3,696 research outputs found

    Specifying the reuse context of scenario method chunks

    No full text
    International audienceThere has been considerable recent interest in scenarios for accompanying many of the various activities occurring in the development life cycle of computer based systems. Besides the integration of scenarios in methods such as Objectory and software tools such as Rationale Rose has proven useful and successful. Consequently, there is a demand for adapting existing methods to support specific design activities using scenario based approaches. The view developed in this paper is that scenario based approaches should be looked upon as reusable components. Our concern is therefore twofold : first, to represent scenario based approaches in a modular way which eases their reusability and second, to specify the design context in which these approaches can be reused in order to facilitate their integration in existing methods. The paper concentrates on these two aspects, presents an implementation of our proposal using SGML to store available scenario based approaches in a multimedia hypertext document and illustrates the retrieval of components meeting the requirements of the user by the means of SgmlQL queries

    Comparison of method chunks and method fragments for situational method engineering

    Full text link
    Two main candidates for the atomic element to be used in Situational Method Engineering (SME) have been proposed: the “method fragment ” and the “method chunk”. These are examined here in terms of their conceptual integrity and in terms of how they may be used in method construction. Also, parallels are drawn between the two approaches. Secondly, the idea of differentiating an interface from a body has been proposed for method chunks (but not for method fragments). This idea is examined and mappings are constructed between the interface and body concepts of method chunks and the concepts used to describe method fragments. The new ISO/IEC 24744 standard metamodel is used as a conceptual framework to perform these mappings

    From Method Fragments to Method Services

    Full text link
    In Method Engineering (ME) science, the key issue is the consideration of information system development methods as fragments. Numerous ME approaches have produced several definitions of method parts. Different in nature, these fragments have nevertheless some common disadvantages: lack of implementation tools, insufficient standardization effort, and so on. On the whole, the observed drawbacks are related to the shortage of usage orientation. We have proceeded to an in-depth analysis of existing method fragments within a comparison framework in order to identify their drawbacks. We suggest overcoming them by an improvement of the ?method service? concept. In this paper, the method service is defined through the service paradigm applied to a specific method fragment ? chunk. A discussion on the possibility to develop a unique representation of method fragment completes our contribution

    Towards Method Component Contextualization

    No full text
    International audienceMethod Engineering (ME) is a discipline which aims to bring effective solutions to the construction, improvement and modification of the methods used to develop Information Systems (IS). Situational Method Engineering (SME) promotes the idea of retrieving, adapting and tailoring components, rather than complete methodologies, to the specific context. Existing SME approaches use the notion of context for characterizing situations of IS development projects and for guiding the method components selection from a repository. However, in the reviewed literature, there is no proposed approach to specify the specific context of method components. This paper provides a detailed vision of context and a process for contextualizing methods in the IS domain. This proposal is illustrated with three case studies: scenario conceptualization, project portfolio management, and decision-making

    A reuse-Oriented Approach for the Construction of Scenario Bases Methods

    No full text
    International audienceDespite the recent interest in scenarios, the development of new methods and tools for Requirements Engineering integrating scenario based approaches has been limited. This paper reports on four different processes developed from research undertaken as part of the CREWS project which the authors believe will improve scenario use and make it more systematic. Furthermore CREWS aims to integrate these approaches into a method for scenario-based requirements engineering. To achieve this objective and be able to include existing approaches such as use case analysis we develop a component based approach which reflects a shift towards a reuse-centric approach to method engineering. The paper presents CREWS method and meta-method knowledge through the implementation of an SGML database to store, retrieve and dynamically compose chunks of CREWS processes

    From Conceptual Modelling to Requirements Engineering

    No full text
    International audienceConceptual modelling is situated in the broader view of information systems requirements engineering. Requirements Engineering (RE) explores the objectives of different stakeholders and the activities carried out by them to meet these objectives in order to derive purposeful system requirements and therefore lead to better quality systems i.e. systems that meet the requirements of their users. Thus RE product models use concepts for modelling these instead of concepts like data, process, events etc. used in conceptual models. Since the former are more stable than the latter, requirements engineering manages change better. The paper gives the rationale for extending traditional conceptual models and introduces some RE product models. Furthermore, in contrast to conceptual modelling, requirements engineering lays great stress on the engineering process employed. The paper introduces some RE process models and considers their effect on tool support

    An Approach for Evolution-Driven Method Engineering

    No full text
    International audienceThis work considers the evolutionary perspective of method engineering. It presents an approach for method engineering based on the evolution of an existing method, model or meta-model into a new one satisfying a different engineering objective. This approach proposes several different strategies to evolve from the initial paradigm to a new one and provides guidelines supporting these strategies. The approach has been evaluated in the Franco-Japanese research project around the Lyee methodology. A new model called Lyee User Requirements Model has been obtained as an abstraction of the Lyee Software Requirements Model. The paper illustrates this evolution case

    INTEROP deliverable DTG 6.2 : Method repository

    Get PDF
    This deliverable presents the INTEROP method chunks repository (MCR), its architecture and provided services. It includes the definition of a reusable method chunk, its structure, illustrated with examples of method chunks stored in the repository and guidelines for method chunks definition and characterisation covering tasks TG6.2 and TG6.3 of the work plan of the task group. The main result is the definition of the structure of the method chunk repository emphasizing the link to interoperability. Interoperability is a first-class concept in the structure of the method chunk repository. It not only characterizes method chunks, i.e. procedures to solve interoperability problems, but also interoperability cases, i.e. the presentation of actual problems involving interoperability issues. TG 6 has produced three MCR prototypes. Two experiments were undertaken using the Metis system and one using ConceptBase. The task group attended a two-day intense workshop on Metis. As a result, two experiments with Metis as platform for the method chunk repository are under way and reported in this deliverable. One is realizing the structure of the MCR as specified in this report. The other is an alternative approach that serves as a benchmark and is reported in the appendix. The ConceptBase prototype utilizes the metamodel presented in this deliverable. We have analysed three cases involving various aspects of interoperability. One case is about establishing a broker platform for insurance agents, the second about linking the information systems in the public utility sector, and the third case is establishing the relation of the ATHENA Model-Driven Interoperability Framework to the goals of the MCR. The results of the TG6 have been published at the ISD conference 2006 and the ER conference 2006. Copies of the papers are included in the appendix. The report of the example session with the method chunk repository has been shifted towards deliverable TG6.3 (Tutorial of the MCR). This is the more logical place. We want to emphasize that TG6 was not only busy in drafting concepts, exploring the state of the art, and analyzing cases. We are actually experimenting with a prototype and consider this a valuable contribution to the network. As soon as the prototype is stable, knowledge about interoperability solutions can be coded in this repository and can guide designers of interoperable systems by experience knowledge
    corecore