91 research outputs found

    Real-time Ultrasound Signals Processing: Denoising and Super-resolution

    Get PDF
    Ultrasound acquisition is widespread in the biomedical field, due to its properties of low cost, portability, and non-invasiveness for the patient. The processing and analysis of US signals, such as images, 2D videos, and volumetric images, allows the physician to monitor the evolution of the patient's disease, and support diagnosis, and treatments (e.g., surgery). US images are affected by speckle noise, generated by the overlap of US waves. Furthermore, low-resolution images are acquired when a high acquisition frequency is applied to accurately characterise the behaviour of anatomical features that quickly change over time. Denoising and super-resolution of US signals are relevant to improve the visual evaluation of the physician and the performance and accuracy of processing methods, such as segmentation and classification. The main requirements for the processing and analysis of US signals are real-time execution, preservation of anatomical features, and reduction of artefacts. In this context, we present a novel framework for the real-time denoising of US 2D images based on deep learning and high-performance computing, which reduces noise while preserving anatomical features in real-time execution. We extend our framework to the denoise of arbitrary US signals, such as 2D videos and 3D images, and we apply denoising algorithms that account for spatio-temporal signal properties into an image-to-image deep learning model. As a building block of this framework, we propose a novel denoising method belonging to the class of low-rank approximations, which learns and predicts the optimal thresholds of the Singular Value Decomposition. While previous denoise work compromises the computational cost and effectiveness of the method, the proposed framework achieves the results of the best denoising algorithms in terms of noise removal, anatomical feature preservation, and geometric and texture properties conservation, in a real-time execution that respects industrial constraints. The framework reduces the artefacts (e.g., blurring) and preserves the spatio-temporal consistency among frames/slices; also, it is general to the denoising algorithm, anatomical district, and noise intensity. Then, we introduce a novel framework for the real-time reconstruction of the non-acquired scan lines through an interpolating method; a deep learning model improves the results of the interpolation to match the target image (i.e., the high-resolution image). We improve the accuracy of the prediction of the reconstructed lines through the design of the network architecture and the loss function. %The design of the deep learning architecture and the loss function allow the network to improve the accuracy of the prediction of the reconstructed lines. In the context of signal approximation, we introduce our kernel-based sampling method for the reconstruction of 2D and 3D signals defined on regular and irregular grids, with an application to US 2D and 3D images. Our method improves previous work in terms of sampling quality, approximation accuracy, and geometry reconstruction with a slightly higher computational cost. For both denoising and super-resolution, we evaluate the compliance with the real-time requirement of US applications in the medical domain and provide a quantitative evaluation of denoising and super-resolution methods on US and synthetic images. Finally, we discuss the role of denoising and super-resolution as pre-processing steps for segmentation and predictive analysis of breast pathologies

    Estimativa de biomassa acima do solo de caatinga através de imagens SAR

    Get PDF
    A Caatinga é um bioma de ocorrência do semiárido do Brasil, tendo uma das maiores ocupações populacionais em terras secas no mundo. Porém, ainda há carência da aplicação de novas técnicas de estimativa de sua biomassa a partir de dados remotos. Sendo assim, o objetivo da tese foi avaliar a acurácia das imagens do Sentinel-1 na estimativa da biomassa acima do solo (BAS) da Caatinga no Alto Sertão do estado de Sergipe. A distribuição espacial e fenológica da Caatinga na região estudada foi analisada utilizando o Normalized Difference Vegetation Index (NDVI). A análise florística e fitossociológica foi realizada por meio do inventário florestal, utilizado também para calcular a BAS nos fragmentos de Caatinga. Foram testados diferentes métodos de filtragem para avaliar a eficácia na redução do speckle na imagem do Sentinel-1 analisando o número equivalente de looks (NEL). A estimativa da BAS utilizando imagens do Sentinel-1 utilizou dados do inventário em campo, comparando as acurácias das respostas de filtros a partir da decomposição polarimétrica e, posteriormente, testando os atributos: VV, VH, VH/VV, Radar Vegetation Index (RVI), Dual Polarization SAR Vegetation Index (DPSVI), Entropia (H), Ângulo Alpha (α), por meio de regressões lineares simples e múltiplas, na Caatinga Verde, Intermediária e Seca. A Caatinga estudada não é influenciada pelos fatores fisiográficos: declividade, altimetria, proximidade ao rio e tipo de solo. A Caatinga densa apresenta curvas fenológicas com maior condição de verdor que a aberta. A espécie Cenostigma pyramidale é a mais abundante entre as 25 identificadas. O filtro Gamma apresentou melhor desempenho na redução do speckle. A comparação da BAS estimada e observada indicou que a regressão múltipla fornece melhor acurácia nos períodos de Verdor (R2: 0,72) e Intermediário (R2: 0,73) da vegetação, com a contribuição de atributos coerentes e incoerentes. Portanto, o estudo permitiu analisar espacialmente a Caatinga estudada, caracterizando-a fenologicamente bem como sua composição e fitossociologia. Também foi possível verificar as diferentes atenuações do speckle no pré- processamento das imagens. Por fim, constatou-se que as imagens do Sentinel-1 podem ser utilizadas para a estimar a BAS.The Caatinga is a biome occurring in the semiarid region of Brazil, having one of the largest population occupations in dry lands in the world. However, there is still a lack of application of new techniques for estimating its biomass from remote data. Therefore, the objective of the thesis was to evaluate the accuracy of Sentinel-1 images in estimating the aboveground biomass (BAS) of the Caatinga in the Alto Sertão of the state of Sergipe. The spatial and phenological distribution of the Caatinga in the studied region was analyzed using the Normalized Difference Vegetation Index (NDVI). The floristic and phytosociological analysis was carried out through the forest inventory, also used to calculate the BAS in the Caatinga fragments. Different filtering methods were tested to evaluate the effectiveness of speckle reduction in the Sentinel-1 image by analyzing the equivalent number of looks (NEL). The BAS estimate using Sentinel-1 images used field inventory data comparing the accuracy of filter responses from the polarimetric decomposition and, later, testing the attributes: VV, VH, VH/VV, Radar Vegetation Index (RVI), Dual Polarization SAR Vegetation Index (DPSVI), Entropy (H), Alpha Angle (α), through simple and multiple linear regressions, in the Greenness, Intermediate and Dry Caatinga. The studied Caatinga is not influenced by physiographic factors: slope, altimetry, proximity to the river and type of soil. Dense Caatinga has phenological curves with greater greenness than open one. The Cenostigma pyramidale species is the most abundant among the 25 identified. The Gamma filter showed better performance in speckle reduction. The comparison of the estimated and observed BAS indicated that the multiple regression provides better accuracy in the Greenness (R2: 0.72) and Intermediate (R2: 0.73) periods of the vegetation, with the contribution of coherent and incoherent attributes. Therefore, the study allowed the spatial analysis of the studied Caatinga, characterizing it phenologically as well as its composition and phytosociology. It was also possible to verify the different attenuations of the speckle in the pre-processing of the images. Finally, it was found that Sentinel-1 images can be used to estimate BAS

    Study of the speckle noise effects over the eigen decomposition of polarimetric SAR data: a review

    No full text
    This paper is focused on considering the effects of speckle noise on the eigen decomposition of the co- herency matrix. Based on a perturbation analysis of the matrix, it is possible to obtain an analytical expression for the mean value of the eigenvalues and the eigenvectors, as well as for the Entropy, the Anisotroopy and the dif- ferent a angles. The analytical expressions are compared against simulated polarimetric SAR data, demonstrating the correctness of the different expressions.Peer ReviewedPostprint (published version

    Polarimetric Synthetic Aperture Radar

    Get PDF
    This open access book focuses on the practical application of electromagnetic polarimetry principles in Earth remote sensing with an educational purpose. In the last decade, the operations from fully polarimetric synthetic aperture radar such as the Japanese ALOS/PalSAR, the Canadian Radarsat-2 and the German TerraSAR-X and their easy data access for scientific use have developed further the research and data applications at L,C and X band. As a consequence, the wider distribution of polarimetric data sets across the remote sensing community boosted activity and development in polarimetric SAR applications, also in view of future missions. Numerous experiments with real data from spaceborne platforms are shown, with the aim of giving an up-to-date and complete treatment of the unique benefits of fully polarimetric synthetic aperture radar data in five different domains: forest, agriculture, cryosphere, urban and oceans

    Polarimetric Synthetic Aperture Radar, Principles and Application

    Get PDF
    Demonstrates the benefits of the usage of fully polarimetric synthetic aperture radar data in applications of Earth remote sensing, with educational and development purposes. Includes numerous up-to-date examples with real data from spaceborne platforms and possibility to use a software to support lecture practicals. Reviews theoretical principles in an intuitive way for each application topic. Covers in depth five application domains (forests, agriculture, cryosphere, urban, and oceans), with reference also to hazard monitorin

    Book of short Abstracts of the 11th International Symposium on Digital Earth

    Get PDF
    The Booklet is a collection of accepted short abstracts of the ISDE11 Symposium

    Across frequency processes involved in auditory detection of coloration

    Get PDF
    corecore