and hence inf σess(AB) ≤ x < b since AB is lower semibounded. This contra-
diction finishes the proof. �

A.4. Direct Sums of Boundary Triplets

Let J be a countable index set, #J = ℵ0. For each j ∈ J , let Aj be a closed
densely defined symmetric operator in a separable Hilbert space Hj such that
0 < n+(Aj) = n−(Aj) ≤ ∞. Also, let Πj = {Hj ,Γ0,j ,Γ1,j} be a boundary
triplet for the operator A∗

j , j ∈ J . In the Hilbert space H := ⊕j∈JHj , consider
the operator A := ⊕j∈JAj , which is symmetric and n+(A) = n−(A) = ∞. Its
adjoint is given by A∗ = ⊕j∈JA∗

j . Let us define a direct sum Π := ⊕j∈JΠj of
boundary triplets Πj by setting

H = ⊕j∈JHn, Γ0 := ⊕j∈JΓ0,n, Γ1 := ⊕j∈JΓ1,n. (A.18)

Note that Π = {H,Γ0,Γ1} given by (A.18) may not form a boundary triplet
for A∗ in the sense of Definition A.2 (for example, Γ0 or Γ1 may be unbounded)
and first counterexamples were constructed by A. N. Kochubei. The next result
provides several criteria for (A.18) to be a boundary triplet for the operator
A∗ = ⊕∞

n=1A
∗
n.

Theorem A.10 ([17,64,78]). Let A = ⊕j∈JAj and let Π = {H,Γ0,Γ1} be
defined by (A.18). Then the following conditions are equivalent:

(i) Π = {H,Γ0,Γ1} is a boundary triplet for the operator A∗.
(ii) The mappings Γ0 and Γ1 are bounded as mappings from dom(A∗)

equipped with the graph norm to H.
(iii) The Weyl functions Mj corresponding to the triplets Πj, j ∈ J , satisfy

the following condition

sup
j∈J

(
‖Mj(i)‖Hj

∨ ‖(Im Mj(i))−1‖Hj

)
< ∞. (A.19)
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(iv) If in addition a ∈ R is a point of a regular type of the operator A (i.e.,
there exists a positive constant c > 0 such that ‖(A − a)f‖ ≥ c‖f‖ for all
f ∈ dom(A)), then (i)–(iii) are further equivalent to

sup
j∈J

max
{
‖Mj(a)‖Hj

, ‖M ′
j(a)‖Hj

, ‖
(
M ′

j(a)
)−1‖Hj

} < ∞. (A.20)

Based on these criteria, different regularizations Π̃j of triplets Πj such
that the corresponding direct sum Π̃ = ⊕j∈J Π̃j forms a boundary triplet for
A∗ = ⊕j∈JA∗

j are suggested in [17,64,78]
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25068 Řež, Prague
Czech Republic
e-mail: exner@ujf.cas.cz
URL: http://gemma.ujf.cas.cz/∼exner/

Aleksey Kostenko
Faculty of Mathematics and Physics
University of Ljubljana
Jadranska 21
1000 Ljubljana
Slovenia

and

Faculty of Mathematics
University of Vienna
Oskar–Morgenstern–Platz 1
1090 Vienna
Austria
e-mail: Aleksey.Kostenko@fmf.uni-lj.si; Oleksiy.Kostenko@univie.ac.at

URL: https://www.mat.univie.ac.at/∼kostenko/

Mark Malamud
Peoples Friendship University of Russia (RUDN University)
Miklukho-Maklaya Str. 6
Moscow
Russian Federation 117198
e-mail: malamud3m@gmail.com

Hagen Neidhardt
Weierstrass Institute for Applied Analysis and Stochastics
Mohrenstr. 39
10117 Berlin
Germany
e-mail: neidhard@wias-berlin.de

Communicated by Jan Derezinski.

Received: March 1, 2018.

Accepted: August 7, 2018.


	Spectral Theory of Infinite Quantum Graphs
	Abstract
	1. Introduction
	Notation

	2. Boundary Triplets for Graphs
	3. Parameterization of Quantum Graphs with δ-Couplings
	4. Quantum Graphs with Kirchhoff Vertex Conditions
	4.1. Intrinsic Metrics on Graphs
	4.2. Self-Adjointness of H0
	4.3. Uniform Positivity and the Essential Spectrum of H0

	5. Spectral Properties of Quantum Graphs with δ-Couplings
	5.1. Self-Adjointness and Lower Semiboundedness
	5.2. Negative Spectrum: CLR-Type Estimates
	5.3. Spectral Types
	5.3.1. Resolvent Comparability
	5.3.2. Bounds on the Spectrum of Hα


	6. Other Boundary Conditions
	Acknowledgements
	Appendix A. Boundary Triplets and Weyl Functions
	A.1. Linear Relations
	A.2. Boundary Triplets and Proper Extensions
	A.3. Weyl Functions and Extensions of Semibounded Operators
	A.4. Direct Sums of Boundary Triplets

	References




