2,448 research outputs found

    Combining Contrast Invariant L1 Data Fidelities with Nonlinear Spectral Image Decomposition

    Get PDF
    This paper focuses on multi-scale approaches for variational methods and corresponding gradient flows. Recently, for convex regularization functionals such as total variation, new theory and algorithms for nonlinear eigenvalue problems via nonlinear spectral decompositions have been developed. Those methods open new directions for advanced image filtering. However, for an effective use in image segmentation and shape decomposition, a clear interpretation of the spectral response regarding size and intensity scales is needed but lacking in current approaches. In this context, L1L^1 data fidelities are particularly helpful due to their interesting multi-scale properties such as contrast invariance. Hence, the novelty of this work is the combination of L1L^1-based multi-scale methods with nonlinear spectral decompositions. We compare L1L^1 with L2L^2 scale-space methods in view of spectral image representation and decomposition. We show that the contrast invariant multi-scale behavior of L1−TVL^1-TV promotes sparsity in the spectral response providing more informative decompositions. We provide a numerical method and analyze synthetic and biomedical images at which decomposition leads to improved segmentation.Comment: 13 pages, 7 figures, conference SSVM 201

    Fock factorizations, and decompositions of the L2L^2 spaces over general Levy processes

    Full text link
    We explicitly construct and study an isometry between the spaces of square integrable functionals of an arbitrary Levy process and a vector-valued Gaussian white noise. In particular, we obtain explicit formulas for this isometry at the level of multiplicative functionals and at the level of orthogonal decompositions, as well as find its kernel. We consider in detail the central special case: the isometry between the L2L^2 spaces over a Poisson process and the corresponding white noise. The key role in our considerations is played by the notion of measure and Hilbert factorizations and related notions of multiplicative and additive functionals and logarithm. The obtained results allow us to introduce a canonical Fock structure (an analogue of the Wiener--Ito decomposition) in the L2L^2 space over an arbitrary Levy process. An application to the representation theory of current groups is considered. An example of a non-Fock factorization is given.Comment: 35 pages; LaTeX; to appear in Russian Math. Survey

    Spectral Representations of One-Homogeneous Functionals

    Full text link
    This paper discusses a generalization of spectral representations related to convex one-homogeneous regularization functionals, e.g. total variation or â„“1\ell^1-norms. Those functionals serve as a substitute for a Hilbert space structure (and the related norm) in classical linear spectral transforms, e.g. Fourier and wavelet analysis. We discuss three meaningful definitions of spectral representations by scale space and variational methods and prove that (nonlinear) eigenfunctions of the regularization functionals are indeed atoms in the spectral representation. Moreover, we verify further useful properties related to orthogonality of the decomposition and the Parseval identity. The spectral transform is motivated by total variation and further developed to higher order variants. Moreover, we show that the approach can recover Fourier analysis as a special case using an appropriate â„“1\ell^1-type functional and discuss a coupled sparsity example

    Solving moment problems by dimensional extension

    Full text link
    The first part of this paper is devoted to an analysis of moment problems in R^n with supports contained in a closed set defined by finitely many polynomial inequalities. The second part of the paper uses the representation results of positive functionals on certain spaces of rational functions developed in the first part, for decomposing a polynomial which is positive on such a semi-algebraic set into a canonical sum of squares of rational functions times explicit multipliers.Comment: 21 pages, published version, abstract added in migratio

    Continuous Frames, Function Spaces, and the Discretization Problem

    Full text link
    A continuous frame is a family of vectors in a Hilbert space which allows reproductions of arbitrary elements by continuous superpositions. Associated to a given continuous frame we construct certain Banach spaces. Many classical function spaces can be identified as such spaces. We provide a general method to derive Banach frames and atomic decompositions for these Banach spaces by sampling the continuous frame. This is done by generalizing the coorbit space theory developed by Feichtinger and Groechenig. As an important tool the concept of localization of frames is extended to continuous frames. As a byproduct we give a partial answer to the question raised by Ali, Antoine and Gazeau whether any continuous frame admits a corresponding discrete realization generated by sampling.Comment: 44 page

    Wavelets in Banach Spaces

    Full text link
    We describe a construction of wavelets (coherent states) in Banach spaces generated by ``admissible'' group representations. Our main targets are applications in pure mathematics while connections with quantum mechanics are mentioned. As an example we consider operator valued Segal-Bargmann type spaces and the Weyl functional calculus. Keywords: Wavelets, coherent states, Banach spaces, group representations, covariant, contravariant (Wick) symbols, Heisenberg group, Segal-Bargmann spaces, Weyl functional calculus (quantization), second quantization, bosonic field.Comment: 37 pages; LaTeX2e; no pictures; 27/07/99: many small correction

    Conjugates, Filters and Quantum Mechanics

    Full text link
    The Jordan structure of finite-dimensional quantum theory is derived, in a conspicuously easy way, from a few simple postulates concerning abstract probabilistic models (each defined by a set of basic measurements and a convex set of states). The key assumption is that each system A can be paired with an isomorphic conjugate\textit{conjugate} system, A‾\overline{A}, by means of a non-signaling bipartite state ηA\eta_A perfectly and uniformly correlating each basic measurement on A with its counterpart on A‾\overline{A}. In the case of a quantum-mechanical system associated with a complex Hilbert space H\mathcal H, the conjugate system is that associated with the conjugate Hilbert space H‾\overline{\mathcal H}, and ηA\eta_A corresponds to the standard maximally entangled EPR state on H⊗H‾{\mathcal H} \otimes \overline{\mathcal H}. A second ingredient is the notion of a reversible filter\textit{reversible filter}, that is, a probabilistically reversible process that independently attenuates the sensitivity of detectors associated with a measurement. In addition to offering more flexibility than most existing reconstructions of finite-dimensional quantum theory, the approach taken here has the advantage of not relying on any form of the "no restriction" hypothesis. That is, it is not assumed that arbitrary effects are physically measurable, nor that arbitrary families of physically measurable effects summing to the unit effect, represent physically accessible observables. An appendix shows how a version of Hardy's "subspace axiom" can replace several assumptions native to this paper, although at the cost of disallowing superselection rules.Comment: 33 pp. Minor corrections throughout; some revision of Appendix
    • …
    corecore