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Abstract

TOWARDS SYSTEMATIC REQUIREMENTS REUSE

James Naish
A thesis submitted to the University of Manchester

for the degree of Doctor of Philosophy, 2014

Reuse has often been claimed in the software engineering literature to improve the
quality and reduce the cost of software. Motivated by the idea that these gains can
be multiplied if reuse can be achieved earlier in the software life-cycle, a subset of
the requirements engineering literature has focused, since the inception of the field,
on investigating approaches to reuse at the requirements level. A wide array of differ-
ent approaches now exist within this space. However, these approaches offer varying
degrees of generality and utility. Generality is important because it enables a require-
ments engineer to utilise the same reuse library across multiple projects. Utility is
important because it is a measure of the extent to which effort is reduced by utilising a
reuse approach.

This thesis presents Reuse-Oriented Requirements Engineering (RORE): a system-
atic framework to support the production of requirements models by reuse. RORE aims
to improve on existing requirements-reuse approaches in respect of the generality-
utility trade-off. RORE seeks to do this by bringing together the strengths of two exist-
ing requirements-level reuse approaches: The Domain Theory and Problem-Oriented
Software Engineering (POSE - a refinement of Jackson’s Problem Frames Approach).
This thesis evaluates RORE with respect to both generality and utility, and compares
RORE against both frameworks. The major conclusion of the thesis is that while RORE
improves on each framework in respect of some, but not all, evaluation metrics, RORE
does succeed in offering a level of generality which compares favourably to existing
highly general approaches, and without significantly reducing the utility of the ap-
proach.
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Chapter 1

Introduction

1.1 Motivation: Towards Systematic Requirements Reuse

In software engineering, reuse is desirable because it provides a more efficient im-
plementation of the engineering process than is possible without reuse. Furthermore,
by the nature of reuse, reusable artefacts can be tried and tested over many appli-
cations and so the quality of an artefact can be improved if it is constructed from
reusable artefacts. Most of the reuse literature produced to date has emphasised code-
or design-level reuse [Kru92, FK05, Gam95]. However, Cheng and Atlee have ar-
gued that requirements engineering could benefit substantially from reuse [CA07].
They argue that reuse at the requirements level would facilitate the realisation of
a more systematic approach to requirements engineering. Several methodologies to
support requirements engineering have been proposed (and accepted) in the literature
[DFvL91, DVLF93, Yu93, Yu97, Jac01b]. However, these methodologies often lack
detailed methodological guidance to support low-level tasks such as requirements elic-
itation and analysis [NE00, CA07, SPZ06]. Reuse can fill this gap by providing a
means for the dissemination of both domain and procedural knowledge.

There is, however, another reason to seek an effective approach to requirements-
level reuse: the gains of reuse can likely be increased if reuse is achieved earlier in
the software engineering process [Sut02]. Sadraei et al [SABP07] offer a review of
reuse studies, and conclude that between 5-25% of the effort of a software engineering
project is spent on requirements engineering. However, most software design and cod-
ing errors are traceable to errors at the requirements level [BMU75, Gla98], and these
errors are the most costly to fix. Improving the quality of requirements artefacts, there-
fore, could lead to significant reductions in the time and money spent on fixing errors
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during the software engineering process. Furthermore, some approaches (such as gen-
erative software development [Cza05] and software product lines [CN01]) associate
requirements-space abstractions with solution-space abstractions allowing a mapping
from the former to the latter. Where such approaches are possible, greater levels of
reuse can be achieved across the software development process as a whole, and greater
levels of reuse than would be possible at the code-level alone. The productivity gains
which can be achieved through reuse are, then, greater when reuse can be achieved at
the requirements level.

Reuse has been a background theme throughout the history of requirements engi-
neering. However, in recent years the RE community has started to make a concerted
effort to address this question [CA07]. In particular, the community has established
a Requirements Patterns workshop (RePa) to address the question of requirements-
level reuse, which has been co-located since its inception in 2011 with the official RE
conference [PMCS11]. This development, in conjunction with the sheer proportion
of requirements reuse literature which advocates patterns-based approaches, indicates
that the community has generally accepted patterns-based approaches as the preferred
approach to requirements-level reuse.

Patterns-based approaches to reuse do offer important benefits. They provide a
common language through which both domain and technical experts can discuss their
ideas [AC98]. Patterns also support the reuse of simple but effective ideas which are
well known, but often forgotten [Ris10]. Furthermore the sheer volume of patterns
which have been proposed, even just in the requirements engineering literature, means
that there is likely to exist a pattern to support most tasks and contexts which a require-
ments engineer comes across.

The extent of the patterns literature, however, is a double-edged sword. Agerbo and
Cornils argued in 1998 [AC98] that the volume of patterns which had been proposed
in the literature was already making the body of knowledge which is contained within
those patterns unmanageable. This prediction appears today to have been prescient.
Recent attempts to systematise patterns knowledge (outside the requirements litera-
ture, for this is where cutting-edge patterns research occurs) have either reduced the
literature to small but coherent pattern languages (e.g. the Pattern-Oriented Software
Architecture series[BHS07]), or else have run into significant, particularly organisa-
tional, challenges. Booch’s “Handbook of Software Architecture” project [Boo05], for
instance, has been criticised for organising patterns in a manner that is “ad hoc” and
“limited” [HC11], and for equating commercial value with quality in the selection of
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patterns for the handbook [HJN11]. Without an effective system to support the retrieval
and application of patterns that are relevant to a particular context, reuse remains ad
hoc and the full benefits that reuse can offer will not be realised.

Several approaches to requirements-level reuse have been proposed in the liter-
ature which address, indirectly, this limitation to the extent that they offer systems
for reuse, rather than simply providing a set of reusable artefacts. One widely ac-
knowledged paradigm for reuse is analogy [Fin88, Mai92, MVL97, CJ97]. Analogical
reuse is an approach to artefact retrieval based on the structure-mapping theory of
analogy proposed by Gentner [Gen83]. Analogical approaches to reuse, in line with
Gentner’s work, support the retrieval of reusable artefacts by matching the structure of
an abstract artefact to that of a concrete scenario. Gentner’s theory holds that multiple
domains may share a similar structure, although the details of the entities which com-
prise that structure will vary [Gen83]. Because of this, analogical reuse approaches
have been shown to be highly effective approaches to transferring reusable knowl-
edge between application domains [Mai92, Sut02]. The approaches therefore provide
a balance between generality across domains and systematicity in those tasks which
they are designed to support. However, each of the analogical approaches that have
been proposed have been designed to support the construction by reuse of a specific
type of requirements model in the context of a specific requirements methodology
[Mai92, MVL97, CJ97].

An alternative approach to reuse is proposed by Jackson [Jac01b] who posits a set
of “Problem Frames”. Like the domain abstractions posited by Sutcliffe and Maiden
[SM98], Problem Frames are highly abstract and describe structural relationships be-
tween entities. The major difference, however, is that where a domain abstraction
within the Domain Theory describes structural relationships between entities within a
single domain [Sut02], Jackson’s Problem Frames describe relationships between do-
mains but do not describe the content of a domain [Jac01b]. Consequently, Problem
Frames are highly abstract and so offer less utility than the Domain Theory. However,
the Problem Frames approach has been extended to support the derivation of design
and architectural specifications from the problem models which are composed from
problem frames. Problem-Oriented Software Engineering (POSE) uses transformation
patterns specified as sequents incrementally to transform problem models into solution
models [HRJ08]. In common with the Problem Frames approach itself, POSE shares
a high degree of domain generality. Furthermore, POSE is committed neither to a
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specific set of transformation patterns nor to a specific schema for expressing knowl-
edge. As such, POSE supports a higher degree of task and method generality than the
Domain Theory.

1.2 The Research Problem

In order fully to reap the benefits of reuse, it is desirable that requirements engineers
have available an approach to reuse which balances the benefits that are provided by ex-
isting reuse approaches. A reuse approach to support requirements engineering should
offer support for reuse across a range of application domains and throughout the en-
gineering process. Reuse should be a central component of the engineering process,
rather than an activity which occurs only when the requirements engineer remembers
a relevant component. The approach should be capable of supporting the full gamut of
engineering tasks from early stage requirements gathering to late-stage solution spec-
ification. The requirements engineer should be free to use the reuse approach with
their own choice of requirements engineering methodology while still have access to
a sufficient body of reusable knowledge. Accordingly, knowledge which is gained
through a project undertaken using one requirements engineering methodology should
be transferable to support engineers who are working with alternative methodologies.

However, like any system, reuse approaches are constrained by a range of different,
often opposing, forces acting both on individual components of the system and on the
system as a whole thereby affecting the properties of the approach. In the case of reuse
approaches, such forces include:

• Generality: A measure of the range of domains, reuse contexts and requirements
engineering methods to which a reuse approach can be applied;

• Utility: The effort reduction achieved by reusing a reusable artefact versus
achieving the same goal without the aid of reuse;

• Systematicity: The extent to which reuse is a driving force, rather than an inci-
dental occurrence, in the software development process, and to which such reuse
is supported by a repeatable set of procedures and tools;

• Practicality: The ability of a reuse approach to satisfy the organisational, eco-
nomic, legal and technical constraints imposed of a practical setting while still
yielding utility.
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It is the need to optimise the interplay of these different forces which significantly
complicates the task of design-for-reuse and which has led to the limitations of existing
approaches. Depending on the goals which a reuse designer aims to achieve, different
forces need to be taken into consideration in the design of a reuse approach. This
thesis advocates an approach to reuse which offers on the one hand generality with
respect to domains, tasks and methodology, and, on the other hand, a high degree of
systematicity and utility. Furthermore, this thesis advocates that approaches to reuse
should achieve these goals while satisfying real-world practicality constraints, such as
realistic computational memory and performance constraints.

Finding the right balance between these two sets of properties is a challenging de-
sign problem because the design tactics by which generality is often realised (such as
reducing granularity or increasing abstraction) tend to impact adversely on the utility
of an approach. The generality of a reuse approach is related to the likelihood that a
reusable artefact can be identified from the approach to support any given context in
which a requirements engineer might find themselves. Generality, therefore, is influ-
enced by two important factors. Firstly, the generality of a reuse approach as a whole
is influenced by the generality and number of the reusable artefacts within the system.
Increasing the number of reusable artefacts within a library will increase the generality
of a library as a whole. This is because whole because for any given use-context the
chances that the library will contain a reusable artefact which satisfies that use context
are increased if the number of artefacts also increases. Secondly, the generality of the
system as a whole is also increased by an increase in the generality of individual arte-
facts within that system. This increase in generality, however, will be in proportion to
the number of artefacts contained within the system: the more artefacts a library con-
tains, the less impact a change in the generality of individual components will have.
Alternatively, increasing the generality of several individual components can reduce
the number of components needed to cover a given range of scenarios.

A number of design tactics exist which allow a system designer to do this but each
inhibits, in some way, either utility or systematicity. Increasing the generality of a reuse
approach by either increasing the abstraction or reducing the granularity of the artefacts
which that approach comprises will reduce the utility of the approach. The abstraction
of a component can be understood as the degree to which a reusable artefact relates to
a specific set of concepts or processes. The granularity of a component, roughly, can
be defined in terms of the number of such concepts or operations that are contained
within the artefact [Sut02].
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The entire process of software engineering is one of reifying a set of requirements
in order to produce code, which is the most concrete expression of the software de-
sign. The engineering process thus ultimately increases the information content of the
artefacts which it produces. Reuse is desirable because it is an efficient way of achiev-
ing this information gain. However, since abstraction and reduced granularity reduce
the information value of a reusable artefact, these tactics also reduce the information
gained when that artefact is utilised. Thus a greater degree of effort is required to reify
the reusable artefacts, and to compose the artefacts into a new whole [Sut02].

This would suggest that it is desirable to reuse more concrete components and to
increase generality by increasing the number of artefacts in the library. However, after
a certain point a library will become so large that it is simply not feasible, even for
modern machines, to execute in reasonable time search algorithms to retrieve reusable
artefacts that are relevant to a particular use context. It is desirable, therefore, in de-
signing for reuse to balance the application of abstraction, granularity, and artefact
number when designing for generality.

1.3 Research Aims and Objectives

This thesis proposes a framework which is capable of providing systematic support for
reuse across a range of application domains and requirements tasks. The framework
for reuse which is presented in this thesis - Reuse-Oriented Requirements Engineering
(RORE) - is a systematic approach to model-driven requirements engineering by reuse
which aims:

To find a better balance between generality and systematicity than do
existing approaches while maintaining a high level of utility and ensuring
that the approach remains practically feasible.

This thesis poses and investigates, as major aims of this research, three questions
which are integral to the successful satisfaction of this overall goal:

1. What factors affect the generality, systematicity and utility of a reuse approach?

2. What design tactics can be identified to support the realisation of this aim?

3. How can a reuse framework be designed to balance generality, and systematicity
and utility?
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To address these questions, this thesis will seek to satisfy the following objectives:

1. To identify a set of design tactics which can be employed in the design of frame-
works for requirements reuse to support the goal of balancing generality against
utility and systematicity, while ensuring the approach remains practical;

2. To develop a theoretical framework to inform and guide the design of frame-
works for requirements reuse;

3. To develop a prototype implementation of the proposed reuse framework.

1.4 Research Challenges

In developing the reuse and theoretical frameworks which are presented in this thesis,
the following significant challenges were encountered.

Challenge One. Identifying design strategies which would optimise the balance be-
tween generality, systematicity and utility was a considerable technical challenge.

This was a challenge because reuse systems are constrained by numerous and com-
peting forces, such as granularity, abstraction and utility. Many of the design tactics
through which generality can be achieved directly undermine utility [Sut02]. Adjust-
ing one parameter tends to affect other parameters, and so the research task facing this
thesis amounts to a challenging optimisation problem.

Challenge Two. Developing a multi-disciplinary theoretical understanding of the
forces underpinning reuse systems.

In constructing the theoretical framework which this thesis presents to support the
design-for-reuse framework, a significant challenge was to identify relevant literature
on which the framework could be founded. Maiden has advocated a multi-disciplinary
approach to theorising about reuse and proposes cognitive science as one discipline
which can contribute [Mai92]. Another useful starting point was Sutcliffe’s frame-
work [Sut02]. These approaches, however, are limited in terms of the explanations and
predictive power which they offer. Fleshing out this understanding by supplement-
ing the work of Maiden and Sutcliffe with additional literature was therefore a major
challenge in approach the design problem discussed in this thesis.
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Challenge Three. The need to identify a set of basic procedures on which the reuse
approach presented herein could be grounded.

While some of the tasks which reuse frameworks support are common and well
known (e.g. component retrieval), requirements engineering consists of other kinds of
task (e.g. analytical tasks) which a truly systematic requirements-level reuse frame-
work should also support. There was, therefore, a need to determine how best to
partition requirements engineering activities into recurring abstract activities and how
best to design those activities to provide a high degree of utility.

Challenge Four. To identify knowledge structures through which reusable knowl-
edge can be expressed.

Because this thesis advocates the integration of a mix of reuse approaches, this was
a non-trivial task. A range of formalisms for expressing knowledge have been proposed
for expressing knowledge in general (e.g. description logics [Baa03] and production
rules [And04, ABB+04]). The ideal situation would be to identify a single formalism
which could adequately express all of the reusable structures which the framework
presented herein supports. To the best of this author’s knowledge, no single formalism
exists, however, which neatly expresses both declarative and procedural knowledge.
In designing the reuse framework, therefore, this thesis carefully considered the right
formalism to express each type of structure.

1.5 Research Contributions

This thesis aims to make three significant research contributions as follows.

Contribution One. This thesis presents a suite of design tactics which can be reused
as heuristics to support design-for-reuse where balancing generality against utility is
an important design goal.

Specifically, this thesis distinguishes for the first time in the requirements reuse
literature between procedural and declarative reuse, and provides some analysis of
the respective advantages and limitations of each reuse paradigm. This thesis provides
evidence and argument which strongly suggest that procedural reuse is inherently more
general without a significant detriment to utility than is declarative reuse.
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Contribution Two. This thesis presents a theoretical framework to guide and inform
the development of systems for requirements-level reuse in order to satisfy the goal of
an effective balance between generality and utility.

The framework codifies the design tactics identified in Contribution One into a co-
herent framework. The framework identifies the procedures, components and knowl-
edge structures which are required to provide a reuse-driven approach to requirements
engineering. The framework can be reused by other designers-for-reuse in order to de-
velop alternative instantiations to that presented in this thesis while retaining the basic
properties of the approach with respect to generality and utility.

Contribution Three. The framework presented in this thesis effectively unifies and
extends two existing approaches to requirements-level reuse (the Domain Theory [Sut02]
and POSE [HRJ08]).

This thesis evaluates the strengths and limitations of both frameworks and shows
how aspects of each framework can be integrated in order to produce a framework
which is stronger with respect to the overall goal of balancing generality and utility.
This thesis shows how these modifications can strengthen the analogical reuse of Sut-
cliffe and Maiden [Sut02, Mai92] with respect to generality, and the procedural reuse
of POSE [HRJ08] with respect to utility.

1.6 Research Methodology

This thesis broadly adopts the Design Science Research Methodology (DSRM) de-
scribed by Peffers et al [PTRC07] (see Figure 1.1):

The DSRM identifies six stages of design science research: Problem Identification;
Objective Definition; Design and Development; Demonstration; Evaluation; Commu-
nication. Peffers et al note that the “process is structured in a nominally sequential
order” but that in reality the process “may actually start at almost any step” [PTRC07].
This thesis begins with problem identification.

Problem Identification. An object-centred approach to design begins with a practi-
cal or research need. The first step, therefore, in such a project is to carefully define
the problem. The need which this thesis attempts to fulfil is the need to provide re-
quirements engineers with a single approach to reuse which they can use to undertake
a wide range of different engineering activities and in a range of different domains.
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Figure 1.1: The Design Science Research Methodology described by Peffers et al
[PTRC07]
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Objective Definition. The next step was to formulate the aims and objectives of this
research project. To achieve this, this thesis sought better to understand the extent to
which existing approaches to requirements-level reuse satisfy this need and, where they
do not, to understand why this need has historically been difficult to fulfil. A system-
atic review of requirements reuse literature was therefore undertaken. An early version
of this survey is presented in [NZ11]. An exhaustive search was conducted through ev-
ery issue of the Requirements Engineering and Transactions on Software Engineering
journals, as well as the IEEE International Conferences on Requirements Engineering
(REC) and Software Engineering (ICSE) dating back to 1990. Papers were included in
the survey if they addressed reuse or artefact retrieval explicitly. Each paper was then
analysed to evaluate the extent to which the approach which was discussed within sup-
ported the goals of generality, systematicity and utility. This analysis was aggregated
in order to draw general conclusions about the generality, systematicity and utility of
each approach.

Design and Development. The DSRM stipulates that the design step should be in-
formed by theoretical knowledge about the problem to be solved. This is in line with
Wieringa’s advocacy of theoretically-informed approaches to design in the require-
ments engineering literature [Wie05]. To this end, this research sought to identify
a set of design heuristics on which the design of the framework which this thesis
presents could rationally be predicated. The theoretical framework described by Sut-
cliffe [Sut02] provided a starting point for this task. However, further reading in the
fields of information theory [Sha01] and the physics of information [Lan61, Bek04,
Bek03, TSU+10] provided further insights about the forces which underpin and act on
systems for reuse.

The result of this analysis was the identification of four design heuristics which
informed the overall structure of the framework. Each heuristic pointed to a basic set
of components which needed to be present in order to produce a framework which
satisfies the goals of this thesis. Once these basic components had been identified, the
details of the framework were fleshed out in two steps:

1. Firstly, this research identified the reuse tasks and requirements engineering ac-
tivities which the framework should support;

2. Secondly, this research identified the knowledge structures through which could
be expressed the data required in order to enact these tasks.
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The first of these steps was achieved through further analysis of the requirements
engineering literate in order to identify commonly recurring task types. First, an initial
set of task types was proposed based on the surveys of requirements engineering liter-
ature provided by Nuseibeh and Easterbrook [NE00] and by Cheng and Atlee [CA07].
These requirements tasks were validated further by determining the extent to which
existing reuse approaches support each task [NZ11]. Each task was defined concretely
in terms of informational properties such as the source and sink or the information
which the task transforms and the type of transformation which is enacted. Tasks that
were similar were merged into one task.

The second design step involved developing a knowledge model which defines
formal knowledge structures through which reusable knowledge, and the requirements
engineering methodologies which those knowledge structures support, can be defined.
This task was driven heavily by the needs of the generic requirements tasks which
make up the procedural guidance that is offered by the framework.

Demonstration. Within the DSRM, the Demonstration stage involves proving the
concept of the research by its application to realistic examples. To support this task, a
software implementation of the reuse framework was developed. The framework spec-
ification is sufficiently formal that the prototype implements the specification directly
and so supports all of the activities which are supported by the framework: metamod-
eling, library specification and engineering-by-reuse. The tool was then applied to
formalise two requirements engineering notations: a revised version of Sutcliffe and
Maiden’s OSM schema [SM98] and a novel representation for software system spec-
ifications which is partially based on the UML. Next a reuse library was specified to
support the transformations of models expressed as OSMs into models expressed as
ISMs. The resultant instantiation of the prototype tool was applied to produce soft-
ware system specifications, predominantly by reuse, across three complex application
domains: the Autopilot, File Transfer and Order Management domains.

Evaluation. The final stage of this thesis was to evaluate the approach. The evalu-
ation of the work presented in this thesis is based on a combination of ethnographic
[Hin08], qualitative and quantitative analytical methods. The reuse framework is cri-
tiqued on its own terms on the basis of data collected through the case study. In this
section of the evaluation, the reuse framework is evaluated with respect to the four
criteria which were introduced in Section 1.2 — Generality, Utility, Systematicity and
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Practicality — in order to verify that the approach does indeed satisfy the aims and
objectives of this thesis. Quantitative and qualitative measures are defined in order to
provide as objective a framework as possible for the evaluation of the novel approach,
and data is presented for each of these measures in order to support an assessment
of the novel approach. This data includes performance profiling data, records of a
self-validation exercise which involved the author of this research applying the tool,
and a statistical analysis of quantitative data about the range of domains and tasks
that were supported. In the second half of the evaluation, the conclusions of the anal-
ysis of the approach are used to contrast the framework presented in this thesis to
the three major existing requirements reuse approaches: the Domain Theory; POSE;
and Requirements Patterns. The novel approach — which is the subject of this thesis
— is contrasted to these three existing approaches in terms of Generality, Utility and
Systematicity. However, this thesis aims does not aim to improve on the practical fea-
sibility of existing approaches — only to ensure that the novel approach is practical in
its own right — and so the novel approach is not compared to existing approaches in
terms of the Practicality measures.

Communication. To date, communication of this research has been achieved in two
ways:

• This thesis disseminates the research which is presented herein;

• An early form of the analysis on which the design of RORE is based was pre-
sented at the First International Workshop on Requirements Engineering Patterns
(see [NZ11]).

1.7 Overview of the Thesis

Figure 1.2 provides a roadmap to the remainder of this thesis which is organised as
follows.

Chapter Two deepens and broadens the context for this thesis through a system-
atic review of requirements-level reuse and support for this task in major systematic
approaches to requirements engineering. The systematic review first identifies the sup-
port for requirements-level reuse that is provided within the context of the four major
requirements engineering methodologies, and then broadens the discussion to consider
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less systematic, less widely accepted and less well-developed approaches to reuse. The
survey ends with a discussion of retrieval algorithms to support reuse.

Chapter Three introduces the design heuristics on which the design of the RORE
approach is predicated, and briefly describes how these were derived from Sutcliffe’s
conceptual framework for reuse [Sut02] and from the literature on information theory
and physical information. The chapter then presents the RORE framework, briefly
summarising its major components, and indicating how the design of these compo-
nents has been influenced by the design heuristics. There are two major components to
the RORE framework: a set of generic procedures for engineering new requirements
artefacts by reuse, and a set of knowledge types which are used within RORE to ex-
press both reusable requirements engineering knowledge and concrete domain-specific
knowledge.

Chapter Four presents the design of the RORE prototype. The prototype comprises
two prototype tools. The first tool is a meta-modeling tool which supports the formal-
isation, through the RORE knowledge types, of requirements engineering modeling
notations. The tool also supports the definition of reusable knowledge bases. The sec-
ond tool supports requirements engineering itself by guiding users through the process
of engineering new requirements artefacts based on the reuse of knowledge contained
within a RORE knowledge base. Chapter Six presents both tools.

Chapter Five presents in detail the procedures which are defined by RORE for en-
gineering requirements artefacts by reuse. Two broad classes of procedure are defined:
requirements tasks and reuse procedures. Requirements tasks are high-level activi-
ties involving the manipulation and review of requirements artefacts. Reuse tasks are
lower-level activities, from which requirements tasks are composed, which support the
reuse of reusable knowledge.

Chapter Six drills down into the specifics of the knowledge typology through which
requirements knowledge — both reusable and domain-specific — is expressed within
RORE. RORE supports meta-modeling of requirements modeling notations, and the
instantiation of those meta-models into concrete, domain-specific models. Chapter
Five first introduces the knowledge structures by which meta-models are defined, and
then describes the knowledge structures through which concrete models are specified.
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Chapter Five also defines the knowledge structures through which various kinds of
reusable knowledge are expressed in RORE.

Chapter Seven demonstrates the application of RORE to the first of these two ac-
tivities: the meta-modeling task. The chapter demonstrates how RORE can be applied
to engineer reusable knowledge bases for a specific requirements engineering activity:
specifically, the task of producing software specifications from requirements models.
In addition, Chapter Seven shows how RORE is used to formalise the reusable knowl-
edge which supports that activities. Two notations — the Object System Model and
Information System Model — are introduced and formalised. The former represents
requirements models; the latter represents specifications. A manual transformation
process is described and then formalised as a sequence of reusable knowledge struc-
tures

Chapter Eight demonstrates how RORE supports the second of these two activities:
the engineering of new requirements artefacts. The chapter illustrates how RORE can
be applied to utilise the reuse library that was constructed in the previous chapter in
order to produce new requirements models for three different requirements scenarios.

Chapter Nine evaluates the demonstrative work that was presented in Chapters Six
through Eight. The evaluation is structures into three parts. The first section provides
a critique of the research methodology in order to determine the soundness of the
research presented in this thesis. The second section critiques the RORE framework
itself on the basis of the case study. The third section then applies this critique in
order to contrast RORE with the Domain Theory, POSE and Requirements Pattern
approaches.

Chapter Ten summarises the work presented in this thesis and identifies the main
conclusions of this research.



Chapter 2

Reuse in Requirements Engineering

2.1 Introduction

This chapter reviews approaches to reuse in the requirements engineering literature.
Although a large body of work has been presented on reuse in the requirements en-
gineering literature, there is no consensus within the community as to how reuse can
best be achieved at the requirements level. Within the requirements engineering litera-
ture a handful of major modeling approaches have been proposed, and some effort has
been made to integrate reuse into these frameworks. However, only three requirements
engineering approaches (Jackson’s Problem Frames approach [Jac01b]; its offshoot,
POSE [HRJ08]; and Sutcliffe and Maiden’s Domain Theory [SM98, Sut02]) seek to
make reuse a systematic driving force in requirements engineering.

Aside from these approaches, patterns as a means of reusing and disseminating
requirements knowledge have been a particularly popular approach, as discussed by
Naish and Zhao [NZ11]. Furthermore, the emergence of the Requirements Patterns
(RePa) workshop series [PMCS11] is indicative of the growing significance of patterns-
based research in requirements engineering. However, other authors have proposed
alternative approaches based on use cases, domain-specific languages or feature mod-
eling.

Finally a small, but important, area of research has been the investigation of mecha-
nisms to support the retrieval of reusable artefacts from a library. Maiden has proposed
the use of analogical reuse as a means of matching generic models across application
domains [Mai92]. A wide range of recommender systems have been proposed both
within, and without, requirements engineering [AT05] which seek to retrieve reuse
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structures in a context-sensitive fashion. Various approaches to taxonomic and query-
based retrieval have also been proposed, although research in these areas is less devel-
oped.

This chapter is structured as follows. Firstly, this chapter considers the major ap-
proaches to requirements engineering and the numerous attempts which have been
made in each case to integrate reuse into those approaches. Secondly, this chapter re-
views pattern-based approaches to requirements reuse, and considers different ways
in which requirements pattern libraries have been organised. Thirdly, this chapter re-
views alternatives to patterns as a means of reusing requirements knowledge. Finally,
approaches to the retrieval of reusable requirements knowledge from libraries are re-
viewed in the final section of this chapter.

2.2 Reuse in Requirements Engineering Methods

2.2.1 Reuse in KAOS

KAOS is a formal approach to requirements engineering which was the earliest of the
goal-oriented requirements engineering (GORE) methodologies [DFvL91, DVLF93].
A detailed overview of recent research into the KAOS methodology is given in [Lap05].
The basic ontological construct in KAOS is a goal: a statement of the intentions and
motivations of actors within the problem domain [VL04]. Goals within a goal model
are organised into goal abstraction hierarchies according to AND/OR relationships be-
tween goals and sub-goals [MVL97]. The goal model is constructing starting with
high-level business goals, which may be vague and ill-defined, and decomposing these
until a set of leaf goals has been identified for each top-level goal. Several types of
sub-goal are distinguished [DVLF93]:

• Satisfaction goals are concerned with requests issued by agents;

• Information goals are concerned with informing agents of the states of objects;

• Robustness goals are concerned with recovery from exceptional or unexpected
sequences of events;

• Consistency goals relate to consistency between the physical and automated
components of the system;
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• Safety goals restrict the conditions under which an agent state is considered
“safe”;

• Privacy goals restrict the conditions under which an agent state is observable.

Goals themselves are not operationalisable [DVLF93], in the sense that they can-
not be directly enacted by the operations provided by individual agents. However,
the aim of goal decomposition is to decompose goals to the extent that they can be
operationalised [Lap05]. In order to model the operationalisation of a goal model,
therefore, KAOS provides two other forms of model: an object model, which defines
objects and their properties within the system; and an operational model which defines
the services that are provided by agents, and which transform the objects in the object
model [Lap05]. Collectively these models comprise objects which represent stateful
“thing[s] of interest” which may evolve over time, and which can be “referenced by
requirements”. The object concept is specialised into entities, relationships, events and
agents [DVLF93]. Entities are autonomous objects which exist independently of one
another. Events are objects which exist only at instantaneous points in time. Rela-
tionships associate objects of all types with one another. Agents are responsible for
enacting some action or activity. Actions are operations over objects which are defined
in terms of mathematical relations [DFvL91].

Numerous authors have investigated reuse within the context of the KAOS frame-
work. These solutions, however, have generally not yielded systematic approaches to
reuse, have not been well integrated into the KAOS framework, and have not been
thoroughly developed. Furthermore, the focus of these solutions has overwhelmingly
been on the production of goal and other KAOS models, and so the task generality
of the proposed solutions is highly limited. Darimont and Van Lamsweerde, for in-
stance, propose a set of formalised refinement patterns to support the process of goal
decomposition [DVL96]. Massonet and Van Lamsweerdee have investigated the appli-
cation of analogical reuse to support the construction by reuse of KAOS specifications
[MVL97]. The approach is effective for this task and exhibits the domain generality
which arises from analogical reuse in general, but lacks both task and method general-
ity. Semmak, Gnaho and Laleau propose an alternative approach [SGL08]. They ex-
tend the KAOS metamodel to support the modeling of variability. This approach does
not support the construction of novel requirements artefacts by composition-driven
reuse. Instead it supports the reuse of a requirements specification as a coarse-grained
artefact by instantiating the specification to support a particular context. This solu-
tion supports a requirements family approach, and so opens the door for product-line
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design.

2.2.2 Reuse in the NFR Framework

The NFR Framework was first proposed by Chung as a notation and methodological
approach to modeling non-functional software requirements (NFRs) in general, and
accuracy requirements in particular [Chu91]. The framework was designed in order to
support the formal modeling of such requirements and the application of those require-
ments during design through the use of soft goal modeling [MCY99]. The framework
defines a set of “goal sorts” for NFRs which correspond to different types of non-
functional requirement (e.g., accuracy, security and reliability requirements). NFR
goals can be associated with one another through link types which indicate both the
decomposition of higher-level goals into lower-level goals, but also mutually satisfic-
ing or contradictory interactions between NFRs. Furthermore, the framework provides
detailed methodological and heuristic guidance as to how NFR goal hierarchies can be
refined in the first instance, and then evolved to be consistent [MCN92].

A recent development in the NFR Framework literature has been a small body of
work which investigates the reuse of patterns and anti-patterns in order to support the
production and refinement of NFR models. Supakkul et al have proposed a pattern-
based approach to capturing and reusing knowledge about NFRs [SHC+10]. The ap-
proach advocates five classes of NFR pattern with each class playing its own role in the
process of capturing and then formalising NFRS [SHOC09b]. Goal patterns support
the clarification of NFR soft-goals. Problem patterns describe obstacles to realising
NFRs. Causal attribution patterns model causes for those problems. Solution/means
patterns supporting the capturing of solutions to those problems. Requirements pat-
terns are used to specify NFRs themselves [SHC+10].

Other literature addressing reuse within the NFR framework has emphasised the
identification and description of specific patterns and anti-patterns which can be ap-
plied using the NFR pattern approach. For instance, Serrano and Sampaoi do Prado
Leite have focused on using the NFR Framework to capture knowledge about trans-
parency requirements as patterns [SL11]. Cunha et al have extended this work by
considering the challenges involved in using NFR patterns as a means of represent-
ing transparency requirements [CSdPLDW13]. Supakkul et al have defined patterns
to support the modeling of security threats and vulnerability mitigation requirements
[SHOC09a]. Supakkul has also begun documenting some of these patterns and anti-
patterns [Sup13]. Work on the NFR Pattern approach, then, is small but growing.
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2.2.3 Reuse in i* and TROPOS

i* is an agent-oriented approach to modeling which can be seen as a descendent of
Chung’s NFR framework. i* can be used to support requirements engineering [Yu97],
but is also the modeling basis for the TROPOS requirements engineering methodology
[CKM02]. Agent-oriented approaches to requirements engineering are desirable be-
cause they bring together functional, quality and procedural concerns around the cen-
tral concept of an agent in order to support constantly evolving environments [Eri97].
i* provides support both for activities occurring prior to requirements gathering as well
as for the requirements engineering process itself [Yu97]. During the earlier phases of
requirements engineering, i* is used to model the current domain, and as requirements
engineering progresses it can also be used to model the system to-be [Lap05].

The central ontological concept which underpins the i* framework is the actor
[Yu97]. An actor is an intentional entity [Yu93]. The intentionality of an actor are
modelled as knowledge, belief, goals, abilities and commitment. A particular feature
of i* is that it attempts to model agents in a “rich organisational context” [Yu97];
that is, within a network of other actors on which agents may depend to realise their
goals. Three types of actor are distinguished by i*: agents, roles and positions [Lap05].
Agents are individual entities which exhibit certain skills or capabilities. Roles are
abstract sets of responsibilities and intentions. (An agent may play numerous roles).
Positions are “socially recognised” [Lap05] sets of roles.

i* distinguishes two basic kinds of model [Lap05]. Strategic dependency models
capture the external interactions between actors within an organisation. Strategic ra-
tionale models provide a window into the internal motivations and intentionality of
individual actors [Yu97]. Components of a strategic dependency model are related
by intentional dependencies [Yu93] of which four types are distinguished according
to their subject matter: goal, soft-goal, task and resource. Elements of a strategic ra-
tionale model are related by decomposition and means-ends links. Means-ends links
define alternative approaches to achieve a goal. Decomposition links specify sub-goals
of a goal, as well as tasks and sub-tasks for realising those goals [Yu97].

This thesis identifies only a small number of authors who have considered reuse in
the context of i*. Of these, the most comprehensive solution is that provided by Kolp,
Giorgini and Mylopoulos [KGM03, KF07, Gio03] who have identified a collection of
patterns to support the construction of i* organisational models. Their solution has
been abstracted from practical experience and so has been carefully validated. How-
ever, their patterns emphasise only the modeling of organisational structures and so are
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limited by task generality. Pavan, Maiden and Zhu have developed a pattern language
which is expressed in i* for a submarine manuevering system. The language comprises
four patterns and defines the relationships between these. However, it is limited with
respect to domain generality as it is a domain-specific language. Finally, because i*
supports the modeling of soft-goals it is a good candidate for expressing quality re-
quirements. Quality reqirements are known to impact on the architecture of a software
system. Pimentel et al. [PLC+12] have, therefore, developed a model-transformation
based approach to deriving software architectural models from i* quality models. Their
approach focuses specifically on the adaptive systems domain.

2.3 Pattern-based Reuse Approaches

2.3.1 The Domain Theory

The Domain Theory is rooted in Neil Maiden’s PhD thesis [Mai92]. There are three
significant components to the approach. The first is a meta-schema for expressing
domain knowledge [SM98, Sut02]. The schema, which was refined further through the
NATURE project [JBR+92], identifies a library of fact types through which knowledge
can be expressed (see Figure 2.1).
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Figure 2.1: The Domain Theory’s meta-schema for expressing domain knowledge as
described in [SM98]
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This meta-schema is instantiated in order to produce requirements models known
as Object System Models (OSMs). Each OSM models an application domain in terms
of a set of objects and interactions between those objects. Three types of objects are
distinguished [SM98]. Key objects represent the subject matter of a domain; the objects
which are transformed by the processes within that domain. Key objects are further
specialised depending on whether they are physical, conceptual or financial. Physical
objects are those which have a concrete presence in the material world. Conceptual

objects are abstract and encode some informational value. Financial objects yield some
exchange value in commercial transactions. Structure (or container) objects represent
structural aspects of the application domain and provide context for key objects. Agent

objects represent actors within a domain which are capable of interacting with key
objects in order to change their state in some way. Key objects are stative objects
whose state may be primary (defined by their relationship to a container object), or
secondary (internal states defined by the properties of an object). Domain goals are
expressed in terms of primary states and are realised by changes in a primary state.
OSMs thus encode both the structure and behaviour of an application domain.

The Domain Theory also describes a library of generic OSMs. The library has
evolved over more than a decade of research into the Domain Theory [Mai92, SM98,
Sut02]. However, the version presented in [SM98] represents a reasonably stable ver-
sion. The library is organised into a hierarchical structure (see Figure 2.2).

Each OSM represents a generic class of domains. These generic domain classes
have been validated by Maiden et al who have determined that they conform to knowl-
edge chunks which occur naturally in the minds of domain experts [MMS95]. This is
significant because if an approach is based on reusable structures which neatly con-
form to the mental chunks of domains then the approach will be highly intuitive and
thus offer a high degree of utility.

The Domain Theory orders fact types into a hierarchy according to the discrimina-
tory power which each has: that is, the ability of the fact type to discriminate between
two domain models. According to Sutcliffe [Sut02], this is in line with Rosch’s theory
of natural categories [RMG+76] which holds that chunks within the human mind are
organised into categories such that those factors which most distinguish two categories
define the hierarchy at the top level with less significant differences distinguishing facts
at lower levels.

The top levels of the hierarchy are trimmed because they are excessively abstract
and so offer limited utility. The top visible layers of the hierarchy therefore identify
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Figure 2.2: The 1998 version of the Domain Theory’s library of generic domain models
[SM98]
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nine generic classes of application domain. These are further specialised by lower-
level domain classes. The top-level generic OSMs are distinguished by their high-
level structure as denoted by primary states and state transitions [SM98]. At lower
levels domains are distinguished by less significant fact types. The second level is
distinguished by goal states which are modelled as object structures. The third level is
modelled by events and states over those events. Object properties distinguish generic
domains at the fourth level.

In order to support the reuse of these generic domain models, the Domain Theory
provides extensive tool support: the Advisor for Intelligent Reuse (AIR [Sut02], or
the Intelligent Reuse Advisor (IRA) in earlier versions [Mai92]). The tool elaborates
requirements artefacts expressed as concrete OSMs through cycles of fact acquisition
and matching. The user is first asked to specify a set of fact types of a particular
type in accordance with the prioritisation of facts in the OSM hierarchy. A round of
matching is then conducted in order to match the concrete OSM to candidate abstract
OSMs. AIR has a built in explanation component which presents candidate structures
to the user and explains the function of each candidate structure. This allows users
to critique the requirements model by determining which model best fits the concrete
scenario [MS94]. Once the user has selected the most appropriate abstract OSM, it is
integrated into the concrete OSM. A further round of fact acquisition is then performed
in order to elaborate the model further [SM98, Sut02].

The domain theory supports two kinds of matching algorithm: analogical and rule-
based matching [Mai92]. Analogical matching is used only in the initial round of
matching to identify the top-level OSM family which best satisfies the current con-
crete OSM [Sut02]. Analogical matching is derived from Gentner’s structure match-
ing theory of analogy [Gen83] and is also informed by a cluster of other theories from
cognitive science (see [Mai92]). As such, analogical matching is used to match con-
crete models to abstract models on the basis of state transitions with respect to primary
states [SM98]. Analogical matching works by ignoring the specific properties of enti-
ties within a domain and emphasising instead the structural relationships which exist
between entities [MS96]. Two domains may share the same structure but very differ-
ent properties: borrowing a book from a library and taking a loan from a bank, for
instance, are very different on the surface but share in common a basic structure. Ana-
logical reasoning is useful, therefore, because it supports the transfer of knowledge
across application domains and so increases the generality of reusable components.

Analogical reuse, however, is computationally expensive [Mai92]. It is for this
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reason that the OSM library is organised into a tree structure. Analogical reasoning
is used only to match concrete models to the top-level OSMs within this structure. In
subsequent cycles of matching, AIR uses a set of rule-based matching procedures to
refine the match between the OSM hierarchy and the concrete OSM at lower-levels of
the tree structure [SM98]. The rule-based matching procedures are significantly more
efficient than the analogical procedure. Overall, therefore, this mixed-model approach
to matching avoids AIR utilising analogical reasoning to test all of the abstract domain
models in the library. As such, this organisation offers a means to achieve efficiency.

The Domain Theory has a strong theoretical component [Sut02]. Gentner’s theory
of analogy has naturally informed the analogical reasoning component of the theory,
as already discussed. Rosch’s theory of natural categories has informed the design of
the library hierarchy and of the overall matching procedure. Schank’s script theory
[Sch82] has strongly informed approach to behavioural modeling taken by the Do-
main Theory. Furthermore, Sutcliffe [Sut02] cites Yourdon and Constantine’s princi-
ple of cohesion [YC] as an important influence on the granularity of reusable structures
within the Domain Theory. Generic domain models within the Domain Theory are or-
ganised such that each generic model describes a single, cohesive, operationalisable
goal [Sut02].

Sutcliffe has also outlined in detail a conceptual framework for modeling the reuse
problem [Sut02]. The framework describes the relationships between granularity, ab-
straction, utility, generality and adaptation. (Sutcliffe refers to generality in terms of
the scope of a component, but does not use the term explicitly). He observes that both
high abstraction and fine granularity maximise the generality of a component, and that
high abstraction and fine granularity often go hand in hand. He also observes that both
tactics reduce the utility of an approach. Sutcliffe notes that a range of approaches to
reuse are possible, but that providing support for adaptation thorough parameterisation
balances utility against generality [Sut02].

The final component of the Domain Theory, Papamargaratis has investigated ex-
tensions to the domain theory to support application generation [Pap06]. The ap-
proach uses a product line approach which maps facts within an input OSM to reusable
software-level components which are organised according to a high-level architec-
ture. However, the approach is constrained to the Allocation family of OSMs, and is
not readily applicable to other domains. As such, it undermines the basic approach
of the Domain Theory, which overall exhibits a high degree of domain generality
[SM98, PS04, SPZ06, MMJG05], because it lacks Domain Generality.
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2.3.2 Problem Frames and POSE

Jackson has proposed the Problem Frames approach as an approach to requirements
engineering [Jac01b]. At base, the Problem Frames approach is a theory about the
structure and essence of software engineering problems. The theory is founded firmly
on the tenet that engineering artefacts should describe only observable phenomena
[HRJ05]. The approach identifies three major artefacts which collectively comprise
a software system specification [Jac01b]: a description of the problem domains (K),
a specification of the software solution (S), and a specification of the requirements
for the software solution (R). According to the problem frames approach [Jac01b],
K should describe the significant phenomena within the problem domains. R should
describe the effects which it is desired that the machine should produce within the
application domain. S should specify the behaviour which the machine will implement
in order to produce the effects described in R. In order for software development to
prove successful, a relationship should hold between these three artefacts such that
the solution described by S would produce the effects described by R when integrated
into the domains described by K; that is, the following relationship should be satisfied:
K,S ` R [HRJ05].

The problem frames approach introduces a novel type of diagram for modeling
software problems: the Problem Diagram. The semantics of a Problem Diagram are
described fully in [Jac01b, HRJ05]. The basic component of the a Problem Diagram is
a set of domains and the relationships between those domains [HRJ05]. Domains may
be causal, biddable, lexical or machines [Jac01b]. Causal domains comprise phenom-
ena that form chains of causes and effects; phenomena that behave in a predictable,
reactive manner. Biddable domains consist of agents which respond in a predictable
manner to behaviour in accordance with a given set of instructions. Lexical domains
are causal domains which also exhibit an informational value at an abstract level above
the physical level.

Each problem diagram may consist of multiple domains of different types which
interact with one another. Interactions are through shared phenomena [Jac01b]. Each
domain consists of a set of “domain properties”: entities, events, values, states, truths
and roles [Jac01a]. In addition to the specification, K, of the domain descriptions, a
problem diagram comprises the specifications, S, and requirements, R. The machine
is, in essence, a fourth type of specialised causal domain, and so interacts with problem
domains within the problem description through shared phenomena. Requirements are
also associated with domains and describe properties which their associated domains
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should exhibit.

Jackson identifies a set of five reusable and abstract problem diagrams: the five
elementary problem frames [Jac01b]. The Simple Behaviour frame describes a sce-
nario in which the key requirement is for the machine to control some causal domain.
The Simple Information Display models contexts where the requirement stipulates that
the machine must obtain information from the real world (a causal domain) and dis-
play this information on an information display (a second causal domain). The Simple

Information Answers frame describes a scenario in which the machine must respond
to questions from an enquirer (a biddable domain) by gathering information from the
real world (a causal domain) and providing a response (a second causal domain). The

Simple Workpieces frame comprises a requirement which stipulates that the machine
should respond to commands from a user (biddable domain) in order to manipulate a
computer-processible object (such as text or graphics, a lexical domain). The Trans-

formation frame describes a scenario in which some inputs are transfomred in order to
produce some output.

These five problem frames are highly abstract in part because, unlike the Domain
Theory’s generic domain models, they focus on the relationships between problem do-
mains rather than the content of a domain. As a result, the frames can be composed
to model a wide variety of more complex application domains [Jac01b]. According
to Papamargaritis and Sutcliffe, however, problem frames are “close, but less compre-
hensive, relatives” of Sutcliffe and Maiden’s generic domain models [PS04]. Sutcliffe
et al have compared the Domain Theory and Problem Frames directly for the purposes
of domain analysis [SPZ06] and drew a number of conclusions:

• That the two approaches are partly complementary: the Domain Theory provides
a larger number of abstractions but less analysis advice than the Problem Frames
approach;

• The Problem Frames approach helps to identify specification concerns more
readily than the Domain Theory;

• The Problem Frames are less intuitive than the Domain Theory’s generic OSMs
and so their application may “require more thought”.

Several other authors have extended or refined the Problem Frames approach in
various ways. Lavazza and Del Bianco [LDB06] have integrated the Problem Frames
approach with the UML in order to provide a more accessible and familiar notation
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for the approach. Liu and Jin have investigated the integration of problem frames
with the i* approach in order to support the integrated modeling of subjective inten-
tions as well as hard facts about the application domain [LJ06]. Other authors have
focussed on providing tool support for the approach. Jin and Liu have developed
an ontology-driven tool to support automatic decomposition of problem models into
problem frames [JL06]. Lavazza et al. advocate a manual approach but provide a
meta-model to support problem decomposition [LCPCdB10]. Seater and Jackson, D.
[SJ06a, SJ06b, SJG07] have described a detailed method for deriving specifications
through problem descriptions and describe a mechanical procedure for validating the
design rationale by which those specifications were produced.

Few authors, however, have focussed explicitly on the Problem Frames approach as
an approach to requirements-level reuse reuse. The Problem Frames approach focuses
specifically on modeling the application domain, its requirements and specifications to
address those requirements. As such, it exhibits a degree of task generality but is pri-
marily supportive of a horizontally narrow set of tasks. Authors who have focussed on
the reuse aspects of the approach therefore extend the task generality of the approach.
A common topic is the investigation of approaches to the integration of problem frames
with solution space components [RHJN04, SLM+07, WDC06]. Conversely, Wieringa
et al investigate approaches to get to the initial phases of problem framing, an approach
known as “value framing” [WGvE04]. Lin et al have adapted the notion of a problem
frame into that of an “abuse frame” [LNI+03] in order to support the analysis of non-
functional security requirements. Similarly Wen et al propose an approach to capturing
security problem patterns based on a hybrid of i* and problem frames [WZL11]. Tun
et al [TJL+09] have investigated, with positive results, whether or not problem frames
can be useful in diagnosing system failures.

These authors confirm that the Problem Frames approach is limited in terms of
task generality, but few of these authors have developed their research into systematic
extensions to the Problem Frames approach. One approach which bucks this trend,
however, is the POSE (Problem-Oriented Software Engineering approach). POSE is
a systematic approach to the construction of problem specifications and the progres-
sion of those patterns into solutions [HRJ08]. POSE is directly rooted in the Problem
Frames approach and shares the basic interpretation of the concept of a problem model:
a set of descriptions, K,S ` R [HRJ07]. However, POSE additionally introduces the
notion of a problem transformation.

POSE transformations are represented as Gentzen Sequents comprising three basic
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elements: a conclusion, a premise and a justification [HRJ08]. Like Seater and Jack-
son’s approach [SJ06a, SJ06b, SJG07], Hall et al’s approach is primarily intended to
support the validation of specifications based on design rationale which directly con-
nects the problem description to the solution specification [HRJ08]. As such, the con-
clusion describes the initial problem and the premise describes a set of sub-problems
which can legitimately be generated from the parent sub-problems. The justification
defines the circumstances under which the transformation can be applied. Hall and
Rapanotti have developed a Prolog-based tool — POELog — to support the POSE
approach [HR08]. POELog provides an engine for firing POELog scripts which are
capable of generating POSE problem trees based on the POSE methodology. This,
however, is a prototype and requires further development before it is a practical tool.

Although the POE (Problem-Oriented Engineering) Wiki identifies a set of general
transformations [Hap13], the POSE approach is sufficiently general that additional
transformations can be introduced into the approach. Furthermore, Hall notes that
POSE does not commit software engineers to any specific notation for representing
either the domain, requirements, or machine specification descriptions [HR08]. As
a result, POSE generalises the Problem Frames approach with respect to both task
and method generality. This conclusion is further supported by Mannering et al who
have shown how POSE can be used to engineer software to support safety concerns
[Man10]. The approach is supported by a formal implementation using the Alloy
methodology, and is validated by an industrial case study [MHR08].

2.3.3 Patterns to Support Requirements Tasks

Authors in the literature have proposed patterns to support a wide array of tasks. These
range across the full gamut of requirements engineering. Scheinholtz and Wilmont,
for instance, have proposed patterns to support the elicitation of requirements [SW11].
Renault et al have similarly proposed PABRE, a pattern-based approach to support-
ing the elicitation of requirements [RMBFQ09b, RMBFQ09a]. Zhao has proposed an
alternative approach to early-phase requirements engineering: a pattern-language for
producing requirements models from scenario descriptions [Zha11].

At the other end of the spectrum, some authors have developed pattern-based ap-
proaches to support latter-phase requirements engineering. Bass et. al, for instance,
propose patterns to support the construction of architectural specifications [BJJSS04].
Both Grunske [Gru08] and Konrad and Cheng [KC05a, KC05b] have produced pat-
terns to support the construction of software system specifications. Furthermore, other
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authors have investigated pattern-based approaches to the progression of requirements
artefacts into design [WM08, XZAR06, KWK11] (see Section 2.4.4 for further discus-
sion).

Most of the literature on requirements patterns focuses on patterns as a means to
construct new artefacts; that is, the task of requirements and specification modeling.
However, a handful of authors have focused on supporting other kinds of requirements
task. A significant task which several authors have supported is the analysis of a prob-
lem domain and its requirements. Jackson’s Problem Frames are a well-known exam-
ple of such an approach [Jac01b], as are Fowler’s analysis patterns [Fow97]. Other
authors have similarly proposed pattern-based approaches to requirements analysis.
Giorgini et al focus on the analysis of the organisational structure within a problem
domain [Gio03] and Wen et al on security requirements analysis [WZL11].

Other tasks for which pattern-based solutions have also been proposed the pro-
cess of interviewing stakeholders [SW11, CS06], the dissemination of requirements
engineering knowledge [HL05], the decomposition of system requirements [PSP09,
Pen11], and the prioritisation of requirements [Wei11].

2.3.4 Domain-Specific Pattern Approaches

Most of the requirements patterns which this author identified were not explicitly con-
strained to any particular application domain, but instead were scoped by other factors.
Nonetheless, a handful of domain-specific approaches have been proposed. Mahfouz
et al propose a collection of patterns to support requirements gathering in the service-
oriented information exchange domain [MBLN06]. Penzenstadler has proposed a li-
brary of patterns to support the automotive domain [PSP09]. Finally Renault et al have
proposed patterns to support the construction of Call-for-Tender system requirements
[RMBFQ09b].

2.3.5 Domain Independent Pattern Approaches

Another popular approach to pattern library scoping is to gear the library towards re-
quirements for a particular type of quality. Several authors have taken this approach.
Serrano et al have produced patterns to support the modeling of “transparency-related”
patterns [SL11]. Bass et al focus on usability requirements [BJJSS04]. Grunske’s pat-
terns address quality requirements at a higher-level, focusing in general on probabilis-
tic quality properties [Gru08]. Houdek and Kempter take a similarly broad approach



48 CHAPTER 2. REUSE IN REQUIREMENTS ENGINEERING

[HK97]. Konrad and Cheng focus on real-time requirements [KC05b], while several
other authors have focussed on security requirements [WM08, WZL11]. Xu et al by
contrast focus on dependability requirements [XZAR06].

Alternatively, some authors have constrained their pattern approaches according
to the views of requirements which they offer. Kolp et al [KGM03] and Giorgini et al
[Gio03] provide patterns to support organisational modeling of the application domain.
Zhao [Zha11] focuses on multi-perspective modeling of requirements. Finally, a small
number of authors have made no explicit effort at all to scope their collections of
pattern [HL04, HL05, CS06].

2.3.6 Limitations of Pattern-based Solutions

The pattern-based approach to requirements-level reuse has proven popular because it
is extremely flexible. There is no restriction imposed on what knowledge a pattern ex-
presses, or on the notation through which that knowledge is expressed. Because, as this
review has shown, a wide array of reusable knowledge is expressed in pattern form, the
approach is highly general and can be used to support the construction of requirements
and software specifications across a wide range of domains. However, with this flexi-
bility comes some important limitations. In particular, there is no consensus as to tool
or process support for pattern-based requirements engineering. This factor, combined
with the lack of conformity with respect to representation, abstraction and granularity
means that reusers must work particularly hard in order to integrate different require-
ments pattern approaches. In short, the cost of very high degrees of generality which
arises from the adoption of a pattern-based approach to reuse, is a lack of systematicity
and a consequent loss of utility.

2.4 Alternatives to Patterns

2.4.1 Use Cases

Another approach to requirements-level reuse is to reuse use cases. Jacobson et al
have proposed use cases as an approach to modeling software requirements from the
perspective of user interactions with the software system [Jac92]. A small number of
authors in the literature have addressed reuse in this context. Biddle et al, for instance,
propose the reuse of use cases themselves in a form that is “abstract, lightweight and
technology free” [BNT02]. Kamalrudin et al propose a similar approach [KHG11].
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Saeki by contrast proposes a pattern-based approach to constructing use cases [Sae00].
Other authors have focused on other aspects of use-case reuse. El-Attar and Miller, for
instance, have proposed the use of anti-patterns as a means to improve use case qual-
ity [EAM06]. Finally, Wang proposes that use case specifications can be transformed
into feature models, providing a requirements engineering approach to product-line
initialisation [WZZ+09]. Braganca and Machado also propose an approach to trans-
forming use cases into feature models [BM07]. Chen et al has investigated the use of
requirements clustering to construct feature models [CZZM05].

2.4.2 Feature Modeling

Feature modeling was originally proposed by Kang [Kan90] and was elaborated into
a coherent methodology over the subsequent decade [KKL+98]. While not expressly
a requirements engineering approach, it can be seen as an approach to requirements
modeling and indeed some authors have used feature models to represent requirements
models [WJ09] (although some authors argue that feature models are inadequate for
representing requirements-level variability [BLP04]). Feature models are also not ex-
plicitly an approach to reuse. However, the advantage of feature models is that they
can easily be reused to represent applications of a similar kind because they explicitly
identify optional and alternative features, allowing variation within a family of prod-
ucts to be modelled and specific products to be described as configurations of a feature
model. Feature modeling is a popular approach to supporting the specification and con-
figuration of product lines and product line instances [KLD02]. Bittner has explicitly
addressed the use of feature models to support requirements-level reuse [BBP+05].

As an approach to reuse, however, feature models are coarse-grained. They model
entire families of products and do not readily support compositionality as individual
features can typically not be reused [Hol06]. Holmes et al have attempted to address
this problem but they cannot get away from the inherent domain-specificity, and con-
sequent lack of generality of features or feature models as a whole. Waldmann and
Jones, however, have found that a feature-based approach to requirements reuse can
address specific industrial challenges, in particular the need to deliver rapid cycle times
[WJ09].
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2.4.3 Domain-Specific Languages

Another approach to requirements-level reuse is to develop domain-specific languages
[MHS05]. While not an approach to the engineering of requirements, DSLs describe
domain problems at a higher-level of abstraction than do solution-space languages.
As such, they provide a means of describing the problem in terms that will be fa-
miliar to domain experts. Van Deursen et al provide a detailed systematic review of
DSL literature [VDKV00]. By their very nature, DSLs lack generality, but it is in the
domain-specific philosophy to eschew generality in favour of the development of li-
braries in narrow domains [NoCBDoIS80, Nei84]. One alternative to generality is to
provide support for integrating different libraries.

However, this is difficult in the case of domain-specific languages because there
is no consensus on the appropriate level of granularity for DSLs, or on the criteria by
which a DSL should be scoped. Some authors define domains in terms of the subject
matter of that domain. Van Den Bos and Van Der Storm, for instance, discuss the use
of DSLs within the digital forensics domain [vdBvdS11]. Thibault discusses a domain
specific language for defining video device drivers [TMC97]. Meanwhile, JAMOOS
is a DSL for language processing [GT04]. Other authors, however, scope domains ac-
cording to technical properties such as GUI styles [ABBC99] or non-functional prop-
erties [HM04]. As a result, DSLs not only lack generality but also cannot readily
be integrated because the interfaces to DSLs are not readily compatible for integra-
tion. Furthermore, the design and implementation of DSLs is highly time-consuming
[MHS05, FNP97] and so as an approach to reuse in domains for which a DSL is not
already available it is not a viable solution.

2.4.4 Requirements Progression

A significant issue in the requirements engineering literature has been the progres-
sion of requirements from problem specifications into design. In 2001 and 2003 the
Software Requirements to Architecture Workshops (STRAW) were held to discuss this
question. A small number of authors have discussed reuse-based solutions to this ques-
tion. The most popular approach is to use a mapping approach in which problem-space
components are mapped directly to solution-space components [BBGM00, DK11,
LM03]. This approach allows the reuse of solution-space components at various levels
of granularity as well as the transformation process itself. This approach is akin to the
procedural reuse in POSE, and has been advocated both by Gross and Yu [GY01] and
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by Rajasree et al [RRJ03]. This allows reuse, not of the process, but of the solution
space component itself. These approaches offer varying degrees of generality. Pattern-
based approaches are dependent on the availability of patterns to support a particular
context, whereas procedural-based approaches will tend to offer a greater degree of
generality. However, with the exception of POSE, the approaches are designed to sup-
port only a specific task and all assume a particular representation of requirements and
solutions. They therefore lack both task and method generality.

2.4.5 Other Approaches

A number of authors have proposed approaches to requirements-level reuse which do
not neatly fit into any of those categories of solution which do not neatly fit into those
categories of solution which have already been discussed in this chapter. Many of
these approaches focus on the reuse of a variety of types of abstract model. Castano
et al [CDA93, CDAFP98], and Ryan and Matthews [RM93] each propose approaches
to requirements-level reuse based on the reuse of conceptual graphs. Castano et al,
however, emphasise the use of requirements-level model abstractions as an aid to the
composition of solution space components [CDA93], whereas Ryan and Matthews
use conceptual graph matching as a means to compose requirements specifications
[RM93].

Other approaches to the reuse of declarative artefact abstractions have also been
proposed. Kaindl, Smiałek and Nowakowski argue that case-based reasoning is one
possible approach to reducing the up-front effort involved in design-for-reuse [KSN10,
ŚKK+10], because it avoids the need for packaging artefacts for reuse. This solu-
tion, however, increases the adaptation effort during design-by-reuse. Heumesser and
Houdek [HH03], and Von Knethen et al [vKPKH02], have each proposed approaches
to systematic requirements “recycling”: an approach to reuse in which the domain-
dependent and domain-independent aspects of requirements artefacts are distinguished
and a specification is given which prescribes how a requirement artefact may be reused.
These solutions make systematic the ad hoc reuse which is a natural part of software
engineering. Cappiello et al introduce another alternative paradigm for declarative
reuse — the mash-up [CDM+11] — which is designed to support engineering-by-
reuse through the composition of existing artefacts into new ones. The approach gives
significant guidance as to the composition and adaptation of reusable artefacts. Lin-
doso and Girardi’s SRAMO technique [LG06] supports the reuse of domain models
based on a meta-level ontology which expresses procedural knowledge to guide the
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reuse process. Similarly, Lopez et al [LLG02] propose a reuse approach based on the
notion of meta-modeling. Each of these approaches is interesting because they provide
detailed systematic guidance to inform reuse, and so are distinguished from patterns-
based approaches and domain-specific approaches by their emphasis on process rather
than product.

Several authors have, however, proposed domain-specific approaches, and as is
true of domain-specific languages, these approaches exhibit varying, but low, degrees
of domain generality. Authors proposing approaches to support the modeling of sys-
tems which realise specific non-functional properties include Csyneiros et al [CWK05]
focus on the reuse of knowledge, based on aspects, about the satisfaction of usability
requirements. Sutcliffe and Carroll address HCI concerns more broadly, but propose
claims as a solution for the reuse of HCI knowledge [SC99]. Toval et al propose an
approach to requirements reuse, based on requirements templates and repositories, to
support the realisation of security requirements [TNMG02]. Sindre et al also propose a
repository-based approach to identifying and modeling security requirements [SFO03].
Finally, El-Maddah and Maibaum propose GOPCSD, a tool which is capable of gen-
erating automatically software specifications from requirements models which can be
composed by reusing requirements models from different product families [EMM04].

2.5 Reuse Mechanisms

In any effective reuse approach it is necessary to have some mechanism by which
reusable artefacts that are appropriate to the current reuse context can be retrieved.
Component retrieval technology has evolved significantly over the past three decades,
and today a large number of powerful retrieval algorithms are available. In [NZ11],
Naish and Zhao argued that a reuse approach should not rely on just one retrieval
mechanism as different mechanisms would likely be applicable in different scenarios.
Analogical approaches, for instance, are not applicable to the earliest phases of require-
ments engineering because they depend on the availability of an initial set of facts on
which to base a match [MVL97, Sut02]; however, browsing-based retrieval may be.

This section surveys a range of retrieval mechanisms from the requirements engi-
neering literature, and from the reuse literature more broadly.
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2.5.1 Recommender Systems

Perhaps the most recent approach to artefact retrieval are the recommender systems
which have emerged over the past decade. A detailed survey is given in [AT05]. A wide
range of algorithms and technologies have emerged to support component retrieval. Of
these, the most significant developments are those approaches which support the re-
trieval of reusable artefacts from web-based open source repositories. Several authors
have proposed such techniques. Code Conjurer, for instance, is an Eclipse plug-in
which generates code-level tests from the Integrated Development Environment (IDE)
in order to generate queries which are then issued to a test-driven code search en-
gine [HA06, HJA08]. Linstead et al develop a sophisticated approach to the retrieval
of code from open source repositories based on a crawling mechanism (Sourceror)
and a code ranking algorithm which evaluated both code quality and code relevance
[LBN+09]. Ye and Fischer have developed an approach to retrieval which monitors
changes within development tools in order to construct queries which can be issued to
a repository tool in order to retrieve context-relevant reusable artefacts [YF00]. The
approach has been validated through empirical studies which show that the approach
allows engineers to discover reusable components “they did not even know existed”
[Ye02]. Other approaches include:

• Rascal [MCK05], which uses group usage histories to recommend components
to specific developers;

• Citation-based component recommendation [CZW+11];

• Ant colony based rule generation for component retrieval [BDJ10].

These approaches are an indication of the role that web and open source technolo-
gies can play in significantly increasing the power of search technologies as well as the
availability of reusable artefacts.

2.5.2 Match-based Retrieval

Recommender systems can be seen as an evolution of more traditional match-based
approaches. Match-based retrieval uses information contained within an existing arte-
fact to retrieve new or additional knowledge. This involves the calculation of a match
score for a set of candidate reusable artefacts based on the number of facts that can be
matched between the concrete and reusable artefacts. A number of general approaches
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can be identified. Of these, analogical matching has received significant attention in
the requirements engineering literature over a decade [Fin88, Mai92, SM98, MVL97,
CJ97]. Analogical matching, which derives from Gentner’s theory of analogy in cogni-
tive science [Gen83], matches concrete artefacts to abstract reusable artefacts based on
a shared deep structure between the two. An important reason for its popularity is that
it has been shown to support the transfer of knowledge between application domains
[MVL97, Sut02].

Related to analogical matching is similarity matching [CDA93, RM93, Jur95].
Similarity-based matching is also derived from the work of Gentner [GM97], who
proposes similarity as a counterpoint to analogy. Whereas analogy is based on struc-
tural relations between entities, similarity is based on properties of entities. Similarity,
however, has proven significantly less popular in the requirements engineering liter-
ature than analogical reasoning because its emphasis on entities rather than structure
mandates a much greater conceptual closeness, and so works only between similar
domains and not across domains.

A number of other approaches to matching have also been proposed in the litera-
ture but have not received widespread attention. Finkelstein proposes matching algo-
rithms based on chains of semantic reasoning and generalisation [Fin88]. Reubenstein
[RW91] and Gomaa have proposed matching approaches based on shared attributes
defined over both the source and candidate artefacts. Particular approaches have em-
phasised goal matching [GY01, SFO03] and requirements-type matching [MBFQ08,
RMBFQ09a]. Rolland [RPR98] and Maiden [Mai92] have also proposed rule-based
matching which uses logical propositions defined over the candidate structure and
tested against the source to determine a match. Additionally, some authors have ad-
dressed lexical matching to support the matching of natural language artefacts [GB97,
KSN10].

2.5.3 Query-based Retrieval

Query-based retrieval provides an alternative to recommender and matching systems.
Retrieval is distinguished by the fact that in a query-based mechanism the information
on which retrieval is based comes from a user directly and not from a source arte-
fact. Typically, queries are specified in terms of attributes of the artefacts within the
library. There is little consensus in the literature as to the criteria or terms through
which a query should be expressed. Prieto-Diaz advocates the use of low-level solu-
tion attributes such as “function” and “algorithm” to structure queries [PD91]. Poulin
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also advocates the use of solution-space attributes but at a higher level of abstraction
[Pou95]. Sindre uses goals to support the retrieval of non-functional requirements
[SFO03] whereas SRAMO uses semantic relationships between patterns [LG06]. Fi-
nally, Gomaa uses domain object properties to structure the search query [Gom95].

2.5.4 Taxonomic Retrieval

The final approach to retrieval is based on taxonomic browsing. Taxonomies define
conceptual hierarchies which users can browse to identify artefacts that are relevant
to particular categories. Taxonomies are highly flexible, and allow users to explore
a repository by moving from abstract concepts to lower-level concepts. They require,
however, a large degree of user effort to retrieve components. Furthermore, their design
is highly subjective and can often be contentious. Gorsheck has proposed the classifi-
cation of requirements according to the level of technical detail they contain [GW06].
Waldmann’s approach categories requirements artefacts by artefact type [WJ09]. Fi-
nally, PABRE [RMBFQ09a] and Mendez-Bonilla each advocate the classification of
requirements based on their own respective typologies.

2.6 Summary

This chapter has reviewed literature within the field of requirements engineering, and
related areas, which addresses reuse at the level of software requirements. The ap-
proach which has overwhelmingly dominated the discussion has been the use of re-
quirements patterns. A considerable body of literature now exists which describes
a range of approaches to pattern-driven requirements engineering from those authors
who have simply chosen to describe individual patterns, or small libraries of patterns,
through to a small number of systematic approaches to pattern driven requirements en-
gineering. In particular, Jackson’s Problem Frames and Sutcliffe and Maiden’s Domain
Theory are two comprehensive approaches which support the construction of complete
functional requirements models predominantly by reuse, while Supakkul et al’s NFR
Patterns Approach supports the construction of non-functional requirements models.
Patterns are a powerful approach to the construction of software requirements because
they are sufficiently fine-grained and abstract to support the capture of requirements
across several application domains, and to support the composition of new require-
ments models by reuse. However, there is a trade-off because this abstraction entails
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a small utility cost as patterns must be adapted and this mildly increases the effort
involved in applying patterns.

Alternative approaches, such as domain-specific languages and product-line ap-
proaches, overcome this limitation since they enable requirements engineers to de-
scribe requirements at precisely the right level of abstraction for a specific application
domain. However, because they are constrained to a specific domain the abstractions
which domain-specific approaches provide cannot readily be transferred to support
new domains. When encountering new problems, therefore, requirements engineers
who have adopted a domain-specific approach to reuse may need to familiarise them-
selves with a new modeling language or reuse library: a time consuming process.

This thesis concludes, therefore, that assuming the availability of a well-structured
catalogue of patterns with effective retrieval support, pattern-based requirements engi-
neering can offer a strong balance between generality and utility. However, the open
problem in this area is the availability of such libraries to support a range of require-
ments engineering tasks and domains.



Chapter 3

The Conceptual Framework

3.1 Introduction

This chapter provides an overview of a Reuse-Oriented framework for Requirements
Engineering (RORE) which aims to support the construction of a range of requirements
artefacts by reuse. This section proposes RORE both as an approach to requirements
engineering which supports a systematic approach to reuse, and also as a framework
which amalgamates existing knowledge from the requirements engineering literature
into a single, coherent approach. RORE addresses the limitations which Chapter 2
identified in two important ways.

• RORE aims to address the utility cost which patterns pay as a result of their
abstraction and fine granularity, and as a result of the difficulty of developing a
general and systematic approach to pattern application. RORE offers detailed,
formal procedures for both retrieving and reifying reusable knowledge structures
for a particular context and so offers a high degree of utility. A prototype tool
further improves this utility by significantly reducing the amount of manual ef-
fort required to apply the RORE approach to generate new requirements models.

• RORE aims to address the lack of generality offered by domain-specific lan-
guages and pattern libraries. RORE utilises a a range of design heuristics (de-
scribed in Section 3.3) to maximise the generality of the RORE approach without
undermining utility.

RORE also has the following three important design features, which collectively
are intended to ensure a high degree of generality and utility in the RORE approach:

57
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1. Within RORE, requirements artefacts are produced by a sequence of fine-grained
refinements, such that each refinement is achieved, where possible, by reuse.
Novel refinements — those not reused from a knowledgebase — are utilised
only as a last resort, and are achieved by giving the requirements engineer the
opportunity to utilise their own creativity in satisfying a refinement goal.

2. RORE is non-prescriptive with respect to either the kind of artefacts that need to
be constructed during requirements engineering, or the representation of those
artefacts. RORE identifies the components that are invariant and variant across
notations and methods. RORE has only knowledge of invariant components, and
can be parametrised with knowledge structures that account for variant compo-
nents. In this way, RORE is able to treat a range of different approaches to
requirements engineering uniformly, allowing the approach to be reified for the
needs of a particular context.

3. RORE serves as a framework by which existing knowledge within the require-
ments engineering literature can be organised and contrasted.

The remainder of this chapter is structured as follows. Section 3.3 introduces the
rationale which underpins the design and development of the RORE framework for
requirements reuse. Some basic design heuristics are presented and the influences
on RORE are described. Section 3.5 presents a conceptual overview of the RORE
framework and introduces the major layers, and actor perspectives, on this framework.
RORE comprises a suite of generic procedures to support requirements engineering
by reuse and Section 3.6.3 briefly introduces these procedures. Finally, Section 3.7
briefly summarises the major knowledge structures through which reusable require-
ments knowledge is expressed within RORE.

3.2 Assumptions

The version of RORE which is presented in this thesis, and the arguments which made
about this version of RORE, are rooted in the following assumptions:

1. That RORE, as it is described in this thesis, will be applied for the engineering
of requirements for software systems;

2. That RORE, as it is presented in this thesis, will be applied to generate func-
tional, rather than non-functional, requirements models;
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3. That the RORE approach, as it is presented in this thesis, shall only be applied
under ideal conditions such, namely within domains for which a comprehensive
knowledgebase of RORE-formalised reusable knowledge structures is available
and stakeholders always respond appropriately and concisely to stimuli which
are put to them by the requirements engineer;

4. That the reusable knowledge structures which are contained within a knowledge-
base have been empirically validated by the knowledge engineers who design the
knowledgebase in order to validate their generality and utility;

5. That the reusable knowledge structures which are specified within a knowledge-
base, where they are applied, will always produce accurate inferences (as verified
by the requirements engineer and stakeholders) over a target mode.

These assumptions would not, in fact, hold up in the real world and as such mech-
anisms would need to be built into a commercialisable or practical version of RORE
in order to support the validation of inferences by stakeholders and the requirements
engineer. However, these assumptions have been chosen in order to limit the scope of
this thesis so that this research can focus on the task of demonstrating that the mech-
anisms which underpin RORE — such as a set of generic requirements engineering
tasks and a set of reusable knowledge structure types — are sufficient to provide the
balance between generality, systematicity, utility and practicality which was argued for
in Chapters 1 and 2.

3.3 Design Rationale and Heuristics

3.3.1 Reuse as Efficient Information Retrieval

Requirements engineering is a process of information acquisition and transformation.
A requirements engineer must elicit from some source information about an applica-
tion domain, and reason over this information in order to determine requirements for
a software system. This thesis therefore views requirements engineering, fundamen-
tally, as a process of “Information Gain”. Requirements-level reuse is one approach
to achieving this information gain. Specifically, requirements-level reuse retrieves in-
formation about application domains and their software requirements from libraries of
reusable artefacts. This is as opposed to the manual requirements engineering process
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in which the same information must be elicited from stakeholders, existing documents
and through observation of real-world processes.

Chapter 2 presented different reuse-driven mechanisms for gaining the informa-
tion which is of relevance to a particular requirements engineering context. However,
different mechanisms require more or less information about that context to be spec-
ified up-front against which a retrieval mechanism can match reusable artefacts. As
discussed by Maiden [Mai92], the task of specifying this information can be time con-
suming and so it is desirable to minimise the amount of information which a user must
specify upfront in order to get good quality information back from a reuse library.

Drawing on this line of reasoning, Naish and Zhao [NZ11] introduced the notion
of “Efficient Information Gain” as one metric against which retrieval mechanisms can
be evaluated. The metric can be quantified in the following way:

In f ormationin : In f ormationout (3.1)

Where In f ormationin is the quantity of information, quantified as Shannon entropy
[SW62], which a requirements engineer must specify up-front in order to get a match,
and In f ormationout is the average quantity returned by the retrieval mechanism.

This is an important metric because it is closely tied to utility. Manually specifying
information about the application domain requires significant effort on the part of a
requirements engineer. Therefore, as In f ormationin grows relative to In f ormationout ,
the requirements engineer will have to invest more effort in order to get the same
amount of information back. The metric is naturally insufficient, by itself, to support an
effective evaluation of retrieval mechanisms because the return of information is only
useful if it is relevant to the requirements engineering scenario. However, the metric
can be a useful heuristic for evaluating the utility which a particular reuse mechanism
will offer.

3.3.2 Procedural versus Declarative Reuse

The literature survey presented in Chapter 2 introduced both the Domain Theory [Sut02]
and Problem-Oriented Software Engineering [HRJ08]. These two approaches can be
viewed as archetypal examples of two alternative paradigms for requirements-level
reuse: declarative and procedural reuse respectively. This thesis characterises these
two paradigms in the following way:

• Declarative Reuse is a paradigm in which the declarative facts which form the
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contents of a requirements model is reused, either as-is or after some reification;

• Procedural Reuse is a paradigm in which structures that define transformations
over requirements models are reused.

This thesis claims that procedural reuse is inherently more general, and without an
inherent generality cost, than is declarative reuse. This thesis justifies this claim as
follows.

Imagine two machines (shown in Figure 3.1) which produce a refined, concrete
model chunk from an input model chunk.

Let the first machine (on the left of Figure 3.1) be called the Look-up machine.
The Look-up machine determines a refined chunk by searching the left-hand column
in a look-up table in order to find an abstract chunk which matches the concrete input
chunk. If a match is found, then the chunk given in the right-hand column of the
matched row of the look-up table is returned as the output chunk.

Let the second machine (on the right of Figure 3.1) be called the Calculating ma-
chine. The Calculating machine determines a refined chunk by following a logical
procedure which derives the output chunk through a sequence of logical transforma-
tions from the input chunk.

These two (hypothetical) machines could be used to provide the basis for a reuse-
driven approach to the transformation of, for instance, a requirements artefact as fol-
lows:

1. The requirements artefact is input into the machine as the (unrefined) input
chunk;

2. The machine then reasons over that artefact (using either the Look-up or the
Calculating procedure);

3. The machine returns an output model chunk which refines, in some sense, the
requirements artefact which was input to the machine.

As a final step, the output model chunk would need to be integrated back into the
requirements artefact to complete the process.

The Look-up machine offers an implementation of Declarative Reuse because it is
based on reusing predefined, declarative chunks of a model. The Calculating machine
reuses a logical procedure which derives the output model chunk from the input artefact
and so implements Procedural Reuse.
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Figure 3.1: Comparison of the Look-up and Calculating machines, showing general
structure of the look-up table for the Look-up procedure
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If the term “generality” refers to the range of input chunks for which a machine can
produce a valid output chunk, then it will be immediately apparent that the Calculating
machine must be at least as general as the Look-up machine and will, in fact, be more
general for realistic domains. This point can be confirmed in the following way. The
Look-up and Calculating machines can be seen as two different implementations of
an abstract reuse function, o = f (i) where o is the refined output chunk and i is the
unrefined input chunk. Conceptually, the function is a matching process which maps
possible input chunks onto the corresponding output chunks (see Figure 3.2):

Figure 3.2: Conceptualisation of a reuse function which maps input model chunks to
refined output chunks

However, the two separate machines differ in terms of their realisation of this con-
ceptual view: the Look-up procedure (which implements Declarative Reuse) offers a
literal implementation of this mapping through its internal look-up table, whereas the
Calculating procedure (which implements Procedural Reuse) encodes the mapping in
the calculation procedure. This distinction reveals the important and inherent limita-
tion of the Look-up machine: that it can produce a refined output chunk only for a
finite range of input chunks. This is necessarily the case because the look-up table
must, itself, be finitely sized and so can only match a finite number of inputs to a finite
number of outputs.

However, in practice the look-up tables on which the Look-up machine depends
must be designed by a human designer. Therefore, the look-up table on which the
Look-up procedure depends must in the first instance have been calculated in the sense
of the outputs having been derived logically by reasoning about the input domains
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over which the reuse function should operate. For any sound look-up table, therefore,
there must exist an equivalent Calculating procedure which is capable of producing an
output for each corresponding input in the look-up table. This Calculation procedure
must be at least as general as the corresponding Look-up procedure because it must be
capable of producing an output for all inputs within that look-up table.

Whether or not a Calculation procedure is just as general as (i.e. no more, and no
less, general than) the Look-up procedures for which it can produce a look-up table
is dependent on whether or not it is possible exhaustively and finitely to enumerate
all of the possible concrete model chunks which might be input to either machine. In
domains for which a finite and countable set of input models can be enumerated, then
it will be possible to construct a look-up table which can handle all instances within
that domain. As such, it would be possible to construct a Look-up machine for such
domains which was no less general than a corresponding Calculating machine. In prac-
tice, however, it is rarely (if ever) the case that the condition is satisfied that the range
of possible variants of a reference model for an application domain can be finitely
enumerated. As such, Calculating machines — which do not require all possible in-
put chunks to be enumerated a priori, but instead derive an output by transforming
whatever input is provided — will be, for most domains, more general devices for
producing a refined model chunk than the corresponding Look-up machine.

3.3.3 Influence of Heuristic Classification on RORE’s Procedures

The procedures described in this chapter are also founded on Clancey’s Heuristic Clas-
sification [Cla85]. Heuristic Classification was chosen because this research found that
it provides an effective framework for modeling the process by which reuse is typi-
cally achieved. Heuristic Classification describes a class of knowledge-driven problem
solving approaches which solve problems in three steps. Firstly, a concrete problem
context is matched to an abstract problem in memory. Secondly, the abstract problem
is reasoned about to determine an abstract solution. Finally, the abstract solution is
reified in order to fit the specific details of the concrete problem context and is applied
to resolve the problem. Each requirements task in RORE can be seen as an applica-
tion of Heuristic Classification in that it consists of three basic phases: the retrieval of a
knowledge structure, the firing of that knowledge structure by an appropriate reasoning
mechanism and the reification of the resulting solution to fit the details of the current
model. In this way, RORE achieves the construction of models through incremental
steps which are driven predominantly by reuse.
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3.3.4 Design Heuristics

In order to support the design of RORE, this thesis attempted to draw some of this
rationale into a set of four of design heuristics to guide decisions about the trade-offs
between generality and utility. These are briefly summarised below.

1. Declarative and Procedural Reuse Complement One Another. This thesis has
introduced the paradigms of declarative reuse and procedural reuse. Section 3.3.2 ar-
gued that procedural reuse is inherently more general than declarative reuse. However,
there is a trade-off here. Whereas declarative reuse supports the reuse of the end-point
of a reasoning process, procedural reuse describes transformations themselves. When
using procedural reuse, therefore, a requirements engineer needs to enact a transfor-
mation in order to acquire the information which it offers. “Computationally”, there-
fore, declarative reuse is more efficient at reuse-time because less additional reasoning
needs to be done in order to acquire the same unit of information. This thesis advo-
cates, therefore, a mixed-model approach to reuse in which declarative and procedural
reuse are treated as complementary, rather than competing, approaches. In particu-
lar, this thesis advocates the use of procedural reuse as a fall-back mechanism which
can be employed to infer information in cases where no declarative reusable artefact
is available. This thesis claims that this approach offers a more effective trade-off be-
tween computationally efficient reuse and generalised reuse than can be achieved by
adopting either paradigm individually.

2. Gain Information Efficiently. Design-by-reuse can be viewed as a particular ap-
proach to information acquisition in which information is retrieved from specifically-
designed reuse libraries. In order to retrieve a chunk of information from a knowledge
base, a reuser needs to be specify upfront a certain amount of information against
which reusable artefacts can be matched. This might be in the form of an explicit
query, or, for instance, in the case of analogical reasoning [Mai92] this might be in
the form of an (incomplete) pre-existing model chunk. A negative correlation is to be
expected between, on the one hand, the amount of information which a retrieval mech-
anism requires in order to return a good quality match and, on the other hand, the utility
of the approach. This is because retrieval mechanisms which require a large amount of
information to be specified upfront in order to acquire a good match increase the effort
which users must invest in order to acquire information, and so decrease the utility of
the approach. Retrieval mechanisms should, therefore, support the efficient retrieval
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of information in the sense that the mechanisms minimise the amount of information
which needs to be specified upfront while maximising the information gain.

3. Maximise Information Gain. Given the definition of information efficiency above,
in order to gain information efficiently, it is desirable to maximise the amount of in-
formation which can be gained in each reuse operation. It should be noted that this
principle constrains the potential generality of individual reusable artefacts. Sutcliffe
[Sut02] has motivated the principle that, in order to support generality, designers-for-
reuse should minimise the granularity and maximise the abstraction of reusable arte-
facts. However, since doing so reduces the amount of information which those com-
ponents contain, the principle that information gain should be maximised imposes a
theoretical minimum limit on granularity and a maximum limit on abstraction.

4. Solution Structures Support Requirements Engineering. “Solution structures”
can support requirements engineering in general, and reuse-driven requirements en-
gineering in particular. This thesis uses the term “solution structure” both to refer to
software structures which capture design and architectural solutions to software re-
quirements, and — more generally — to refer to any structure which captures a re-
finement to, or extension of, some part of a requirements artefact. Presenting solution
structures to requirements engineers can support reuse-driven requirements engineer-
ing in at least two ways.

Firstly, lower-level solution structures can play a role in clarifying higher-level re-
quirements and specification structures. Guindon [Gui90] has conducted a rigorous
verbal protocol analysis of software engineers engaged in requirements analysis, spec-
ification and design tasks. He found that, far from being a linear and top-down process,
the subjects engaged in an iterative and opportunistic design process comprising two
main features: that where software designers recognised familiar sub-problems at the
requirements level, they were able to recall low-level design structures and so bypass
the top-down design process for that sub-problem; and that working on low-level so-
lution structures often gave rise to new requirements or prompted clarification of am-
biguous requirements. The results of Guindon suggest that presenting requirements
engineers with lower-level requirements specifications, or even software design struc-
tures, can facilitate the process of identifying and clarifying higher-level requirements.

Secondly, Maiden has examined the use of domain abstractions for the purpose
of requirements critiquing [Mai92, MS94]. According to Maiden, abstract domain
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abstractions describe abstract categories of scenario which requirements engineers
can use in order to classify, and thereby reason analogically about, concrete require-
ments scenarios. Where a particular concrete requirements scenario can apparently
be matched to more than one such domain abstraction, the requirements engineer is
compelled to consider carefully which of the possible candidate domain abstractions
most accurately characterises the concrete requirements scenario. The abstract do-
main abstractions, in this case, represent “solution structures” in the sense that they
describe possible, and alternative, refinements of the concrete requirements artefact.
The process of choosing which of these refinements should be applied to the concrete
requirements artefact forces the requirements engineer to clarify precisely what the
requirements should be for the current application domain.

Given the function which different kinds of solution structure can play in support-
ing the clarification and elaboration of requirements for software systems, therefore,
the RORE approach to requirements engineering should provide a mechanism which
enables requirements engineers to consider alternative reusable knowledge structures
and thereby encourage them to consider alternative requirements specifications.

3.4 An Exemplar: The Package Router Problem

In order to illustrate the following discussion of the RORE approach, a running ex-
ample is given. This thesis considers how Jackson’s Problem Frames approach —
including the notation for Jackson’s Problem Models, as well as Jackson’s elemen-
tary Problem Frames — can be formalised using RORE and then how this approach
might be applied to a simple scenario. The meta-model for Jackson’s Problem Model
notation (as it is utilised in this thesis) is given in Figure 3.3.

The scenario which this thesis will use to illustrate requirements engineering as-
pects of the RORE framework is the Package Router Problem, taken from [HRJ08].
Hall et al summarise the package router problem as follows:

A package router is used to sort packages according to barcoded desti-
nation labels affixed to the packages. Packages slide under gravity through
a tree of pipes and binary switches into bins that correspond to regional ar-
eas. The problem with which we are concerned is the design of a software
controller to ensure the following:

• Packages are routed appropriately, with misroutes reported;
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Figure 3.3: A simplified meta-model for Jackson’s Problem Diagram notation

• The Operators commands to start and stop the conveyor are obeyed.

Hall et al’s rich picture representation of the Package Router problem, and a novel
Jackson Problem representation of the scenario, are given in Figure 3.4.

3.5 The Component View

At the highest level, RORE comprises four main components (see Figure 3.5). The first
of these is a set of three invariant requirements tasks (and sub-tasks which specialise
these tasks). These requirements tasks comprise a model-oriented process for the in-
cremental acquisition of requirements knowledge, predominantly by reuse (see Section
3.6). The requirements tasks are organised into an Analysis-Action cycle in which the
analysis task involves planning the action that is to be taken during the remainder of
the cycle.

These requirements tasks depend on two knowledge bases (see Section 3.7): work-
ing memory and long-term memory are their cognitive science homologies. Working
memory is a knowledge base which holds the temporary work pieces over which the
RORE method operates during a specific RORE session. These work pieces include a
source model and a target model, in addition to an information requirement defining
the goal of the current Analysis-Action cycle, and structures which situate the current
Analysis-Action cycle within a higher-level requirements engineering method. Long-
term memory is a knowledge base holding persistent knowledge structures which de-
fine a method for requirements engineering (Process Specification) and its associated
model types (Model Specification), as well as reusable knowledge structures (Reuse
Library) which are used to parametrise each of the the requirements tasks.
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Figure 3.4: The package router problem shown as a rich picture (left, from Hall et al
[HRJ08]) and a Jackson problem diagram
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3.5.1 Layers of the Framework

At the highest level, the RORE framework comprises three major layers as shown in
Figure 3.6.
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Figure 3.6: Layers of the RORE Framework

The three layers can be summarised as follows. Each layer has both structural and
procedural aspects:

• The Immutable Layer comprises the fixed, built-in components of RORE: the
Requirements Engineering Tasks (see Section 3.6.3) and the schema which de-
fines the structure of RORE’s Knowledge View (see Section 3.7). It is in the Im-
mutable Layer that the major components of RORE are defined and formalised.
The Immutable Layer is so named because the RORE framework provides no
process or mechanism for mutating the components which are defined at this
layer.

• The Meta Layer comprises project-independent components which are intended
to be general across multiple RORE episodes, or requirements engineering projects.
In particular, this includes the various type systems (Model Types, Model Chunk
Types, and Fact Types), requirements engineering method definitions (Phases
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and Activities) and the reusable knowledge structures (Analysis Rules, Model
Chunks, Production Scripts and Elicitation Stimuli), which actors within RORE
can specify as part of RORE’s long-term memory. Process at this level is primar-
ily defined through method definitions which stipulate process at a macroscopic
level, and reusable knowledge structures which define fine-grained transforma-
tions over concrete Models. All components within the Meta Layer are poten-
tially applicable across multiple RORE episodes (or requirements engineering
projects).

• The Modeling Layer comprises project-specific components which are specific
to a particular requirements engineering project. Components at this layer pro-
vide concrete instantiations of the various Types which are defined in the Meta
Layer. The major components at this are the working memory Modeling Context
definition, and Models themselves.

3.5.2 Perspectives on the Framework

Sutcliffe distinguishes two types of reuse activity [Sut02]:

• Design-for-reuse which is the process of abstracting reusable artefacts, building
reuse libraries, and developing tools to support reuse;

• Design-by-reuse which is the process of applying those libraries tools in order
to support the construction of new software artefacts from reusable components.

Conforming to this distinction, the RORE approach can be viewed from the differ-
ing perspectives of two major actors:

• The Requirements Engineer is responsible for producing new requirements
artefacts. From this perspective RORE is viewed as a framework to support
design-by-reuse. Within RORE, the requirements engineer reuses knowledge
which is stored in a long-term memory knowledge base in order to produce new
requirements artefacts;

• The Knowledge Engineer is responsible for building and maintaining RORE’s
long-term memory by specifying requirements modeling notations and libraries
of reusable requirements knowledge structures. From this perspective RORE is
viewed as a framework to support design-for-reuse. The knowledge engineer
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treats RORE as a framework which supports the formalisation and organisa-
tion within knowledge bases of requirements methods and reusable requirements
knowledge.

3.6 The Process View

The Process View describes the behavioural aspects of RORE in detail. RORE has two
main perspectives, and corresponding processes, which are required for the approach
to function in practice:

• The Knowledge Engineering (KE) Perspective involves identifying abstrac-
tions and reusable artefacts, and using these to populate a long-term memory
knowledge base;

• The Requirements Engineering (RE) Perspective involves applying the knowl-
edge structures, which are identified within the KE perspective, in order to build
new, and to refine existing, requirements artefacts.

3.6.1 The Relationship Between Requirements and Knowledge En-
gineering

RORE identifies two distinct processes — a requirements engineering process, and a
knowledge engineering process. The distinction between these two processes can be
characterised in the following way:

• Requirements Engineering is a project-specific role which involves the anal-
ysis of a single, individual software application domain in order to understand
that domain and produce the requirements for a software system to support some
activity within the domain;

• Knowledge Engineering is a project-independent role which involves abstract-
ing generalised knowledge structures from multiple instances of software ap-
plication domains which share in common some salient characteristics so as to
populate a knowledgebase with reusable abstractions.

As such, the former focuses on developing the requirements artefacts which de-
scribe and characterise an individual sofware application domain, whereas knowledge
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engineering involves abstracting generalisations across the software requirements for
. The RORE approach assumes that these two roles — Requirements and Knowledge
Engineering — would, in practice, be enacted by separate and specialised teams of en-
gineers. Such a separation would be logical because the two roles have different priori-
ties, produce different products, and may well require different skillsets. Requirements
engineers, for instance, require communication and interpersonal skills which enable
them to interact creatively with stakeholders in order to abstract often-tacit knowledge
about an application domain, whereas knowledge engineers need to be able easily to
see patterns across multiple requirements artefacts so as to support generalisation from
those artefacts.

However, it is important to note that while these two processes may be carried out
separately — temporally and spatially — they cannot be enacted independently of one
another, and should ideally be enacted in parallel. In RORE, there is a feedback loop
between the two processes such that each depends on the product of the other:

• Requirements engineering depends on the availability of a long-term memory
knowledgebase — containing the reusable abstractions which are the product of
knowledge engineering — in order to drive the refinement;

• Knowledge engineering depends on the availability of existing requirements
artefacts — which are the product of the requirements engineering process in
RORE — over which domain analysis [PD87, PD90] can be performed in or-
der to identify abstract knowledge structures with which to populate a long-term
memory knowledgebase.

Thus the two teams — the requirements engineering team and the knowledge en-
gineering team — will need to work in close collaboration in order for the approach
to function as a whole. Knowledge engineers will need to interact with requirements
engineers in order to understand the knowledge requirements for requirements engi-
neering across different software application domains, and to validate the abstractions
and long-term memory knowledgebases which the KE process produces. Similarly,
requirements engineers will need to work closely with the knowledge engineers to in
order to ensure that knowledge of individual application domains, for which require-
ments artefacts have been engineered, is explicit and properly understood by the KE
team so as to ensure that it can be accurately captured in reusable abstractions.

This model of interplay between requirements engineering and knowledge engi-
neering is in-line with the principles of domain analysis [PD87, PD90, Sut00] which
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advocates the abstraction of reusable knowledge structures from concrete requirements
artefacts, and also with the work of Krueger [Kru02a, Kru02b] who has advocated
an “extractive” approach to design-for-reuse. Within Krueger’s extractive approach,
knowledge engineers work in parallel with project teams to extract reusable abstrac-
tions from the artefacts associated with individual software projects. Krueger argues
[Kru02b] that this approach reduces risk versus a proactive approach (attempting to
develop a “complete” knowledgebase up-front) because it scopes the task of building
reuse libraries into realistic chunks, and that the approach increases payoff versus a re-
active approach (producing reuse libraries, where they don’t exist, only when they are
needed by a specific project). Accordingly, the RORE approach recommends this tight
feedback loop between requirements engineering and knowledge engineering as a way
of managing risk while also ensuring the ready availability of a wide range of reusable
knowledge structures with utility across a range of software application domains.

3.6.2 Overview of the Process: The KE Perspective

The Knowledge Engineering perspective of RORE focuses particularly on the spec-
ification of project-independent knowledge structures in the Meta Layer of RORE.
RORE does not define a formal process for, or offer detailed guidance on, knowledge
engineering within the framework. In principle, the different knowledge engineering
activities within RORE could be undertaken in any order. In practice, however, the
relationships between different types of meta-level knowledge structures suggests a
general sequence in which these knowledge engineering activities might be undertaken
(see Figure 3.7).

These steps can be performed incrementally as the application of RORE by the re-
quirements engineer to a specific project is likely to raise new abstractions of modeling
needs which a knowledge engineer should consider in order to refine long-term mem-
ory. The basic sequence of steps which is suggested can be summarised as follows:

1. Meta-modeling in RORE is the process of specifying a requirements modeling
notation in long-term memory. This involves the specification of the Fact and
Property Types from which that modeling notation is composed, as well as ag-
gregating those Fact Types in order to define the Model Type itself. In practice,
these tasks are likely to be undertaken incrementally or in parallel.

2. Behavioural Modeling in RORE involves specifying requirements methods which
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Figure 3.7: Overview of the knowledge engineering process in RORE

a requirements engineer follows which applying RORE to a project. Require-
ments engineering methods in RORE are specified at two levels of abstraction.
Phases describe the macroscopic structure of the engineering process, while ac-
tivities capture lower-level engineering behaviour. Each activity is defined by a
goal which is to produce a model of a particular kind. Behavioural modeling
is, then, the process of specifying the structure of Phases and Activities which
define a method.

3. Design-for-Reuse in RORE is the process of specifying in long-term memory
the reusable knowledge structures which define the specific logic through which
requirements models are transformed during the requirements engineering pro-
cess. Four types of reusable knowledge structure are specified in RORE: Anal-
ysis Rules, Model Chunks, Production Scripts and Elicitation Stimuli. Each of
these knowledge structures is associated with, and supports, one of the require-
ments engineering tasks which is defined within RORE’s behavioural model.
These tasks are: Analysis, Chunk-based Inference, Rule-based Inference and
Elicitation. Knowledge engineers should abstract reusable knowledge through a
process of domain analysis [PD90, Sut02] which are then integrated into long-
term memory to support the production, or refinement, of requirements models.
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3.6.3 Overview of the Process: The RE Perspective

The architecture of RORE discussed above in Section 3.5 identifies a set of three re-
quirements tasks (Analysis, Inference and Elicitation) and their sub-tasks. These tasks
support the role of the Requirements Engineering in that they support the process of
producing, by reuse, a new requirements artefact. The RORE Requirements Engineer-
ing process is designed primarily to support requirements engineering as a process of
model transformation. According to this view, requirements engineering involves in-
cremently refining the artefacts which capture the understanding that a requirements
engineer currently has of the requirements for a software system. RORE provides
a reuse-driven, model transformation-based approach to achieving these refinements.
However, this research acknowledges that information relevant to an application do-
main cannot be derived from nothing, or in a vacuum. As such, this research designed
into RORE a set of mechanisms which support the construction of artefacts, even in
cases where no existing information about the application domain is available. RORE
therefore supports both model transformation and from-scratch generation of models.

The requirements tasks which comprise the RORE approach can be briefly defined
in the following ways:

• Model Analysis (or “Analysis”) refers to a task which involves testing the cur-
rent state of a target model against a set of rules in order to determine the extent
to which the model is both “complete”, and of sufficient “quality”, where the
definitions of both “completeness” and “quality” are encoded in the rules. These
rules are retrieved from a knowledgebase as part of the Analysis task. Analysis
produces an “Information Requirement” which stipulates if, and in what way,
the target model must be further refined.

• Inference refers to a task which produces a new set of facts by reasoning exclu-
sively over facts which are already contained in both the source and the target
models.

• Elicitation refers to a task which involves a requirements engineer utilising their
own skill and creativity in interacting with stakeholders so as to produce a set
of facts which constitute an appropriate (in the judgement of the requirements
engineer) response to some stimulus.

Analysis is a planning activity, whereas Inference and Elicitation are productive
activities, meaning that they produce new or refined facts which are integrated into a
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target model to support its refinement. A single instance of a productive activity in
RORE produces a small refinement to a target model. Each such refinement is pro-
duced through the application of a single application of Clancey’s heuristic classifica-
tion (which is modified for each type of productive requirements task) as follows:

1. Retrieval: The current state of the source and target models are queried in order
to retrieve a reusable knowledge structure which, when applied to transform the
current state of the target model, will satisfy the current information requirement;

2. Firing: The reusable knowledge structure which was retrieved is reasoned over
in order to produce some (possibly abstract) set of facts based on the source
model;

3. Reification: If the set of facts that was produced during Firing is abstract, then
these facts are reified to fit the needs of the current target model. Reification is
achieved by substituting abstract labels within the facts by concrete labels which
are selected from the source model in order to produce a concrete set of facts;

4. Integration: The concrete facts are appended to the target model and the appro-
priate relationships to existing facts are defined.

Thus each requirement task refines the target model by retrieving and firing a
reusable knowledge structure, and then reifying and integrating the resulting set of
facts.

The requirements tasks in RORE (Analysis, Inference and Elicitation) are organ-
ised cyclically, so that each instance of Analysis produces an engineering goal (known
as an “Information Requirement”) which leads to a further action. The information
requirement describes the postcondition for the next round of action in terms of a delta
over the current target model.

There are two major kinds of action: Inference and Elicitation. Both are procedures
for producing a new set of facts as mandated by the current information requirement.
New facts are produced based on the current state of the source models, and predomi-
nantly by the reuse of existing knowledge structures. Inference is attempted first, and
Elicitation is attempted only if Inference is unable to resolve the information require-

ment.

This thesis provides detailed procedural guidance on the various requirements tasks
and control processes that underpin the RORE approach in Chapter 5. However, this
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section provides a high-level summary of the process by which requirements models
are produced using the RORE method. Figure 3.8 presents an overview.
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Figure 3.8: Procedural overview of the RORE approach to requirements engineering

The sequencing of tasks as shown in Figure 3.8 is strongly influenced by the second
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design heuristic in Section 3.3.4. The basic sequence of events is such that, once
Analysis has determined the need for the requirements engineer further to refine the
target model, each of the productive requirements tasks is attempted in the sequence
shown in Figure 3.8 and one at a time until the information requirement — which is
the product of Aanlysis — has been completed. If a particular productive task fails to
satisfy the information requirement (e.g., because no appropriate reusable knowledge
structure is available to support that task in the current context) then the procedure
continues on to attempt the next productive requirements task as a means to satisfy
the information requirement. Once the information requirement has been satisfied, no
further productive tasks are attempted for the current cycle, and the procedure iterates
back to Analysis which re-evaluates the target model to determine the information
requirement for the next round of refinement.

Although this sequence of events appears to be designed for the transformation of
existing models, three mechanisms within RORE enable the generation of models from
scratch:

• Model chunks — which are a type of reusable knowledge structure in RORE
and which underpin one mode of Inference in RORE (see Figure 3.5) — contain
sets of facts which can be reused and integrated into a target model. Model
chunks can, therefore, be used to populate an empty model with an initial set of
facts so that further refinement can then proceed in subsequent iterations of the
Analysis-Action cycle. Model chunks will typically need to be reified in order
to fit a particular concrete model and RORE provides a mechanism by which
the requirements engineer can manually specify the fact labels which should be
substituted into a model chunk in order to achieve this reification. In this way,
model chunks can be used to populate an initial model with an initial set of facts.

• Elicitation stimuli — which describe prompts that request a requirements en-
gineer to input into RORE information in a particular structure — provide a
mechanism through which a requirements engineer can manually capture and
formalise information from stakeholders. This mechanism enables the require-
ments engineer to capture an initial set of facts from stakeholders and then to
populate the target model with that initial set of facts.

• Index descriptions — which are meta-data descriptions of reusable knowledge
structures and which describe the conditions under which a reusable knowledge
structure is to be utilised — can stipulate that a reusable knowledge structure is
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useful in the event that no information is available within the target model. In
this case, a reusable knowledge structure will be matched to an empty model,
and so allow that reusable knowledge structure to be applied in order to generate
an initial fact set.

Using a combination of these three techniques, a well-designed long-term mem-
ory knowledgebase can provide support for from-scratch generation of new models,
as well as transformation of existing requirements models. The RORE framework is
predicated on the premise that the ideal case for requirements engineering is one in
which most of the refinements to a target model are achieved by Inference, rather than
by Elicitation. This is because (in line with the second design heuristic described in
Section 3.3.4) this thesis hypothesises that Inference is more efficient than Elicitation
— that is, that it requires less effort to acquire refined facts by retrieving and reify-
ing a reusable knowledge structure than by acquiring the same facts through a new
interogation of stakeholders.

However, in the case of from-scratch model generation this thesis anticipates that
in the earliest stages of generation, the acquisition of facts about the application do-
main will primarily be achieved by the intervention of the requirements engineer as
part of the Model Chunk reification process and through Elicitation. This is because
something must already be known about the application domain in order to achieve a
good quality match between a model and a reusable knowledge structure which will
be used to refine that model. A well-designed knowledgebase, therefore, will provide
knowledge structures which can be used — through Elicitation and Inference — in
order to clarify, in the minimum possible number of cycles, the key facts about the
application domain, so that accurate matching to more efficient reusable knoweldge
structures can occur. This thesis anticipates, therefore, a shift — once the basic struc-
ture for a requirements artefact has been generated — from a greater proportion of
Elicitation-driven versus Inference-driven refinements, towards a greater proportion of
Inference-driven refinements. Naish and Zhao [NZ11] discuss further this shift in the
requirements engineering process, as more information is added to a model, from tradi-
tional elicitation methods towards reuse-driven requirements engineering approaches.

3.6.3.1 Summary of the RE Process

The starting point for the refinement of models within RORE is to specify the initial
source and target models over which the requirements tasks will operate. One of three
overall goals is possible:
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1. To produce a new model from scratch;

2. To evolve an existing model;

3. To transform an existing model from one type into another type

The first step in the process, therefore, is to determine which of these initial scenar-
ios must be realised, and to initialise working memory in the appropriate manner: by
identifying the appropriate source and target models. The correct set-up for working
memory is determined, for a scenario, according to the following rules:

• For From-Scratch Model Production, there should be a target model, but no
source model;

• For Model Refinement, the same model should, initially, be both the source and
the target model. Only the target model will be modified;

• For Model Transformation, two distinct models should be specified as the
source and target models, usually of different model types.

Once RORE has been initialised according to these rules, the first Analysis-Action
cycle commences.

Model Analysis is the first step in this cycle. As discussed by Cheng and Atlee
[CA07], various kinds of analyses are discussed in the requirements engineering liter-
ature, but the unifying theme is the evaluation of a requirements artefact in order to de-
termine what further action must be taken. Similarly, in RORE, the purpose of analysis
is to determine whether and what further refinements should be undertaken. Analysis
is a rule-driven process. Rules to support analysis are retrieved from long-term mem-
ory into working memory, and are then fired over the source and target models to draw
conclusions about the current RORE context and the state of the target model.

Two kinds of analysis are distinguished. Completeness Analysis is performed, the
purpose of which is to evaluate the overall completeness of the target model and so
to determine whether or not any further refinement is needed. If not, then the target
model is output in its current state as the final model. If so, then Quality Analysis
is performed in order to evaluate the areas in which the target model requires refine-
ment, as a product of which an information requirement is produced. The information
requirement specifies the limitation that has been identified in the state of the current
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model and thus defines the nature of the refinement that should be applied during the
current Analysis-Action cycle. Once an information requirement has been constructed,
the requirements engineer moves to the Action aspect of the cycle in order to resolve
this limitation.

To illustrate the two kinds of analysis, consider that a Target Model which is a
Problem Model specifying the domains and phenomena for the package router scenario
(but not also stipulating the Machine or the Requirements for the scenario). The Target
Model may be said to be incomplete because, in accordance with the metamodel given
in Figure 3.3, the Problem Model must stipulate both the Machine and the Requirement
but, in the current state, does not. In this case, a single rule may be applied to determine
both that the Target Model is not currently complete and the direction in which further
refinement is needed. Imagine that an Analysis Rule is defined which checks for the
existence of a fact of type Machine within the Target Model. This rule is applied
first by Completeness Analysis. Because no Machine is defined within the Target
Model, the rule fails and so the Target Model is determined not to be complete. Quality
Analysis is then conducted. The same rule can also be used for Quality Anaylsis, and
again fails. An Information Requirement is therefore generated which comprises the
antecedent which is defined for the Analysis Rule (and which the model has failed)
and — because the Analysis Rule is stipulated to validate the Machine fact type —
a pointer to the Machine fact type itself. This Information Requirement defines the
goal of the next round of Action: to produce a non-empty set of facts instantiating the
Machine fact type.

Fact Inference Inference produces new facts exclusively by reusing existing knowl-
edge structures. RORE identifies two types of inference Chunk-based and Rule-
based inference. These are distinguished by the type of knowledge structure that
is used to inform the inference.

Chunk-based inference matches the source model to a model chunk in long-term
memory containing the new set of facts to be integrated into the target model. Chunk-

based inference is thus closely related to conventional design-by-reuse as in the case
of pattern-based design. By contrast, Rule-based inference matches the source model
to a production script (an ordered set of production rules) in long-term memory, which
is used to infer - either semantically or syntactically - the new set of facts from a given
set of source facts. Rule-based inference thus reuses procedural, rather than declar-
ative, knowledge and so is akin to a Calculator-style reasoning approach, whereas
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chunk-based inference is closer to a Look-up reasoning style. If either chunk-based
or rule-based inference is successful in producing new facts to satisfy the information
requirement, these facts are then reified and augmented into the target model. The
information requirement now having been satisfied, the process returns to Analysis
so that a new information requirement can be produced, and a new Analysis-Action
cycle can commence. If, however, inference failed to produce any new facts by either
method, the requirements engineer next attempts to satisfy the information requirement
by Elicitation.

The two procedures for Fact Inference — Chunk-based and Rule-based Inference
— offer different methods for attempting to satisfy the Information Requirement which
was produced by Quality Analysis above (i.e. to produce the necessary Machine fact
for integration into the Package Router Problem Model). Consider first how this might
be achieved by means of Chunk-based Inference. Assume that each of Jackson’s Prob-
lem Frames [Jac01b] has been specified in long-term memory as a Model Chunk.
Chunk-based Inference can be applied to generate a Machine fact for the Package
Router Problem Model in the following way. Firstly, the requirements engineer must
retrieve from the knowledgebase a Problem Frame chunk which best fits the current
state of the Target Model. Problem Frames are distinguished primarily by their struc-
ture, but also by the types of the given domains within the frame. The Package Router
Problem Model comprises instances of the Required Behaviour, Controlled Behaviour
and Information Display frames and so these will be retrieved by the RORE matching
process. The requirements engineer may then select one of these retrieved chunks to
apply in this cycle. All three Problem Frames comprise a single Machine fact, and so
the requirements engineer may choose any of the three Frames to apply. Having made
their choice, the requirements engineer must then reify the chosen Problem Frame for
the Package Router Scenario. This is done by stipulating manually the name of the Ma-
chine and specifying the Phenomena with which the Machine interfaces. The Machine
fact is then ready for integration into the Package Router Problem Model.

Now consider a scenario in which Chunk-based Inference were not an appropri-
ate mechanism for establishing the Machine facts which the Information Requirement
states are currently missing from the Target Model. This may be the case if, for ex-
ample, the only chunks that are specified in long-term memory are Problem Frame
chunks which are of greater granularity than the Information Requirement demands
(including, as they do, Requirement facts as well as Machine facts). In such scenarios
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— those to which Chunk-based Inference provides no satisfactory resolution to an In-
formation Requirement — Rule-based Inference can provide a second-line alternative.
In the Package Router Scenario, Rule-based Inference can provide an alternative ap-
proach satisfying the to generating the Machine facts which need to be integrated into
the Target Model. However, a Production Script can only satisfy an Information Re-
quirement if there is sufficient information in the Source Model, or if adequate axioms
can be assumed (even if they are not in the Source Model), to infer the facts which are
demanded by the Information Requirement. For example, in the case of the Package
Router scenario, the source model contains only Given Domains and their Phenom-
ena. No procedure can readily be identified which infers, directly from these facts,
the details of the Machine that would be needed to support this context. However, a
logical procedure for inferring the Machine fact in such a context might be that only
one Machine is needed for each Problem Model and in this case a Production Script
might be produced, based on this assumption, which simply creates a single Machine
fact and uses information in the Source Model (a simple procedure might be to con-
join the names of the Domains within the Source Model) in order to infer a name for
that Machine. Such a Production Script, when applied by Rule-based Inference to the
Package Router scenario would generate a single Machine fact whose name might be
“PackageRouterMachine”.

Fact Elicitation Elicitation is commonly understood as an interactive process for
information gathering between the requirements engineer and groups of stakeholder
[CA07]. In RORE it is the third type of requirements task identified, and is a procedure
for acquiring facts from an “external source” in order to satisfy an information require-
ment. An “external source” is understood as being any source which is not internal
to the RORE framework itself (including the target and source model, or knowledge
structures within long-term memory). Elicitation thus serves as a last-resort means of
introducing new information into the RORE framework when no information currently
within the RORE framework is sufficient to satisfy the information requirement.

The salient knowledge structure in the case of Elicitation is the Elicitation Stimu-
lus. This is a knowledge structure which identifies a question and specifies the structure
of an appropriate response to that question. Elicitation stimuli thus serve as stock ques-
tions which the requirements engineer can use as appropriate in order to acquire the
information needed to answer that question. The elicitation stimulus also serves to di-
rect the requirements engineer as regards the specific nature of the facts to be acquired.
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As such, RORE provides a means for building a library of stock questions which have
been validated within the KE perspective.

During elicitation, an elicitation stimulus is retrieved by matching the current state
of working memory against candidate stimuli in long-term memory. Once an appropri-
ate elicitation stimulus has been found to satisfy the current information requirement,
the requirements engineer is free to use a range of requirements elicitation techniques
(for example, those discussed in [CA07]) to acquire the necessary information. The
ideal solution will be that the requirements engineer can answer the question of their
own accord, but this will often not be the case, and so the requirements engineer may be
required to refer to stakeholders or existing documents other than the source and target
models to obtain the desired knowledge. In order to maximise the chance of producing
a valid model, it is desirable that the requirements engineer consults with stakehold-
ers where they are not sure of the answer to a question. The requirements engineer
then formalises this knowledge into a set of model facts as specified by the elicita-
tion stimulus, and these model facts are then augmented into the target model. If this
procedure successfully satisfies the information requirement, then the requirements en-
gineer returns to Analysis to commence a new Analysis-Action cycle. Alternatively, if
the information requirement has still not been successfully satisfied, the target model
is output from the RORE procedure and a note is made of the unsatisfiable information
requirement.

Elicitation also offers a powerful solution to the problem of generating a Machine
fact for the Package Router domain which might be called if neither the Chunk-based
or Rule-based approaches to Inference is likely to generate a satisfactory solution to
the Information Requirement that a Machine fact be generated. In fact, neither Chunk-
based or Rule-based Inference (as stipulated in the examples given above) does offer
a satisfactory solution to this Information Requirement (although this is an acciden-
tal, rather than an essential, limitation arising from the particular knowledge structures
that are defined in the example long-term memory knowledgebase). Chunk-based In-
ference generates facts by reusing Model Chunks which, in the exemplar described
thus far, captured Problem Frames and so generated more facts that the Information
Requirement demands. Rule-based Inference generates facts by executing Production
Scripts, and in the Package Router scenario the only exemplar Production Script which
has been defined for generating a Machine relies on simplistic assumptions (such as
the existence of only one Machine fact per problem). Elicitation, by contrast, can over-
come the limitations which arise as a result of the lack of information from which to
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infer the necessary Machine facts by enabling the requirements engineer to request this
information from stakeholders. An Elicitation Stimulus to elicit Machine facts might
request a requirements engineer to Elicit and define all Machine facts for the Problem
Model — and their interactions with the existing Domains. This enables the require-
ments engineer to step outside of the RORE process and interact with stakeholders
(such as business clients and software architects) in order to identify which Machines
will be involved in satisfying the Package Router problem. The requirements engineer
can then feed this information back into the RORE process as as set of Machine facts,
thereby solving the Information Requirement that Machine facts be elicited. This has
the advantage that human intellect and creativity can be applied to infer the Machine
facts, where formal reasoning processes lacked the necessary information to infer the
same facts without relying on simplistic assumptions.

3.6.3.2 Validation of Model Refinements

One important aspect of requirements engineering is the validation of requirements
artefacts [NE00, CA07]. Validation of requirements artefacts is required for at least
two reasons. Firstly, validation is needed to ensure that the understanding of the re-
quirements for a software application domain which is held by the requirements en-
gineer is consistent with the understanding of the requirements which are held by the
stakeholders. Secondly, where stakeholders have differing — and possibly inconsistent
— views on the software requirements, validation may be necessary to ensure that the
view of the requirements which is documented in the requirements artefacts represents
an adequate (as determined by the stakeholders themselves) compromise between the
competing requirements views.

In the context of reuse-driven requirements engineering (e.g., as supported by the
RORE framework), there is a third reason why validation may be necessary: to ensure
that reusable requirements components are applied in their appropriate context, and to
confirm that the knowledge which is generated by reuse is consistent with the stake-
holders understanding. Validation is necessary in this context because reuse does not,
by its nature, acquire information from stakeholders but rather from a knowledgebase.
There is a need, therefore, to ensure that the inferences which are derived by reuse
provide an accurate representation of the requirements as they are understood by the
stakeholders. Unfortunately, any reusable knowledge structure is a generalisation over
a domain which may not be consistent with all instances within that domain, and so
there is no guarantee — even when a reusable knowledge structure is applied in the
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correct domain — that it will accurately characterise a particular instance of that do-
main. As such, validation by stakeholders is necessary to validate inferences which are
deduced by reuse.

RORE, in its current incarnation, does not provide formal or explicit support for
validation of the requirements artefacts which it refines and transforms. This is be-
cause, in order to limit the scope of this research, this thesis assumes that RORE will
be applied only in ideal circumstances, where:

• A good quality long-term memory knowledgebase has been specified which con-
tains sufficient reusable knowledge structures to support requirements engineer-
ing across a wide range of application domains;

• Stakeholders are always able to provide, or the requirements engineer is always
able to elicit, appropriate information in response to elicitation stimuli.

However, there are various points in the current incarnation of the RORE process
at which the requirements engineer has the ability to modify manually the information
contained within, or which is to be integrated into, a model. Firstly, the requirements
engineer can modify information which is produced by inference as part of the reifica-
tion process which adapts a model chunk in such a way that it is made concrete to fit
the needs of a particular concrete target model. Secondly, the requirements engineer is
responsible for formalising — as a RORE knowledge structure — the responses which
are provided by stakeholders to elicitation stimuli. The requirements engineer can
take this opportunity to validate information which is provided by stakeholders at this
point. However, while both of these cases provide informal mechanisms through which
the requirements engineer can informally validate the information contained within a
model, RORE does not provide procedural guidance on doing so and consequently the
requirements engineer must use their own skill and creativity when validating models
in this way.

3.7 The Knowledge View

The RORE approach to requirements engineering is knowledge intensive. As discussed
in Section 3.6, the facts and models - which RORE acquires and composes - are repre-
sented formally by a set of knowledge structures spread across RORE’s two knowledge
bases. The knowledge model in RORE is specified formally using the Web Ontology
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Language (OWL) [BVHH+04]. OWL was chosen as a rich and expressive, yet decid-
able, description logic for which a wide range of tool support already exists (notably
the Protege ontology editor [Uni12] and the Pellet ontology reasoning API for Java
[SPG+07]). RORE also uses the Semantic Web Rule Language and Regular Expres-
sion substitution patterns to formalise certain aspects of RORE’s knowledge model.
Formalisation, and the available tool support, of these knowledge structures is an im-
portant step towards building tool support for RORE as part of future work, but also
has utility in providing clear and unambiguous guidance to requirements engineers.

As shown in Figure 3.5, RORE utilises two distinct knowledge bases, termed work-
ing memory and long-term memory after their respective cognitive science homolo-
gies. This section now summarises informally the knowledge structures that are de-
fined in each of these knowledge bases.

3.7.1 Long-Term Memory

Long-term memory holds persistent knowledge that is useful across multiple RORE
projects, and is the primary focus of the Knowledge Engineering perspective. Long-
term memory is organised into two layers: an immutable layer and a constructed layer

(see Figure 3.5). The immutable layer is the layer in which all of the in-built knowledge
of RORE is expressed. It is at this layer that each of RORE’s knowledge structure types
are defined (as illustrated in Figure 3.5). The constructed layer is the layer in which in-
stances of these knowledge structures are specified in order to tailor RORE to support
a particular requirements engineering method and its associated modeling notations.
The primary difference between these two layers is that the knowledge structure types
defined in the immutable layer are in-built and assumed by RORE, whereas the knowl-
edge structure instances defined in the constructed layer are specified by the user of
the RORE framework to configure RORE to their own needs. During evaluation of the
RORE approach, this thesis concluded that applying the RORE knowledge structures
in order to formalise a particular requirements engineering method (comprising both a
process and a set of model types) enabled the method to be formalised within a practi-
cally reasonable period of time — within a week for a team of experienced knowledge
engineers working on a significantly complex method.

RORE’s long-term memory defines knowledge structures organised into three main
packages.
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Model Specifications are used to define model types and the fact types from which
they are aggregated. Model types define representation languages for modeling some
aspect of an application domain or its requirements. Fact types define specific kinds of
assertion which can be made about the application domain within a model. Fact types
may be simple or complex. Simple fact types are one-dimensional data types such as
strings, numbers, boolean and enumerations. Complex fact types consist of tuples of
properties such that each property is itself defined by a valid fact type defined within
RORE. Individual facts instantiate fact types by assigning a value to each property of
that fact type.

Model types are defined as unordered aggregations of valid fact types defined
within RORE. Models instantiate model types by aggregating facts such that every
fact within a RORE model must be an instance of a fact type which both has a valid
definition in RORE and is aggregated by the model type associated with that model.
Models may contain multiple instances of each fact type which is valid for that type of
model. Model types thus define the kinds of facts which can legitimately be expressed
in a particular kind of model.

Process Specifications. The requirements tasks and model-specific refinements which
this chapter has discussed thus far represent low-level procedural knowledge. To give
some context to these refinements, and to support the organisation of this knowledge in
RORE’s knowledge bases (see Section 5.8), RORE additionally supports the definition
of higher-level procedural knowledge. This knowledge is represented in terms of be-

havioural units which are specialised into two types: phases and activities. Phases rep-
resent the highest-level form of procedural knowledge within RORE. Activities repre-
sent a level of procedural abstraction between phases and specific requirements-tasks.
Phases are composed of activities, activities are composed of requirements tasks. Each

activity is associated with a particular source and target model, and it is the job of the
activity to build a model of the given target type from one of the given source type.
Behavioural units are associated with reusable libraries which define model-specific
refinements that are relevant to the goals which those behavioural units represent.

As an example, consider Jackson’s Problem Frames approach which this thesis
has used thus far as a method for addressing the Package Router problem. Jackson’s
Problem Frames approach, in the first instance, provides a method for producing a
Jackson Problem Model. Jackson describes this process in two broad steps. Firstly, the
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requirements engineer produces a “Context Diagram” which describes the problem do-
main in terms of a set of sub-domains and the relationships between these in terms of
shared phenomena. Secondly, the requirements engineer elaborates this Context Dia-
gram into a Problem Diagram, which additionally describes the software Requirements
that define the problem, and the Machines which will satisfy those requirements. The
“problem”, according to Jackson, is then to build the specified Machine [Jac01b]. This
method can be modeled in RORE using one Phase (“Machine Specification”) and two
Activities (“Context Modeling” and “Problem Specification”) as shown in Figure 3.9.
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Figure 3.9: Representing part of the Problem Frame Approach in RORE

In RORE, the Machine Specification phase would be defined as having the two
activities Context Modeling and Problem Specification. These two activities in turn
are defined in terms of the Model Types which they transform — one Source Model
Type and one Target Model Type per activity. Thus the Context Modeling activity,
which produces a Context Model, would be defined as having no Source Model Type
(because it produces a Context Model from scratch) and with the Context Model as the
target type.

Reuse Libraries aggregate knowledge structures which can be used to parametrise
one of RORE’s in-built requirements tasks. This includes those knowledge structures
which are used to define model-specific refinements. Reuse libraries comprise four
kinds of knowledge structure: analysis rules, model chunks, production scripts and
elicitation stimuli. Examples of each kind of reusable knowledge structure were given
as part of the commentary on the procedural view of RORE (see Section 3.6.3.1).

Analysis rules are used in RORE to formalise notions of completeness and quality



92 CHAPTER 3. THE CONCEPTUAL FRAMEWORK

so as to support planning of requirements tasks. They are applied during analysis to
implement checks over model states which determine which kinds of refinements need
to be carried out during the current Analysis-Action cycle. Each analysis rule specifies
a condition which should hold true if a particular model has reached a desirable level
of “completeness” and so form the basis for evaluating models.

Model chunks support chunk-based inference. Model chunks consist of aggrega-
tions of facts forming a non-directed acyclic graph. Formally, there is little difference
between a model chunk and a model itself. Informally, model chunks are finer-grained
and more abstract than models themselves so as to support the composition of models
from aggregations of chunks. Model chunks are also stored and indexed in long-term
memory to support reuse, whereas models themselves are not packaged for reuse.

Production scripts support rule-based inference. Production scripts are ordered sets
of production rules. These production rules consist of an antecedent and a consequent.
The antecedent is a SPARQL query [SP07], which selects from the set of input facts
the specific facts that are to be transformed by the particular production rules. The con-
sequent specifies a regular expression substitution which is used to transform the facts
specified by the consequent to produce new facts. The production rules are performed
by the requirements engineer one at a time and in order to incrementally transform the
input facts.

Elicitation stimuli provide the knowledge required to support the Elicitation re-
quirements task. Elicitation stimuli consist of two main elements: a question (the
stimulus itself) and a response structure. The question is an accessible, natural lan-
guage, description of the information requirement which the requirements engineer
must satisfy. The second component of the elicitation stimulus is a description of the
expected structure of the requirements engineer’s response to the elicitation stimulus.
This is defined by an aggregation of fact types, along with a cardinality indicating how
many facts of each type should be specified by the user.

3.7.2 Working Memory

Working memory holds temporary knowledge that is specific to the current RORE
project and so is the predominant concern of the Requirements Engineering perspec-
tive. It is the knowledge structures in working memory that are manipulated by the
requirements tasks of the RORE framework. Two kinds of knowledge are represented
in working memory: project knowledge and control knowledge.
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Project Knowledge. It is in working memory that both the source and the target
models are represented. These model structures represent, in some sense, the applica-
tion domain about which requirements are to be gathered. The target model should,
therefore, evolve in line with the requirements engineer’s understanding of this appli-
cation domain. The source model is that model from which facts are input to a model
refinement. The target model is that model to which the refinement is to be applied. It
is entirely valid for these two models to be one and the same. Models aggregate facts
which instantiate the fact types from which the associated model type is composed.

Control Knowledge. Control knowledge is used to co-ordinate and manage the pro-
cedural aspects of RORE. It represents knowledge about the requirements engineering
process itself, in particular the goals of the requirements engineering process at various
levels of abstraction. The control knowledge package within working memory holds
pointers to the phase and activity with which the current refinement is associated. This
provides big-picture context for the refinement.

Control knowledge also comprises the information requirement for the current
Analysis-Action cycle. Information requirements consist of two main properties. The
first of these identifies the type of facts which are to be produced during the the cur-
rent Analysis-Action cycle cycle. These fact types must be valid for the type of the
target model. The second property of an information requirement is a post-condition.
Information requirements are generated during analysis when an evaluative test fails.
The post-condition records the failed test, and so indicates how the model must change
during the current current cycle. Both properties of an information requirement are
used to match model-specific refinements to the current context in order to realise the
post-condition of the information requirement.

3.8 Summary

This chapter has introduced the Reuse-Oriented Requirements Engineering (RORE)
framework. The framework supports the production, and refinement, of software re-
quirements models by systematic reuse. There are three major layers within RORE.
In the top (Immutable) layer, RORE comprises a knowledge representation schema,
through which knowledge in lower layers can be formalised, and a set of generic
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reusable requirements tasks. The two lower layers support the construction of project-
independent knowledge bases comprising reusable knowledge and definitions of re-
quirements modeling notations (the Meta Layer), and project-specific requirements
models (the Modeling Layer). Cutting across these layers, RORE can be viewed from
the perspectives of two actors. From the knowledge engineering perspective, RORE
is a framework to support the formalisation of requirements engineering methods and
notations, and the definition of reuse libraries to support systematic reuse within those
methods. From the requirements engineering viewpoint, RORE is a framework for ap-
plying methods and reusable knowledge which have both been defined by a knowledge
engineer in order to construct and refine concrete requirements models.

RORE identifies four generic Requirements Engineering Tasks - Analysis, Chunk-
based Inference, Rule-based Inference, and Elicitation - through which the refinement
of a requirement model is achieved. Firstly the model is analysed by applying a set of
Analysis Rules in order to determine its completeness and thus the need for any further
transformation. If the model is determined by Analysis to require further refinement,
then an Information Requirement is generated and an action cycle is initiated. During
this action cycle RORE attempts to resolve the Information Requirement by applying
Chunk-based Inference, Rule-based Inference and Elicitation in turn. Each of these
requirements engineering tasks is supported by its own type of reusable knowledge
which is used by the task in order to capture domain knowledge. The knowledge type
which is associated with a particular generic requirements engineering task therefore
parameterises the generic task so as to reify it for a specific domain.



Chapter 4

Designing the RORE Approach

4.1 Introduction

This chapter presents the detailed design of RORE, and describes the design of a proto-
type tool to support both the Knowledge Engineering and the Requirements Engineer-
ing perspective. Section 4.2 presents an overview of the technical architecture of the
RORE framework and its prototype implement. Each of the layers of the prototype,
and the two perspectives of the framework, are elaborated and the key macroscopic
components of the prototype are summarised. Section 4.3 drills down into each of
these layers describing the individual components of RORE: Section 4.3.1 describes
the design of RORE’s Long-Term Memory Manager which supports the Knowledge
Engineering perspective on RORE, while Section 4.3.2 describes the Requirements
Task Assistant which supports the Requirements Engineering perspective.

The Long-Term Memory Manager and Requirements Task Assistant components
of the RORE architecture share in common a set of reusable user interface compo-
nents, and these are described in Section 4.3.3. These two components also utilise
the Ontology Management Layer which is a thin persistence wrapper around RORE’s
knowledge bases. The Ontology Management Layer is described by Section 4.3.4.

4.2 Overview of the RORE Architecture

Figure 4.1 provides an architectural overview of the RORE prototype which this re-
search has implemented and which this chapter summarises.

95
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Figure 4.1: Architectural overview of the RORE prototype



4.2. OVERVIEW OF THE RORE ARCHITECTURE 97

4.2.1 Layers of the RORE Architecture

The architecture shown in Figure 4.1 defines four major layers:

• The Long-Term Memory Manager is a prototype tool which provides sup-
port for the Knowledge Engineering perspective by implementing functionality
which facilitates the specification of long-term memory knowledge bases;

• The Requirements Task Assistant is a separate prototype tool which provides
support for the Requirements Engineering perspective through prototype imple-
mentations of the requirements tasks described in Section 3.6.3;

• The Presentation Layer is a component library which defines a suite of reusable
graphical interfaces that facilitate the specification and manipulation of different
kinds of RORE knowledge structure in a RORE knowledge base;

• The Ontology Management Layer is a component library which supports the
enactment of CRUD (Create, Read, Update and Delete) operations [MI83] over
RORE knowledge bases.

The Long-Term Memory Manager is designed to provide support for the Knowl-
edge Engineering perspective of RORE (see Section 3.5.2) by providing a suite of in-
terfaces which enable knowledge engineers rapidly to build long-term memory knowl-
edge bases. The Long-Term Memory Manager (LTMM) provides functionality which
facilitates the formalisation of requirements processes, requirements modeling nota-
tions, and reusable requirements knowledge. The LTMM provides functionality for
adding to, or removing from, long-term memory those knowledge structures which are
associated with the long-term memory layer (see Section 3.7.1).

To achieve this, the LTMM depends on both the Presentation Library and the On-
tology Management Library. While the LTMM defines user interfaces which are spe-
cialised to support long-term memory management (such as interfaces which support
procedural modeling), several functions (such as fact editing interfaces) are useful be-
yond the scope of the LTMM. These shared interfaces are defined within the Presen-
tation Views Library, and the LTMM reuses these interfaces from the Presentation
Library.

Similarly, in order to manipulate a long-term memory knowledge base, the LTMM
requires access to persistence mechanisms which enable the CRUD operations over
a knowledge base file. This functionality is provided by the Ontology Management



98 CHAPTER 4. DESIGNING THE RORE APPROACH

Layer, which the LTMM therefore depends on in order to read from and write to knowl-
edge bases.

The Requirements Task Assistant is the second of the tools within the prototype
implementation and supports the Requirements Engineering perspective of RORE (see
Section 3.5.2). The Requirements Task Assistant provides a prototype implementation
of the requirements tasks described in Section 3.6.3: Analysis, Inference and Elicita-
tion. Within the Requirements Task Assistant, Requirements Engineers can define new
models, or choose to refine existing models. The Requirements Task Assistant then
guides the Requirements Engineer one step a time through Analysis-Action cycles
in order to incrementally refine the requirements model towards a more “complete”
version. Since each of the requirements tasks is a reuse-driven process, the Require-
ments Task Assistant provides functionality which supports the automatic matching
of modeling contexts to task-relevant reusable knowledge structures. Furthermore, the
Requirements Task Assistant also provides a semi-automated procedure for integrating
the facts which are produced by an Analysis-Action cycle into the model.

In order to provide this functionality, the Requirements Task Assistant depends on
two other layers: the Presentation Layer and the Ontology Management Layer. The
Presentation Layer provides fact and model chunk manager components which are
shared beyond the scope of the Requirements Task Assistant, but on which the Re-
quirements Task Assistant is dependent. These components are utilised within the Re-
quirements Task Assistant by the requirements engineer when, for instance, responding
to elicitation stimuli. The Requirements Task Assistant thus reuses these components
from the Presentation Layer.

The Requirements Task Assistant also depends on the persistence functionality
which is provided by the Ontology Management Layer. The Requirements Task As-
sistant accesses two types of knowledge base: a long-term and a working memory
knowledge base. Access to the long-term working memory knowledge base is to re-
trieve reusable knowledge structures, and procedural and metamodel specifications of
the requirements engineering method being utilised. Access to the working memory
knowledge base is to access the current state of working memory and to write refine-
ments to the target model. The CRUD functionality, as well as advanced querying
functionality, on which these activities depend is provided by the Ontology Manage-
ment Layer.
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The Presentation Layer is a layer which defines a suite of user interface views
which support the production and manipulation of RORE knowledge structures. There
are two major interfaces which are shared across both the LTMM and the Requirements
Task Assistant: the Chunk Manager and the Fact Manager. The Presentation Layer
decouples these shared interfaces from the particular applications by which they are
used, and so makes them reusable beyond the scope of a single application. The only
interactions that the Presentation Layer has with other components are its interactions
with the LTMM and the Requirements Task Assistant, both of which depend on the
Presentation Layer for access to these shared interfaces.

The Ontology Management Layer implements the persistence mechanisms through
other layers are able to access RORE knowledge bases. In the RORE prototype, knowl-
edge bases are formalised using the Web Ontology Language (OWL) [BVHH+04] and
the Ontology Management Layer defines the functionality which is needed in order
to perform CRUD operations over RORE models which are formalised through this
notation. The Ontology Management Layer also provides the services that are needed
to perform advanced semantic querying [SP07] over RORE knowledge bases. The
only interactions in which the Ontology Management Layer is involved, therefore, are
its interactions with the LTMM and the Requirements Task Assistant. Both utilise
the Ontology Management Layer in order to access Long-Term and Working Memory
knowledge bases.

4.2.2 Perspectives on the RORE Architecture

Section 3.5.2 introduced two different perspectives on the RORE framework: the
Knowledge Engineer’s perspective and the Requirements Engineer’s perspective. Fig-
ure 4.1 illustrates the interactions of the two main actors in the RORE approach with
the major components of RORE.

The Knowledge Engineering Perspective focuses on the task of ensuring that long-
term memory is well populated with a rich library of knowledge structures which is de-
signed to support the requirements engineer in performing their own role. The Knowl-
edge Engineer, therefore, interacts with the Long-Term Memory Manager (outlined
in Figure 4.1). Different requirements modeling notations may be useful in different
scenarios, while different requirements engineers may prefer one modeling approach
over another. The knowledge engineer should, therefore, ensure that a collection of
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different modeling notations is properly defined in long-term memory. The knowledge
engineer is also responsible for performing domain analysis [PD90, Sut02] in order
to abstract reusable requirements knowledge structures, and for integrating these into
long-term memory. Both tasks are essential to ensuring the adequacy of the library
contained within long-term memory. The conclusion which this thesis draws from the
evaluation of the prototype RORE tool is that the tool significantly reduces the time
which it takes a knowledge engineer to formalise requirements engineering methods
over the manual application of the RORE approach. This thesis also concludes that this
can be done within a feasible time period by experienced RORE knowledge engineers
— within one week for realistic methods.

The Requirements Engineer Perspective emphasises the task of producing new
requirements artefacts by reusing knowledge contained within a long-term memory
knowledge base. To this end, the Requirements Engineer utilises the Requirements
Task Assistant which implements the RORE requirements tasks (see Chapter 5). Each
of these tasks is a reuse-driven activity in which reusable structures are retrieved from
long-term memory in order to produce new information which can be integrated in
order to refine a new or existing artefact. As such, the requirements engineer is en-
gaged in design-by-reuse, in which the reusable artefacts are reusable requirements
knowledge structures, and the designed artefact is a new requirements model.

4.3 The Design of the RORE Components

4.3.1 The Long-Term Memory Manager

The RORE Long-Term Memory Manager is a tool which is designed to support the
metamodeling and domain analysis tasks of the knowledge engineer (see Section 3.5.2).
The tool allows knowledge engineers to build new, and refine existing, long-term mem-
ory knowledge bases by specifying three broad kinds of knowledge:

• Procedural Requirements Engineering Knowledge which describes the se-
quence of activities within a requirements engineering method and the type of
model which each activity produces from a given type of input model;

• Metamodels of Requirements Modeling Notations which define the kinds of
facts which a particular modeling notation comprises;
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• Reusable Domain and Procedural Knowledge which describe chunks of knowl-
edge from which new information can be synthesised in order to refine the state
of a concrete requirements model.

Each of these broad kinds of long-term knowledge comprises several finer-grained
knowledge types (see Section 3.7.1). The LTMM provides interfaces which allows a
user to manipulate knowledge of each of these fine-grained knowledge types within a
long-term memory knowledge base.

These interfaces, in effect, are thin wrappers around the Ontology Management
Layer. The Ontology Management Layer is described in detail in Section 4.3.4. How-
ever, in general the Ontology Management Layer provides one software object for
each knowledge structure which is defined in the RORE knowledge view (see Chapter
3 for an overview). Each of these objects in turn provides functionality to CRUD any
knowledge structure in long-term memory. The objects also provide services to create,
retrieve and remove links between knowledge structures in accordance with the valid
relationships between knowledge structure types as defined in the RORE knowledge
view.

In general, the LTMM interfaces use these services to retrieve the contents of a
particular long-term memory knowledge base, and then the LTMM interface displays
the retrieved knowledge structures to the user in an accessible visual form. The user
can then manipulate these knowledge structures within the LTMM itself. The LTMM
on request from the user then passes the updated knowledge structures back to the
Ontology Management Layer which in turn updates the knowledge base file. The
LTMM, then, acts simply as a workpiece editor [Jac01b] for creating and editing long-
term memory knowledge bases.

The Process Modeling Assistant enables the knowledge engineer to add require-
ments engineering procedures to a long-term memory knowledge base. Process mod-
eling in RORE provides a structure within which a particular stage of model refine-
ment can be situated so as to support efficient retrieval of knowledge structures dur-
ing design-by-reuse. The purpose of process modeling in the Knowledge Engineer-
ing viewpoint, therefore, is to establish the procedural structure within which specific
reusable knowledge structures can be situated.

Figure 4.2 shows the “Process Manager” tab within the LTMM.
In RORE, process models consist of sequences of Phases and Activities which are

interlinked by sequence and decomposition links. Sequence links connect behavioural
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Figure 4.2: The prototype of the Process Modeling Assistant

units of the same type (e.g. Phase-to-Phase) and imply a temporal ordering of process,
whereas decomposition links show how a single Phase decomposes into multiple Ac-
tivities. Activities also stipulate the type of model which they require as input, and the
type of model which they produce as output.

The Process Modeling Assistant allows the knowledge engineer to create a new
Phase by specifying its name. Similarly, the knowledge engineer can create a new Ac-
tivity by specifying its name. However, the knowledge engineer must also indicate the
Phase to which the Activity will belong, since all Activities must be part of one Phase.
The Process Modeling Assistant passes the details of the new Phase or Activity object
to the Ontology Management Layer, invoking the “Create Phase” or “Create Activ-
ity” service respectively. The Ontology Management Layer will then update long-term
memory by creating the new objects as specified.

There is a second step when creating a new Activity: the knowledge engineer must
also stipulate the input and output model types over which the new Activity should op-
erate. The knowledge engineer does this by selecting from the model types which are
already defined in long-term memory. The Process Modeling Assistant then invokes
the “Add Input Model Type” and “Add Output Model Type” messages on the Ontology
Management Layer as appropriate.

Finally, to remove a Phase or an Activity the knowledge engineer selects from a
list of defined Phases or Activities the object which is to be removed. The Process
Modeling Assistant invokes either “Remove Phase” or “Remove Activity” message
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on the Ontology Management Layer as appropriate, passing the name of the Phase or
Activity to be removed, and the Ontology Management Layer then updates long-term
memory accordingly.

Figure 4.2 illustrates the creation of the Machine Specification phase, described in
Section 3.7.1. In Figure 4.2 the phase has been named “SpecifyMachine” and has been
elaborated further than in the previous chapter: in this chapter, the SpecifyMachine
phase comprises four activities describing the process of creating a Jackson Problem
Model. The decomposition of the SpecifyMachine phase is given, here, at a finer
level of granularity than was given in the exemplar in Section 3.7.1. In Figure 4.2,
the SpecifyMachine phase is decomposed into four activities (arranged in alphabetical
order): SpecifyDomains, which is the process of producing an initial Context Model
by stipulating the given sub-domains within the problem domain; SpecifyProblem,
which is the process of elaborating the initial Context Model by stipulating the Ma-
chine and Requirement facts for the problem domain; DecomposeProblem, which is
the process of producing a Problem Model by decomposing the Problem Model into
a set of elementary problem frames (see [Jac01b]); and ComposeSolution, which is
the process of defining a solution for each elementary sub-problem in the Problem
Model and then recomposing its solution. Each of these activities is defined in terms
of the Model Types it transforms and produces: SpecifyDomains produces a Context
Diagram from scratch; SpecifyProblem elaborates one context diagram into another;
DecomposeProblem produces a Problem Model from a Context Diagram; Compos-
eSolution produces an unspecified model type (because the process is not yet well-
understood in Jackson’s Problem Frames approach) from a Problem Diagram. The
SpecifyMachine phase is hilighted, and so each of these activities is displayed in the
central column. The SpecifyProblem activity is also hilighted and the Source and
Target Model Types are displayed for the SpecifyProblem activity (although in the
Figure, these have not been specified): the right hand column shows that no Source
Model Type has yet been given for the activity, but that the Target Model Type has
been selected as the ContextDiagram.

The Metamodeling Assistant in RORE allows knowledge engineers to adapt the
RORE approach to support the production of a range of different requirements model-
ing notations. This is one way in which RORE aims to improve on the generality of
previous reuse frameworks (e.g. the Domain Theory and POSE). This thesis concludes
that this approach enabled RORE to achieve a high level of generality which is greater
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than that of the Domain Theory, and close to (if not quite in line with) that of POSE.
The Metamodeling Assistant provides four sub-components which support the process
of defining new model types:

• The Model Type Manager supports the aggregation of new model types from
collections of fact types;

• The Chunk Type Manager similarly supports the aggregation of new model
chunk types from collections of fact types;

• The Fact Type Manager, which is further divided into the simple and com-
plex fact type managers, supports the definition of primitive fact types and the
aggregation of those primitives into arbitrarily complex fact types;

• The Property Manager allows the knowledge engineer to specify the properties
through which complex fact types aggregate primitive fact types.

An overview of these knowledge structures (Model and Chunk Types, Fact Types
and Property Types) is given in Section 3.7.1.

Figure 4.3 illustrates the model-type manager.

Figure 4.3: The Model Type Manager tab allows users to specify Model Types and the
Fact Types which they aggregate

The Metamodeling Assistant allows the knowledge engineer to define new Model
Types by aggregating fact types. Fact Types are aggregated through knowledge struc-
tures known as “Fact Type Aggregations” which provide a layer of indirection between
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Model and Fact Types. To create a new Model Type the knowledge engineer specifies
the name of that Model Type. The “Create Model Type” message is then invoked
on the Ontology Management Layer which updates long-term memory with the new
Model Type.

Fact Type Aggregations can then be added to the new Model Type by specifying
an alias for the aggregation. Fact Type Aggregations have an alias which corresponds
to the name that is used for a particular type of fact within the context of a particular
modeling language (e.g. object-like structures may be called “Objects” in one language
and “Entities” in another). The “Create Fact Type Aggregation” message is invoked
on the Ontology Management Layer to add the aggregation to long-term memory, and
to link it to the selected Model Type. Finally, the knowledge engineer should select
the Fact Type which the Fact Type Aggregation will link to the Model Type. This
is done by choosing an existing Fact Type from a list. The Modeling Assistant then
passes the name of the chosen Fact Type Aggregation and Fact Type to the Ontology
Management Layer which links the two knowledge structures in long-term memory.
This completes the link from the Model Type to the Fact Type.

Model Chunk Types are created through a very similar process. The only sig-
nificant difference is that Model Chunk Types specify a cardinality on each aggre-
gated Fact Type. This provides a mechanism for constraining the granularity of Model
Chunks.

Figure 4.3 illustrates the creation of the ContextDiagram and ProblemDiagram
Model Types in RORE using the Long-Term Memory Manager. Both Model Types are
composed of sets of Fact Types through Fact Type Aggregations. The Fact Type Ag-
gregations allow equivalent Fact Types to be given different names in different Model
Types (although the name of a Fact Type Aggregation may be the same as the name
of the Fact Type which it aggregates). In the illustration above, the ContextDiagram
is hilighted and so the Figure also shows the Fact Types which it aggregates: all of
the Fact Types which are contained within a Problem Diagram as stipulated in Section
3.4, save for the Requirement Fact Type which is a part of the problem and not of the
context. A specific Context Diagram may, therefore, comprise facts of any of these
types and these facts may be related through the properties which are defined for each
fact type.

In order to create new Model and Chunk Types, therefore, a set of Fact Types
must already have been defined in long-term memory. In the RORE prototype this
is done through the “Fact Type Manager”. This tab is decomposed into two sub-tabs
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to represent the different structures of Simple and Complex Fact Types. Figure 4.4
illustrates the Complex Fact Type Manager tab.

Figure 4.4: The prototype Complex Fact Type Manager tab

The process for specifying both Complex and Simple Fact Types is somewhat sim-
ilar. Fact Types in either case are created by specifying the name of the new Fact Type.
This is then passed, in the usual way, to the Ontology Management Layer which creates
the Fact Type in long-term memory. The different lies in how the two classes of fact
type are defined. Once a Simple Fact Type has been created in long-term memory, the
knowledge engineer stipulates the primitive data type which the Fact Type will have as
its value type. Again, the Ontology Management Layer is invoked to create this link in
long-term memory.

By contrast, Complex Fact Types are defined in terms of aggregations of Property
Types. In the Complex Fact Type Management tab the knowledge engineer can as-
sociate Property Types with Complex Fact Types by choosing one of each. A call is
then made to the Ontology Management Layer which updates long-term memory to
create this link. Similarly, invoking the “Remove Property Type from Complex Fact
Type” service on the Ontology Management layer, and passing a linked Complex Fact
Type and Property Type will update long-term memory to unlink the two knowledge
structures.

Property types can be added using the property type manager. Once a property type
has been added to long-term memory, it can be associated with or disassociated from
a complex fact type.
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Figure 4.5: The Property Type Manager tab allows users to specify property types,
indicating the type of value they reference

Figure 4.5 shows the property type manager. Property types are specified as fol-
lows. New property types are created by specifying the name of the property type
which is passed to the Ontology Management Layer for addition into long-term mem-
ory. Property Types have a value type, which is the Fact Type which the Property Type
has as its range. The knowledge engineer selects, for a given Property Type, the value
type, and the Metamodeling Assistant passes the details of this link to the Ontology
Management Layer which writes it to the knowledge base.

Figures 4.4 and 4.5 show an example of the use of the Long-Term Memory Man-
ager to specify Complex Facts and the Properties through which those Complex Facts
are related to one another. Four Property Types are defined in the Property Type
Manager shown in Figure 4.5. These are: “Controls”, the value of which is of type
Phenomenon; “Describes”, which has the value type Domain; “Exhibits”, which has
the value type Phenomenon; and “Satisfies”, which is selected in the Figure and has
the value type Requirement. Figure 4.4 shows the Complex Fact Type Manager with
the Machine Fact Type highlighted. The central column of the Complex Fact Type
Manager shows the four Property Types which have been defined in long-term mem-
ory (Controls, Describes, Exhibits and Satisfies). The right-hand column shows those
Property Types which have been assigned to the Machine Fact Type: Controls, in-
dicating that a Machine is linked to a set of Phenomenon facts through the Controls
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relationship; and Satisfies, which links a Machine to a Requirement. Using the Com-
plex Fact Type Manager and the Property Type Manager, then, the Machine Fact Type
(as it is specified in Figure) 3.3 has been specified.

Model and Chunk Types, Fact Types and Property Types can each be removed
from long-term memory by passing the name of the knowledge structure which is to
be removed to the Ontology Management Layer and invoking the correct “Remove”
service for that knowledge structure type.

4.3.1.1 The Reuse Library Manager

The Reuse Library Manager in RORE is designed to support knowledge engineers in
formalising and specifying reusable knowledge structures within long-term memory.
As is the case for the other aspects of the LTMM, specialised user interfaces are pro-
vided to support the definition of each of four types of reusable knowledge structure:

• The Analysis Rule Editor supports the definition of Analysis Rules which are
knowledge structures that define the conditions against which the quality and
completeness of requirements Models are assessed;

• The Model Chunk Editor supports the definition of Model Chunks which are
declarative knowledge structures comprising sets of Facts which can be inte-
grated into a requirements Model either as-is, or after some reification;

• The Production Script Editor aids the definition of Production Scripts which
comprise sequences of transformations over requirements Models and can be
executed automatically during requirements engineering;

• The Elicitation Stimulus Editor facilitates the definition of Elicitation Stim-
uli through which requirements engineers can be prompted to elicit information
manually in order to refine requirements models.

The Reuse Library Manager, like the LTMM in general, provides a thin wrapper
around the Ontology Management Layer in order to support the construction of a reuse
library as part of RORE’s long-term memory.

The Analysis Rule Editor supports the knowledge engineer in the task of defining
Analysis Rules (see Section 3.7.1) to support the Analysis task (see Section 3.6.3).
Analysis Rules are used to reason over requirements models in order to determine the
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quality and completeness of those models. As such, Analysis Rules are central to
determining the goals that should be acquired in each cycle of the Requirements Engi-
neering process. The task from the Knowledge Engineering perspective, therefore, is
to utilise the LTMM to formalise Analysis Rules into LTMM.

The Analysis Rule tab is shown in Figure 4.6.

Figure 4.6: The Analysis Rule Editor tab

Analysis Rules are added to long-term memory in the usual way: the knowledge
engineer specifies the name of the rule, and the Analysis Rule Editor passes this onto
the Ontology Management Layer which in turn writes it to long-term memory. Analy-
sis Rules also have three other major properties: an Enforced Fact Type, an Antecedent
and a Consequent. The Enforced Fact Type indicates the kind of information which the
Analysis Rule checks for, and its value is chosen from a list of fact types which are de-
fined in long-term memory. The Antecedent of the Analysis Rule stipulates the main
condition of the rule, and the Consequent specifies the Boolean value which should
be returned in the event that the rule holds true over a requirements model. Both the
Antecedent and Consequent are input manually by the knowledge engineer. Once the
knowledge engineer has specified values for each of these attributes of the new Analy-
sis Rule, they are passed down to the Ontology Management Layer which updates the
Analysis Rule record in long-term memory.

Figure 4.6 shows the Analysis Rule Editor populated with a number of sample
Analysis Rules for assessing the quality of Jackson Problem Models. The rules de-
termine whether or not facts have been specified for each of the four main fact types
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which is defined by the Jackson Problem Model: Domain, Phenomenon, Machine and
Requirement. The selected rule (RequirementSpecified) verifies that at least one Re-
quirement Fact has been specified and determines the completeness, or otherwise, of
a Problem Model accordingly. In Figure 4.6, the list on the left-hand side of the in-
terface displays all of the defined Analysis Rules with the RequirementSpecified rule
hilighted. The right-hand column of the interface provides components for defining
the parameters of an Analysis Rule. The RequirementSpecified rule, having been se-
lected, is shown here. It is not currently classified by an Index Description (which
defines meta-data, used during retrieval), but has both an Antecedent and a Conse-
quent defined. The Antecedent in this case (which is partially shown) simply checks
that no Requirement Fact has been specified. The Consequent has been set to false,
indicating that if the Antecedent condition is true, the rule will be considered to have
failed. This illustrates the manner by which a user can manipulate Analysis Rules.

The Model Chunk Editor enables the knowledge engineer rapidly to formalise
Model Chunks in long-term memory. Model Chunks represent units of declarative
knowledge which can be either integrated as-is into a target model, or else reified and
then integrated. As such, Model Chunks offer a means of rapidly refining a require-
ments model by reuse.

The Model Chunk Editor is shown in Figure 4.7.

Figure 4.7: The Model Chunk tab

The Model Chunk Editor relies predominantly on the Chunk Manager component
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in order to manipulate chunks. Accordingly, when the knowledge engineer indicates
that they wish to create a new Model Chunk in long-term memory, the Chunk Manager
is displayed. The output of the Chunk Manager will be a new (or reified) Model Chunk,
which the Model Chunk Editor passes to Ontology Management Layer. The Ontology
Management Layer accordingly updates long-term memory with the new (or reified)
Model Chunk.

Figure 4.7 illustrates the Model Chunk Editor populated with five Model Chunks in
the left-hand list which correspond to Jackson’s five elementary problem frames: Re-
quired Behaviour; Commanded Behaviour; Information Display; Simple Workpiece;
and Transformation. Each of these model chunks captures the domain structure and
the requirement for the element problem frame, and so, accordingly, they are defined
to instantiate the Problem Frame chunk type. From the Model Chunk Editor, the user
can opt to view the Facts for the currently selected Model Chunk, Edit the Chunk or
Remove the Chunk.

The Production Script Editor facilitates the process of defining new Production
Scripts (see Section 3.7.1) in long-term memory. Production Scripts provide a proce-
dural alternative to the declarative reuse offered by Model Chunks. Whereas Model
Chunks represent the product of some prior reasoning process, Production Scripts
represent the reasoning process itself: they describe fine-grained procedures which
encapsulate transformations over requirements models. The Knowledge Engineering
perspective is concerned with creating and specifying Production Scripts.

The Production Script Editor is displayed in Figure 4.8.

Production Scripts are complex knowledge structures which comprise several sig-
nificant features. Production Scripts are defined initially by specifying a name for the
Production Script, and an input query. Once these have been specified, the Produc-
tion Script Editor invokes the Ontology Management Library in order to write the new
Production Script to long-term memory.

This done, the knowledge engineer can now define the body of the Production
Script. Each Production Script consists of multiple Production Rules, sequenced in a
particular order. Each Production Rule comprises a name, an antecedent and a con-
sequent. Within the Production Script Editor, the knowledge engineer can add a new
Production Rule to the current Production Script by specifying each of these attributes.
The Production Script Editor passes to the Ontology Management Layer the name, an-
tecedent and consequent, as well as the name of the Production Script to which the rule
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Figure 4.8: The Production Script Editor

should be linked. The Ontology Management adds the Production Rule to long-term
memory and creates the link between the Production Rule and the Production Script of
which it is a part.

The knowledge engineer can also remove both Production Rules and Production
Scripts from long-term memory using the LTMM. The knowledge engineer does this
by choosing the Production Rule or Production Script to remove, and the LTMM then
passes the name of the to-be-removed knowledge structure to the Ontology Manage-
ment Layer. The Ontology Management Layer updates long-term memory accord-
ingly.

Figure 4.8 illustrates the Production Script Editor as populated by a single Produc-
tion Script: the GenerateMachine script, which was described in Section 3.6.3, as one
possible way for producing a Machine Fact to satisfy the Information Requirement that
all Problem Models have such a Fact. The name of the script is stipulated in the textbox
at the top of the editor. Immediately below this is a textbox to specify an Input Query,
which is the set of facts — selected from the Source Model — which the Production
Script will transform in order to produce the new facts to satisfy an Information Re-
quirement. In the exemplar, shown in the illustration, an Input Query is specified to
retrieve from the Source Model the Domains which the Machine will operate over. A
single Production Rule (“ProduceMachine”) is defined for the GenerateMachine script
and is listed in the list on the left of the Production Script Editor. The name of the
rule is stipulated in a textbox to the right of this list. The Antecedent of the rule is
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given immediately below the Rule Name textbox. The Antecedent of a Production
Rule retrieves, from the results of the Input Query, the specific set of facts which the
individual rule will transform. Because there is only one rule in the GenerateMachine
script, all facts which were retrieved by the Input Query are to be transformed by that
one rule, and so the Antecedent of the ProduceMachine rule is the same as the Input
Query of the script as a whole. This is a condition which is particular to the exemplar
script and is not necessarily true of Production Scripts, or Rules, in general. Finally,
the Consequent of the ProduceMachine rule is defined in the textbox below the An-
tecedent. In this case, it stipulates that the output of the ProductionRule is to be a
single fact, of type Machine, which is produced by simply generating a new Machine
Fact and associating it — via the “Controls” property — with the Phenomena for all
Domains which were retrieved by the Antecedent of the rule.

The Elicitation Stimulus Editor allows the knowledge engineer to define new Elici-
tation Stimuli. Elicitation Stimuli are reusable knowledge structures representing ques-
tions or prompts (stimuli) which can be put to a requirements engineer to prompt them
manually to provide new information to be integrated into a model. The Elicitation
Stimulus thus complements the declarative and procedural reuse which is offered by
Model Chunks and Production Scripts respectively. The Knowledge Engineering per-
spective is concerned with defining new Elicitation Stimuli in long-term memory.

Figure 4.9 shows the Elicitation Stimulus editor.

Figure 4.9: The Elicitation Stimulus Editor

This allows the knowledge engineer to create a new Elicitation Stimulus by specify-
ing the name of the stimulus, and the stimulus question itself. The knowledge engineer
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must also set the response structure for the Elicitation Stimulus. To do this, the knowl-
edge engineer chooses from a list the Model Chunk Type which best characterises the
structure of the response which should be supplied by requirements engineers in re-
lation to the stimulus. For convenience, the Elicitation Stimulus Editor displays the
structure of each Model Chunk Type to the knowledge engineer as they select a re-
sponse type. Once the knowledge engineer has made their choice the name of the
stimulus, the stimulus question and the response type are passed to the Ontology Man-
agement Layer which writes the new Elicitation Stimulus to long-term memory.

Knowledge engineers can also remove Elicitation Stimuli from long-term memory
by selecting the name of the Elicitation Stimulus within the LTMM. The LTMM then
invokes the “Remove Elicitation Stimulus” service of the Ontology Management layer,
passing the name of the selected Elicitation Stimulus, and the Ontology Management
Layer updates long-term memory accordingly.

Figure 4.9 shows the Elicitation Stimulus Editor populated with a single Elicitation
Stimulus (“DomainStimulus”). This stimulus is described, in Section 3.6.3 as one pos-
sible way to generate the Given Domains which comprise the initial Context Model in
the Package Router example. The DomainStimulus is an example of a Chunk-Based
Stimulus: a type of Elicitation Stimulus which elicits a Model Chunk as a response.
The name of the stimulus is given in the textbox at the top of the Editor. Imme-
diately below this is a second textbox for stipulating the Elicitation Stimulus itself.
This stimulus is a human-readable question which a requirements engineer can either
present directly to stakeholders, if the requirements engineer believes the stakeholder
will comprehend the question directly, or which the requirements engineer can use as
the basis for a more creative approach to eliciting from stakeholders the information
which the stimulus requests. Finally, the Editor offers the knowledge engineer the
opportunity to determine which type of Model Chunk the Elicitation Stimulus should
request as a response, and this determines the kinds of Facts which the requirements
engineer will need to elicit from the stakeholder in order to satisfy the stimulus.

4.3.2 The Requirements Task Assistant

The Requirements Task Assistant is designed specifically to provide direct tool support
for each of the Requirements Subtasks describes in Chapter 5, and the various lower-
level procedures on which the Requirements Tasks depend. As such, the Requirements
Task Assistant directly supports the Requirements Engineering perspective on RORE.
The Assistant operates over a working memory knowledge base which comprises, in
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addition to contextual information (such as details of the current Requirements Engi-
neering Task), a source and a target model. The source model is the input model, and
the target model is the model which is to be refined.

Each RORE Requirements Engineering Task is supported by a tab within the Re-
quirements Task Assistant. To use the Requirements Task Assistant, the requirements
engineer should work their way through each of the tabs in the order shown. Tabs are
laid out in the order in which they should be applied in accordance with the RORE
requirements engineering process (see Section 3.6.3). In general, these tabs provide
support for the RORE reuse tasks, and each tab is customised to the particular re-
quirements task which that tab supports. The prototype thus guides the requirements
engineer through the process in an intuitive fashion.

The Requirements Task Assistant offers three major features: support for each of
the Requirements Engineering tasks defined by RORE (see Section 3.6.3).

• The Analysis Assistant supports the utilisation of Analysis Rules to enact both
Completeness and Quality Analysis;

• The Inference Assistant supports the utilisation of Model Chunks to enact
Chunk-based Inference, and Production Scripts to enact Rule-based Inference;

• The Elicitation Assistant supports the utilisation of Elicitation Stimuli to enact
Elicitation.

Section 3.3.3 described the influence of Clancey’s heuristic classification [Cla85]
on the design of each of the RORE Requirements Engineering procedures. Each of
these procedures consist of two major steps (Matching and Firing), while Inference and
Elicitation also comprise a third step (Integration). The Requirements Task Assistant
therefore provides three additional components to support these lower-level operations:

• The Matching Engine supports the retrieval of context-relevant knowledge struc-
tures from long-term memory to enable enactment of the current Requirements
Engineering Task;

• The Production Engine is responsible for the automatic execution of Produc-
tion Scripts in order to produce a set of output Facts;

• The Integration Engine supports the integration into the target model of the
Facts which are produced on each Analysis-Action cycle.
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In general each of the major Requirements Engineering functions which are pro-
vided by the Requirements Task Assistant is implemented by composing these lower-
level functions, in addition to the services provided by the Presentation and Ontology
Management Layers, into the three (or two, in the case of Analysis) step process:

1. Matching of an appropriate reusable knowledge structure to support the enact-
ment of the current Requirements Engineering Task (e.g. Analysis Rules to
support Analysis) in the current modeling context. This is performed by the
Matching Engine;

2. Firing of the retrieved reusable knowledge structure using an appropriate lower-
level service (e.g. by using the Production Engine to support the firing of Pro-
duction Scripts);

3. Integration (for Inference and Elicitation, the “productive” tasks) of the resul-
tant Facts into the target model through the use of the services provided by the
Integration Engine.

In order to illustrate the application of the Requirements Task Assistant to a con-
crete example, imagine an initial version of the Problem Model — presented in Section
3.4 — in which the Machine and Requirements Facts have not yet been specified. The
following sections describe the different features of the Requirements Task Assistant
and illustrate how they might be applied to refining this Problem Model by producing
and appending appropriate Machine, and Requirements, facts.

The Analysis Assistant supports the requirements engineer in enacting both Com-
pleteness and Quality Analysis (see Section 3.6.3): the first steps in the Analysis-
Action cycle. Completeness Analysis performs an initial check to determine whether
or not the target model requires further refinement, while Quality Analysis is intended
to check further in order to determine in what way the target model needs to be refined.

One tab is provided each for Completeness Analysis and Quality Analysis, al-
though the structure of both tabs is broadly similar. Figure 4.10 shows the Complete-
ness Analysis tab.

To perform Analysis of either kind the requirements engineer first opts to retrieve
from long-term memory an appropriate set of Analysis Rules. To do this, the Analysis
Assistant passes the modeling context (the source model, target model and the current
Analysis Task Type) to the Matching Engine, which will return a set of Analysis Rules
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Figure 4.10: The Requirements Task Assistant’s Completeness Analysis tab

which are appropriate to that context. These will be displayed to the requirements
engineer in the appropriate tab.

The requirements engineer should then use the Analysis Assistant to fire each Anal-
ysis Rule in turn. It is at this point that the two types of Analysis are distinguished.
In the case of Completeness Analysis, the requirements engineer must fire all of the
retrieved Analysis Rules. If an Analysis Rule was retrieved which the target model
does not satisfy then the target model is determined to be incomplete and the require-
ments engineer should progress to Quality Analysis. The target model must, therefore,
satisfy all of the retrieved Analysis Rules in order to be considered complete. The
Completeness Analysis tab indicates whether or not the target model has passed all of
the Analysis Rules that were fired thus far (the Quality Analysis tab does not).

During Quality Analysis the requirements engineer again performs Matching. The
requirements engineer then fires each retrieved Analysis Rule in turn until an Analysis
Rule fails. When this occurs, the Analysis Rule tab generates an “Information Re-
quirement” which indicates the condition which the target model fails to satisfy and,
therefore, the goal of the next Action cycle.

The Analysis Assistant automatically evaluates Analysis Rules at the request of
the requirements engineer. To do this, the Analysis Assistant uses the services which
are provided by the Ontology Management Layer. Analysis Rule antecedents are
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expressed as Boolean conditions over the target model, and the Ontology Manage-
ment Layer provides a service which is capable of directly evaluating these conditions
against a particular model. The Analysis Assistant therefore fires an Analysis Rule by
passing both that rule and the target model to the Ontology Management Layer.

This process can be illustrated by reference to the incomplete Package Router Prob-
lem Model which was introduced above. Applying the Completeness Analysis Assis-
tant to the Package Router model, the requirements engineer first chooses to “Retrieve
[Analysis] Rules”. This, as illustrated in Figure 4.10, would retrieve four Analysis
Rules which have previously been defined by a knowledge engineer: DomainSpeci-
fied; DomainCharacterised; MachineSpecified; and RequirementsSpecified. In order
for the Problem Model to be complete in the terms of Jackson’s Problem Frames ap-
proach, or at least in the terms of the particular formalisation of the approach in the
current exemplar, the Problem Model must satisfy all of these Analysis Rules. The
requirements engineer must, therefore, fire each rule in turn until either all rules have
been satisfied or a rule fails when tested against the Problem Model. Suppose, then,
that the Problem Model in its initial state — as stated above — contains Domain and
Phenomena facts, and that these are related, but that the Model does not comprise —
at this stage — either Requirements or Machine facts. In this case, the requirements
engineer fires first the DomainSpecified rule, and then the DomainCharacterised rule,
by selecting each in turn from the list in the Completeness Analysis Assistant and then
pressing the “Fire Selected Rule” button. Both of these rules fire and, because the cur-
rent Problem Model contains both Domain and Phenomena facts, both of these rules
are found to have been satisfied. However, the Problem Model cannot at this point be
determined to be complete, since not all rules have yet been fired, and so the require-
ments engineer additionally fires the MachineSpecified rule. This rule is not satisfied,
because the Problem Model in its current state does not contain any Machine facts, and
so the Problem Model is determined to be incomplete since it does not satisfy all of the
rules which were retrieved. At this point, the Quality Analysis Assistant is activated
and the requirements engineer progresses to this stage of the process.

Within the Quality Analysis Assistant — which is similar in structure to the Com-
pleteness Analysis Assistant, save that it does not offer a conclusion regarding the com-
pleteness of the Target Model (in this case, the Problem Model) — the requirements
engineer again chooses to “Retrieve Rules”. In the exemplar long-term memory knowl-
edgebase, Quality and Completeness Analysis rules are not distinguished, and so the
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same four Analysis Rules are retrieved: DomainSpecified; DomainCharacterised; Ma-
chineSpecified; and RequirementsSpecified. The requirements engineer recalls from
Completeness Analysis that the MachineSpecified rule was not successfully satisfied
by the Package Router Problem Model, and so chooses to refire this rule within Quality
Analysis. Again, the rule fails but this time an Information Requirement is generated as
per the process for enacting Quality Analysis. The Information Requirement stipulates
that the requirement engineer should now progress to the Action stage of the Analysis-
Action cycle in order to produce one or more Machine facts which are to be integrated
into the Problem Model in order to represent the Machine that will control the Package
Router system. The Quality Analysis Assistant is now disabled, and the Action tabs
(Chunk-based Inference, Rule-based Inference and Elicitation) are activated.

The Inference Assistant enables the requirements engineer to attempt Inference in
order to satisfy the Information Requirement that was produced by Quality Analysis.
Inference has two sub-tasks. Chunk-based Inference produces new Facts to satisfy an
Information Requirement by reusing and reifying Facts from a Model Chunk. Rule-
based Inference produces Facts by firing Production Scripts over the current modeling
context.

The Inference Assistant provides one tab to support each of these sub-tasks.

Figure 4.11 shows the Chunk-Based Inference tab.

Figure 4.11: The Requirements Task Assistant’s Chunk-based Inference tab
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Figure 4.12 shows the Rule-Based Inference tab.

Figure 4.12: The Requirements Task Assistant’s Rule-based Inference tab

Both Chunk- and Rule-based Inference start with Matching. At the request of the
requirements engineer, the Inference Assistant passes the current modeling context and
the current Requirements Engineering Task Type (Chunk- or Rule-based Inference) to
the Matching Engine. The Matching Engine then returns a set of context-relevant
knowledge structures which are appropriate to the current Requirements Engineering
Task: Model Chunks for Chunk-based Inference or Production Scripts for rule-based
inferences.

The retrieved knowledge structures are displayed to the requirements engineer
through the Inference Assistant. The major visual difference between the two tabs
is that, whereas the Rule-Based Inference tab contains a table in which key attributes
of retrieved Production Scripts are summarised, the Chunk-Based Inference tab shows
only the name of each retrieved Model Chunk. The Chunk-Based Inference tab also
provides an option which utilises the Chunk Manager from the Presentation Layer to
allow the requirements engineer to examine a retrieved Model Chunk before applying
it.

The requirements engineer next selects one of the retrieved knowledge structures to
apply. It is at this point that the two Inference sub-tasks diverge. In the case of Chunk-
based Inference, Model Chunks are applied in the following way. The Chunk-based
Inference tab passes the Model Chunk that was selected by the requirements engineer
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to the Chunk Manager in the Presentation Layer and sets the Chunk Manager to edit
mode. This allows the requirements engineer manually to reify the Model Chunk to
suit the particular context of the target model. This may involve adding additional
Facts, removing extraneous ones, or reifying the names of Facts with domain-specific
names (e.g. changing the name of a “Vehicle” Fact to “Car”). By contrast, Production
Scripts are executed automatically: the Inference Assistant passes both the selected
Production Script and the current Modeling Context to the Production Engine which
executes the Production Script.

Once the selected knowledge structure has been “fired” through the appropriate
mechanism, the product will be a set of newly generated Facts. The final step of
Inference is to Integrate these Facts into the target model. To achieve this, the Inference
Assistant passes the generated facts to the Requirements Task Assistant’s Integration
Engine.

In order to illustrate the use of the Inference tabs in order to satisfy an informa-
tion requirement, consider the exemplar information requirement that was described
in relation to the Analysis Assistant and which mandates the creation of “one or more
Machine facts”. The RORE procedure stipulates that the requirements engineer should
first attempt to satisfy this information requirement by applying Chunk-based Infer-
ence, and so, using the Requirements Task Assistant, the requirements engineer pro-
gresses to the Chunk-based Inference tab. Here, the requirements engineer presses
the “Retrieve Chunks” button and the five Model Chunks, which were defined using
the Model Chunk Editor (see Figure 4.7) and which correspond to the five elementary
Problem Frames, are retrieved. Each elementary Problem Frame does indeed describe
a Machine which will satisfy the requirement that the Problem Frame represents. How-
ever, each elementary Problem Frame also comprises a Requirement fact. The current
Information Requirement stipulates only that a Machine fact should be generated in
the current round of action, and neither requires or prevents the creation of a Require-
ment fact. The requirements engineer must, therefore, use their discretion in order to
determine whether applying a Problem Frame chunk in order to satisfy the Information
Requirement is appropriate at this point. Consider the two possible scenarios.

Firstly, consider the scenario in which the requirements engineer does choose to
apply a Problem Frame to satisfy the Information Requirement for a Machine fact.
The Package Router Problem comprises three elementary problem frames: a Com-
manded Behaviour frame, to capture the ability of the operator to start and stop the
router; a Controlled Behaviour frame to capture the ability of the Machine to route
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packages according to their destination; and an Information Display frame to capture
the ability of the Machine to display misroute information. However, at the centre of
the Package Router problem, just one Machine is required to perform all three tasks.
The requirements engineer may, therefore, apply any one of the three elementary prob-
lem frames to generate the Machine in the current round of action: Commanded Be-
haviour, Controlled Behaviour or Information Display. In the event, the requirements
engineer chooses to deal with the highest priority requirement first (the routing of pack-
ages) and thus applies the Controlled Behaviour problem frame in the current round
of iteration. The requirements engineer thus selects the Commanded Behaviour prob-
lem frame, and presses the “Select and Adapt Selected Chunk” button. At this point,
the Commanded Behaviour frame is displayed in a Model Chunk Manager instance
which allows them to adpat the Commanded Behaviour Problem Frame by reifying
the generic labels which are attached to the Machine and Requirement facts of the
elementary Commanded Behaviour for the Package Router scenario, as shown in Fig-
ure 3.4. Having completed this task, all of the Domain, Phenomena, Machine and
Requirements facts from the adapted Chunk are made available by the Requirements
Task Assistant to the Integration tab so that the Information Requirement can be satis-
fied. In this case, a Machine Fact will indeed have been added to the Package Router
model by the end of the Action round, but a Requirement fact will also have been added
and so this course of action will have advanced the Model further than the Information
Requirement intended. RORE leaves it to the discretion of a requirements engineer to
determine whether or not this is appropriate.

Secondly, consider the alternative scenario in which the requirements engineer de-
termines that the Information Requirement should be satisfied strictly — that only a
Machine fact, and no other Facts, should be generated in this round of Action. In
this case, having retrieved Model Chunks from Long-Term Memory, the requirements
engineer finds that no elementary problem frame can strictly satisfy the Information
Requirement in this sense. The requirements engineer thus progresses to the Rule-
based Inference tab where they press the “Retrieve Production Scripts” button. A sin-
gle Production Script is retrieved: the GenerateMachine script, which was described
in Section 4.3.1.1. This fact generates a single Machine fact and assigns it a name
which is derived from Domain Facts that are already defined in the Source Model.
The requirements engineer chooses to fire this rule, which will generate the Machine
fact to satisfy the information requirement, and a single Machine Fact is created with
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the name “PackageRouter RoutingOperator StatusDisplay Machine”. The require-
ments engineer has the option, once the fact has been generated, of adapting this name
further if appropriate. The requirements engineer chooses to rename the Machine fact
to “PackageRouterMachine” and then accepts it for integration into the target model.

The Elicitation Assistant supports the requirements engineer in enacting the “Elic-
itation” Requirements Engineering Task. Elicitation is a single task with no sub-tasks.
It is performed only in the event that no Model Chunk or Production Script could be
retrieved in order to satisfy the current Information Requirement. Figure 4.13 shows
the Elicitation Assistant.

Figure 4.13: The Requirements Task Assistant’s Elicitation Assistant

Elicitation, as with all Requirements Engineering actions in RORE, begins with
Matching. The Elicitation Assistant passes the current Modeling Context to the Match-
ing Engine, and indicates that Elicitation Stimuli are required. The Matching Engine
returns a set of Elicitation Stimuli to the Elicitation Assistant. These are displayed
to the requirements engineer as a list. The requirements engineer can view the Elic-
itation Stimulus in order to evaluate whether or not it is likely to satisfy the current
Information Requirement.

Having selected an Elicitation Stimulus to which to respond, the requirements en-
gineer is asked to provide their response to that stimulus. The requirements engineer
responds to the Elicitation Stimulus in the form of a Model Chunk. To support this,
the Elicitation Assistant invokes the Presentation Layer’s Chunk Editor which enables
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the requirements engineer to specify the Facts which the Response Chunk will com-
prise. The difference between responding to an Elicitation Stimulus in this way and
applying a Model Chunk during Chunk-based Inference is that in the latter case the
requirements engineer reifies an existing Model Chunk, whereas in the former case the
requirements Engineer specifies the Model Chunk from scratch. Model Chunks which
are defined as responses to specific Elicitation Stimuli are not in the current version of
RORE stored in long-term memory.

Once the requirements engineer has specified and confirmed the Response Chunk,
the Elicitation Assistant passes the Facts which are contained within that chunk to the
Integration Engine so that the new Facts can be integrated into the target model.

If no Elicitation Stimulus could be retrieved to satisfy the current Information Re-
quirement then the RORE process ends at this point, and the requirements engineer will
need to refine the target model manually before loading it back into the Requirements
Task Assistant for further refinement.

In order to illustrate the function of the Elicitation Stimulus in the context of the
Package Router exemplar, consider a scenario which might have arisen were the RORE
approach applied to the Package Router Problem Model at the very start of its develop-
ment. In this scenario, no facts have yet been added to the Package Router Model (it is,
in essence, a blank sheet of paper) and an Information Requirement was generated by
Quality Analysis as a result of the failure of the Model to satisfy the DomainSpecified
rule which stipulates that at least one Domain fact must be specified. Consider also that
the requirements engineer has chosen to adopt a strict interpretation of this information
requirement and so has not chosen to utilise elementary Problem Frame Model Chunks
to satisfy the requirement, and has been unable to satisfy the Information Requirement
by Rule-based Inference because the GenerateMachine production script (the only one
to have been specified by the knowledge engineer) produces Facts of type Machine,
not of type Domain and so cannot satisfy the current Information Requirement.

In this scenario, the requirements engineer will find themselves unable to satisfy
the Information Requirement for at least one Domain Fact by either Chunk- or Rule-
based Inference. Thus, the RORE process stipulates that they should attempt to satisfy
the Information Requirement by Elicitation. The requirement engineer therefore se-
lects the Elicitation tab in the Requirements Task assistant, and presses the “Retrieve
Stimuli” button. Two Elicitation Stimuli are retrieved (as shown in Figure 4.13) Do-
mainStimulus which can be used by the requirements engineer to elicit Domain Facts;
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and PhenomenaStimulus, which can be used to elicit Phenomena Facts. The Informa-
tion Requirement requests the production of a Domain Fact, and so the requirements
engineer selects the DomainStimulus and presses “Fire Selected Stimulus”. The Elic-
itation Stimulus is then displayed to the requirements engineer, requesting them to
specify all of the Given Domains within the application domain. The requirements
engineer, at this point, must use their own discretion and creativity in order to acquire
— in consultation with the stakeholders — the facts which have been requested by
the Elicitation Stimulus. However, in the context of the Package Router scenario they
identify three Given Domains) (as shown in Figure 3.4): RoutingOperator; PackageR-
outer; and StatusDisplay. Using the Chunk Manager which the Requirements Task
Assistant provides for responding to Chunk-based Stimuli, the requirements engineer
enters these three Facts before confirming their response in order to pass the facts to
Integration.

The Matching Engine is responsible for retrieving task- and context-relevant reusable
knowledge structures to the Analysis, Inference and Elicitation Assistants. Each of
these Assistant components utilise reusable knowledge structures to perform the func-
tions for which they were designed. These reusable knowledge structures must be
retrieved from long-term memory. The enactment of a particular Requirements En-
gineering Task using the Requirements Task Assistant is a semi-supervised process
in which the requirements engineer makes the final decision as to which particular
knowledge structure should be applied at any given moment in time. To minimise the
number of reusable knowledge structures that are presented to the requirements engi-
neer at any one moment in time, RORE attempts to retrieve from long-term memory
only those knowledge structures that are most likely to satisfy the task goal in a given
cycle. Identifying those knowledge structures is the task of the Matching Engine.

The Matching Engine achieves this goal in four broad steps, as illustrated in Figure
4.14. The detailed process is described in the following chapter (see Chapter 5).

The first three steps of Matching are “Filtering” procedures which are lightweight
processes designed to remove from the pool of candidate matches the least likely can-
didates using the minimum possible computational resource. The final step - Con-
ditional Matching - aims to seek positive matches between the remaining candidate
structures and the current Modeling Context. Those candidate structures which cannot
be matched are thrown out of the candidate pool. These five steps can be summarised
as follows:



126 CHAPTER 4. DESIGNING THE RORE APPROACH

����

����	
���

���

����	
���

�����������

��������

����������

��������

���	����	�

��������

��
����
	����	

����	
���

Figure 4.14: Summary of the Matching Process

1. Structure Type Filtering is the first step in the Matching process. During this
step, the type of the RORE knowledge structure is evaluated and compared
against the type of Requirements Engineering Task which is being performed.
All knowledge structures which are not appropriate to the task type are removed
from the candidate pool. Knowledge structures are considered appropriate as fol-
lows: Analysis Rules are only appropriate for Analysis; Model Chunks are only
appropriate for Chunk-based Inference; Production Scripts are only appropriate
for Rule-based Inference; Elicitation Stimuli are only appropriate for Elicitation.

2. Task Filtering removes candidates for which the Phase and Activity which are
stipulated by their Index Description does not match the Phase and Activity
which are currently being performed by the requirements engineer.

3. Goal Filtering further narrows the candidate pool by comparing the Index De-
scription of remaining candidates against the source model and the current In-
formation Requirement to ensure both that the source model contains Facts of
the type required as input to the candidate structure, and that the candidate struc-
ture produces the type of Fact which is mandated by the current Information



4.3. THE DESIGN OF THE RORE COMPONENTS 127

Requirement. Candidate structures not satisficing this condition are thrown out
of the pool.

4. Conditional Matching checks sets of detailed conditions - which are defined in
the Index Description of the remaining candidate structures - against the Mod-
eling Context. Two types of matching are supported at this stage. Analogical
Matching [Mai92, Gen83] uses Chunk-based Conditions to determine whether a
candidate structure is applicable to the current context. Chunk-based Conditions
are are specified as part of Index Descriptions in the form of Model Chunks.
Analogical Matching looks for shared structure between the source or target
model on the one hand and a Model Chunk, which is attached to the Chunk-
based Condition, on the other hand. The second form of matching is Rule-based
Matching, which uses Analysis Rules to determine a match between a reusable
knowledge structure and the Modeling Context. During Conditional Matching,
reusable knowledge structures are removed from the candidate pool if their In-
dex Descriptions define just one condition which is not satisfied by the current
Modeling Context.

The result of Matching is, then, a set of reusable knowledge structures which has
been narrowed to contain only those structures which (assuming the knowledge engi-
neer has designed long-term memory effectively) are most likely to resolve the goal of
the current Requirements Engineering Task.

The Production Engine has responsibility for interpreting and executing Produc-
tion Scripts. Production Scripts are one of the four types of reusable knowledge struc-
ture described by RORE. As discussed above, Production Scripts describe reusable
transformations over source and target models. Because following a Production Script
manually would be a laborious and error-prone process, the Requirements Task Assis-
tant executes Production Scripts automatically. This is the function of the Production
Engine.

The Production Engine comprises a hierarchy of objects, each of which corre-
sponds to a construct in the language through which Production Rules are specified
(see Chapter 6). Each object is specialised to support both the parsing of a source
statement into an internal representation of that statement and the execution of that
statement. The Production Engine also provides a number of additional objects which
support memory management during the execution of a production script. Figure 4.15
shows the design of the object structure into which Production Scripts are parsed.
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Figure 4.15: The Internal Design of the Production Engine



4.3. THE DESIGN OF THE RORE COMPONENTS 129

The Production Engine achieve the execution of a Production Script in three major
steps:

1. The Production Engine accepts a Production Script as input. It evaluates each
Production Rule within that Production Script to determine the type of statement
it represents. It then passes the statement to an object of the appropriate type
which parses the Production Rule into its own internal representation. The re-
sult is a hierarchy of objects which mirrors the structure and semantics of the
Production Script itself.

2. The Production Engine then traverses this hierarchy, firing each object in turn.
Each object provides a “fire” operation which, when called, enacts the type of
production operation it represents;

3. The Production Script specifies a value which should be returned from the Facts
which it produces, and once the object hierarchy has been completely traversed,
the Production Engine returns this value to the Inference Assistant.

The Integration Engine allows the requirements engineer to integrate Facts which
are produced or reified through the two productive Requirements Engineering Tasks
(Inference and Elicitation) back into the Target Model. As this chapter has shown,
each of these productive Requirements Engineering Tasks produces new Facts which
aim to satisfy an Information Requirement. In RORE, the refinement of a Model is
achieved either by adding additional Facts to a Model or by replacing existing Facts
with new Facts. These are the two Integration strategies which this thesis will refer to
as Additive and Substitutive Integration respectively.

Figure 4.16 shows a screenshot of the Integration tab.

Integration is achieved by pairing new Facts to existing Facts in the target model.
Facts should be paired if a new Fact refers to the same individual as a Fact in the target
model. The Integration Engine requires that this be done manually by the requirements
engineer. The Integration tab displays to the requirements engineer the Facts that were
produced during the current Analysis-Action cycle, as well as the Facts which the
target model current comprises, and allows the requirements engineer to pair new Facts
with existing Facts.

The rest of the process is fully automatic, and is initiated by the requirements en-
gineer confirming that they have appropriately specified all desired Fact pairs. The
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Figure 4.16: The Requirements Task Assistant’s Integration tab

Integration Engine iterates over these Fact pairs and performs one of two actions de-
pending on the preferred Integration strategy:

• In the case of Additive Integration, the Integration Engine appends the properties
of each new Fact to the properties of its paired target Fact. Any new Facts which
were not paired are simply added as “floating Facts” to the target model: they
will not be related to any existing Fact within the target model;

• In the case of Substitutive Integration, the target Fact is entirely removed from
the target model and the new Fact is inserted into the target model in its place.
The associations in which the original target Fact was involved will be main-
tained. Again, unpaired new Facts will simply be appended to the target model.

Figure 4.16 shows the Integration Management Tab populated with Facts which
were produced by the application of a Problem Frame Model Chunk to satisfy an
Information Requirement to produce a Requirement Fact by means of Chunk-based
Inference. The central “Source Facts” column displays all of the Facts which were pro-
duced by Chunk-based Inference in response to the current Information Requirement,
and many of these Facts have been reified for the Package Router Problem Model. For
instance, the phenomena involved in the Commanded Behaviour Problem Frame have
been named to “PackageManagerStartsRouter” and “PackageManagerStopsRouter”.
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The “PackageManager” Fact represents the operator who commands the PackageR-
outer Machine itself. It should be noted that some of the Facts in the Source Facts list
are duplicates of Facts which are already in the Target Model. Integration, therefore,
does not simply append new Facts to the Target Model, but does so in a logical way
which avoids duplicates. In order to achieve a proper integration, therefore, the require-
ments engineer must pair facts from the Source Fact List and Target Model where facts
in the former duplicate facts in the latter. In the given example, the requirements engi-
neer would pair, for instance, the “PackageManager”, “PackageManagerStartsRouter”
and “PackageManagerStopsRouter” facts in the Source Fact List with the same facts
in the Target List. Once the requirements engineer has specified all appropriate Fact
Pairs, they then press the “Apply Integration” button. The Requirements Task Assis-
tant will then execute the integration algorithm, which appends the child facts of all
Source Facts to the list of child facts of the Target Facts to which those Source Facts
are paired. Unpaired Source Facts are appended directly to the Target Model. Once
this process has been completed, the round of Action is also complete, and the require-
ments engineer returns to the Completeness Analysis tab in order to re-evaluate the
Target Model.

4.3.3 The Presentation Layer

The Presentation Layer is a small library which defines two reusable user interfaces
which enable users to create new instances of RORE knowledge structures. Both in-
terfaces are shared across both the LTMM and the Requirements Task Assistant. As
such, both interfaces cut across the two perspectives of RORE:

• The Chunk Manager provides functionality which enables users easily to cre-
ate new Model Chunks;

• The Fact Manager provides the functionality which enables users easily to de-
fine new Facts of a given type. Because Model Chunks essentially aggregate sets
of Facts, the Fact Manager is utilised primarily through the Chunk Manager.

The Chunk Manager allows the user to define new Model Chunks which instanti-
ate a specified Model Chunk Type. Model Chunk Types aggregate sets of Fact Types.
Model Chunks instantiate Model Chunk Types in the sense that a Model Chunk aggre-
gates a set of Facts such that each Fact instantiates a Fact Type which is aggregate by
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the Chunk Type that the Model Chunk itself instantiates. The Chunk Manager allows
the user to do this easily, and also enforces this constraint.

Figure 4.17 illustrates the Chunk Editor.

Figure 4.17: The Chunk Manager

The Chunk Manager can be invoked in one of two modes. In Edit Mode the user
can both view the Facts which the Model Chunk currently aggregates, and can ma-
nipulate those facts (Create, Update and Delete). In View Mode, all write operations
(Create, Update and Delete) are disabled.

The Chunk Manager can only manipulate a single Model Chunk at a time (the
“Current Chunk”). The Chunk Manager comprises a set of panels each of which is
associated with one Fact Type which the Current Chunk Type aggregates. The Chunk
Manager allows users to add, view, remove and edit Facts for each of these Fact Types.
When the user chooses to view or manipulate a Fact of a given type, the Chunk Man-
ager displays that Fact to the user through an instance of the Fact Manager interface.
The Fact Manager will always be loaded in the same mode as the instantiating Chunk
Manager.

Figure 4.17 shows the Chunk Manager populated with the abstract Commanded
Behaviour Model Chunk. The Chunk Type has been set to “ProblemFrame”, and
this determines the Fact Types which the Chunk will comprise. Collapsible panels
in the “Chunk Facts” segment of the Manager allow the user (requirements engineer,
or knowledge engineer depending on the context within which the Chunk Manager
component is invoked) to add Facts of each type which the Chunk Type comprises. In
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the case of the Problem Frame Chunk Type, the comprised Fact Types are: Domain
(Generic, Biddable, Causal or Lexical); Phenomenon (Symbol; Event or State); Re-
quirement and Machine. The Domain panel is expanded and the two given Domains
which comprise the Chunk Manager have been specified: the Operator Domain, which
represents the operator who issues the commands; and the ControlledDomain, which
the commands affect. Each of these Facts can be edited by hilighting it and pressing an
“Edit Fact” button, which displays the selected Fact in the appropriate Fact Manager
(the Complex Fact Manager for Domain Facts).

The Fact Manager allows the user to define new Facts which can be integrated
either into long-term memory as part of a Model Chunk, or into a target model. The
structure of the Fact Manager mirrors closely the structure of the Fact Type Editor in
the LTMM’s Metamodeling Assistant, providing users with an interface which guides
them through the process of creating a Fact which instantiates a given Fact Type.

The Fact Manager consists of two sub-components for creating and managing
Complex and Simple Facts respectively. Figure 4.18 shows the Complex Fact Edi-
tor.

Figure 4.18: The Complex Fact Editor

Like the Chunk Manager, the Fact Manager can be invoked in one of two modes. In
Edit Mode the user can both view Facts and their associated values, and can manipulate
those Facts (Create and Update). In View Mode, all write operations (Create, Update
and Delete) are disabled.
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The Complex Fact Editor allows users to create Facts which instantiate a Complex
Fact Type. To do this, the Complex Fact Editor must be passed a Complex Fact Type
which the Complex Fact will instantiate. The Complex Fact Editor displays the name
of the Fact Type which the Fact that is currently loaded into the editor (the “Current
Fact”) must instantiate. A new Complex Fact can be created by specifying the name
of the new Fact. The Complex Fact Editor maintains a record of the details of the new
Fact to be returned to its parent component when the editor is closed.

The Complex Fact Editor also displays a list of panels: one for each Property Type
which is associated with the Complex Fact Type which the Current Fact instantiates.
Each of these panels displays a list of all of the Facts which are associated with the
Current Fact via a Property of that Property Type. Users can remove these property
values, or add an additional instance of that Property Type to the Current Fact. Both
operations update the internal record of the attributes of the Current Fact which the Fact
Editor maintains. Because Complex Facts are recursive in nature (they aggregate less
Complex - and ultimately Simple - Facts), choosing to add a new value to the Current
Fact for a particular Property causes a second instance of the Fact Type Manager to be
displayed. Whether or not the Complex or Simple Fact Editor is used to specify the
value of the new Property instance is dependent on the value type of that Property: if
the Property Type has a Simple Fact Type as its value, then the Simple Fact Editor will
be used; conversely, if the Property Type has a Complex Fact Type as its value, then
the Complex Fact Editor will be used.

Figure 4.18 presents the Complex Fact Editor with the Machine Fact (“Editing-
Tool”) from the Simple Workpiece Problem Frame Model Chunk. The type of the fact
is set to Machine, and this determines the panels that are displayed in the Fact Proper-
ties section of the interface. Each collapsible panel within this section corresponds to a
single Property of the Complex Fact Type of the Fact being edited. The Machine Fact
Type has the “Controls” and “Satisfies” Properties which link Machine Facts to Phe-
nomenon and Requirements Facts respectively, and so collapsible panels are displayed
for each of these Properties. The EditingTool Fact has two values defined for the Con-
trols property: “ControlsWorkpiece”, which corresponds to the phenomenon which the
workpiece editor manipulates within the workpiece itself; and “ReceivesUserInstruc-
tions”, which corresponds to the phenomenon by which the workpiece editor receives
instructions from a user. Facts can be added, removed and edited for each of the Prop-
erties of a Complex Fact.

The Simple Fact Editor mirrors the structure of the Simple Fact Type Editor. The
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Simple Fact Type for the Current Fact should be passed to the Simple Fact Editor by
its parent component when it is opened for editing. To create a new Simple Fact, a user
need only specify the name and value of a simple fact. When the Simple Fact Editor is
closed, these details are then passed back to the parent component.

4.3.4 The Ontology Management Layer

At their core, both the LTMM and the Requirements Task Assistant are prototype tools
for manipulating two kinds of knowledge base:

• Long-Term Memory Knowledge-bases which comprises project-independent
and reusable knowledge;

• Working Memory Knowledge-bases which comprises project- and domain-
specific knowledge.

Both kinds of knowledge base are formalised, in the RORE prototype, through the
Web Ontology Language (OWL) [BVHH+04]. OWL was chosen for this task because
it offers rich and flexible support for conceptual modeling, as well as powerful and de-
cidable reasoning support [SPG+07]. Furthermore, the OWL API provides an existing
open-source library (the OWL API [HB11]) for working with OWL ontologies.

The Ontology Management Layer wraps around the OWL API in order to provide
the services which the LTMM and Requirements Task Assistant each require to manip-
ulate and query these knowledge bases. Furthermore, the Ontology Management Layer
provides an interface to these services at a level of abstraction which corresponds to
that of the RORE Knowledge View (see Section 3.7), rather than at the level of generic
OWL constructs. The Ontology Management Layer thus enables the LTMM and Re-
quirements Task Assistant to work with the RORE knowledge bases at precisely the
level of abstraction that they require, which allows both tools to focus on the specific
functionality which they are designed to provide.

The Ontology Management Layer comprises two major components:

1. The Ontology Manager which provides a single interface through which all of
the services of the Ontology Management Layer are exposed;

2. The Ontology Factory provides wrapper objects which support the CRUD oper-
ations for each kind of knowledge structure that is defined in the RORE Knowl-
edge View (see Section 3.7).
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The Ontology Manager provides a single interface through which higher-level lay-
ers can access the services which are provided by the Ontology Management Layer.
The Ontology Manager exposes two major kinds of functionality:

• Basic CRUD [MI83] operations for each type of knowledge structure which is
defined in the RORE Knowledge View;

• Powerful query features to support complex reasoning over RORE knowledge
bases (specifically over working memory).

The RORE prototype does not, itself, implement this functionality but instead pro-
vides a thin wrapper around two open-source libraries which do offer this functionality:

• Basic CRUD operations are implemented using Redmond’s Protg code gener-
ation library [Red12]. This library provides support for the implementation of
factory objects which facilitate the manipulation of OWL ontologies. The RORE
Ontology Factory object is treated as a separate component of the Ontology Man-
agement Layer, but it is accessed from outside the Ontology Management Layer
through the Ontology Manager;

• Querying functionality in the Ontology Management Layer Derivo’s SPARQL-
DL API [Sys12] which provides support for reasoning over and querying of
OWL ontologies through the SPARQL-DL query language [SP07].

The purpose of the Ontology Manager, therefore, is not directly to implement the
functionality required to access and query the RORE knowledge bases since the hard
work is done by the Redmond and Derivo libraries. Instead the Ontology Manager
wraps around these two libraries - which have radically different interfaces - in or-
der to provide a common, intuitive interface through which the services provided by
the Ontology Management Layer as a whole can be accessed. This allows components
that are external to the Ontology Management Layer to work with objects whose struc-
ture mirrors those of the RORE knowledge structures, while encapsulating the specific
mechanisms through which those objects are written to, read from and queried within
RORE’s knowledge bases.

The major services which are exposed by the Ontology Manager accept these wrap-
per objects as input, and return them as output. The Ontology Manager has responsi-
bility for interpreting those messages and routing them to the appropriate library for
the message to be processed.
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The Ontology Factory provides a library of wrapper objects for each of the knowl-
edge structures which is defined by the Knowledge View of RORE. These wrapper
objects support basic CRUD operations for each knowledge structure type in a RORE
knowledge base. The wrapper objects also support the linking of knowledge structures
that are specified within the knowledge base in accordance with the relationships which
are defined between knowledge structure types in the Knowledge View. Figure 4.19
illustrates the wrapper objects which are defined for the reusable knowledge structures
in long-term memory.

Each wrapper object was generated automatically through Redmond’s Protg code
generation plug-in [Red12]. The plug-in produces for each TBox concept in a given
OWL ontology a wrapper object similar to that shown. The resultant wrapper object is
then used to instantiate the TBox concept as an entity in an OWL ABox. The wrapper
objects utilise the OWL API [HB11], which is the de facto standard library for working
with OWL ontologies, to manipulate RORE knowledge bases. Each wrapper object
provides a set of operations which specialise the interface provided by the OWL API
to support manipulation of a given type of TBox concept: in the case of the RORE
Ontology Factory, a RORE knowledge structure. The interface of each wrapper object
is defined exclusively in terms of other wrapper objects, and each wrapper object is
responsible for translating this request into a message which is compatible with the
OWL API.

4.4 Summary

This chapter has introduced the design of RORE and a prototype of that design. The
RORE architecture comprises four macroscopic layers. The Long-Term Memory Man-
agement layer is designed to support the Knowledge Engineering perspective of RORE.
It provides a set of user interfaces which support the knowledge engineer in describ-
ing requirements modeling notations, requirements engineering methods and in build-
ing libraries of reusable requirements knowledge structures. The Long-Term Memory
Management layer is complemented by the Requirements Task layer which supports
the Requirements Engineering perspective. The Requirements Task Assistant provides
a set of user interfaces which support the five Requirements Engineering Tasks which
RORE defines. Each of these interfaces support the requirements engineer in retrieving
and then applying a task-appropriate reusable knowledge structure. For the Inference
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Figure 4.19: Wrapper Objects for Knowledge Structures in RORE Knowledge-bases
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and Elicitation tasks, each of which produce new Facts to satisfy an Information Re-
quirement, the Requirements Task Assistant also provides an interface to support the
Integration of these facts back into the target model.

Both the Long-term Memory Management and Requirements Task layers depend
on two other layers. The first of these - the Presentation Layer - defines two reusable
user interfaces which are shared in common by the Long-Term Memory Management
and Requirements Task Layers. These user interfaces are designed to support the cre-
ation and display of Model Chunks, and both Complex and Simple Facts. The Long-
Term Memory Management and Requirements Task layers also both depend on the
Ontology Management layer which is a thin wrapper around the RORE knowledge
bases in order to provide the ability of manipulate and query those knowledge bases. It
is through the Ontology Management layer that other layers interact with those knowl-
edgebases.



Chapter 5

Reusable Tasks and Procedures for
RORE

5.1 Introduction

This chapter fully specifies the RORE approach to requirements engineering. The
approach utilises four classes of in-built operation such that each class is responsible
for managing a different aspect of the overall process.

These four classes are:

• Control Procedures which are responsible for co-ordinating the overall se-
quence of events and interactions between activities. Control procedures are
also responsible for managing resources, within a RORE session;

• Requirements Tasks represent those activities which are responsible for build-
ing and refining requirements models;

• Reuse Procedures have responsibility for the retrieval and reification of knowl-
edge structures to support requirements tasks;

• Reasoning Strategies are procedures which have been designed to make use
of different kinds of knowledge structure to produce new facts which can be
integrated into a model.

This chapter presents the detailed procedures for each aspect of this approach.

140
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5.2 Requirements Engineering Tasks

Requirements tasks are all of those activities which this research abstracted from exist-
ing requirements literature and which are directly relevant to the process of gathering
requirements about an application domain and building models of both the domain and
the requirements. There are three top-level requirements tasks:

1. Analysis (see Section 5.3) which involves the evaluation of a model in order to
determine the quality of that model and thus the necessity for further refinement;

2. Inference (see Section 5.4), an action which exclusively utilises either procedu-
ral or declarative reuse to produce new information which can be integrated into
a model to refine that model;

3. Elicitation (see Section 5.5), an action which reuses scripts describing dialogue
between the requirements engineer and a stakeholder with the goal of eliciting
new information from that stakeholder. The requirements engineer uses this
script as the basis for further communication with the stakeholder, and formalises
the response according to the response structure given within the script. The
formalised response is the new information which is integrated into the script;

Collectively, these top-level actions form the Analysis-Action cycle described in
the previous chapter. These three actions are executed in a predefined order, in a con-
tinual loop, until it is determined by means of Analysis that the given requirements
model is sufficiently “complete”, as shown in Algorithm 1. The order in which re-
quirements tasks are executed is determined by three sequencing criteria:

1. Acquire information efficiently;

2. Maximise information gain;

3. Prioritise calculation approaches over look-up approaches.

A method that acquires information from memory structures which are directly ac-
cessible to the processor will be more efficient than a method which must acquire infor-
mation from external sources. This is because the latter method will incur overheads,
which will not be incurred by the former method, as a result of the additional infor-
mation transfer operations needed to communicate the necessary information from the
source to the processor. Given this, one can expect that Inference will prove to be more
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Data: Context = An Initialised Modeling Context;
Complete = false;
Failed = false;
Result: Target model refined such that all Analysis Rules satisfied
while not Complete and not Failed do

Context.InformationRequirement = analyse(Context);
if Context.InformationRequirement != null then

Success = infer(Context);
if not Success then

Success = elicit(Context);
if not Success then

log(Context, failed);
Failed = true;

end
end
refreshWorkingMemory(Context);

else
Complete = true;

end
end
Algorithm 1: The Top-Level Procedure for Executing Requirements Tasks

efficient than Elicitation as a means of acquiring information, because both operations
require reusable structures to be retrieved and applied, but Elicitation additionally re-
quires the requirements engineer to initiate a dialogue with a stakeholder to acquire the
desired information. This prediction is given further weight by its consistency with the
common argument in favour of requirements-level reuse, that it will reduce the effort
involved in building good quality requirements documents [Sut02, NZ11].

Two additional criteria which are important in practice when choosing a transfor-
mation to apply to a target model would be:

• The likelihood that a particular transformation will satisfy an information re-
quirement;

• The likelihood that a particular transformation will produce accurate inferences
about the subject of the target model.

These additional criteria address, in brief, the quality of the inferences over a target
model which a particular transformation produces. However, this research did not in
fact apply these criteria in order to sequence the generic requirements tasks in RORE
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because both criteria relate to the subject matter (namely the contents) of a transfor-
mation. Within RORE, the generic requirements tasks are generic precisely because
they assume no inherent knowledge of any particular subject, or application domain,
beyond the formalism through which such knowledge is expressed. Knowledge about
an application domain — and thus about the particular nature of transformations over
a target model — is contained in reusable knowledge structures, and not in the generic
tasks. The generic tasks simply describe procedures for applying those different kinds
of reusable knowledge structure in order to analyse and transform a target model. As
such, no particular generic task is inherently any more, or less, likely to satisfy an in-
formation requirement than any other. What is important, from a quality perspective,
is the contents of the reusable knowledge structure by which that generic task is pa-
rameterised in a given RORE cycle. Accordingly, the quality of inferences which are
produced by a generic task was not a determining factor in the sequencing of those
tasks. Nevertheless, the author of this thesis recognises that the quality of the infer-
ences which are produced by a generic task would be an important consideration when
applying the RORE approach in cases outside of the assumptions which were stipu-
lated in Section 3.2.

Two particular procedures are common to all, or most, requirements tasks in RORE:
the matching procedure and the Integration procedure. The matching procedure (de-
scribed in Section 5.8) retrieves knowledge structures from long-term memory that
satisfy the needs of the current modeling context (“modeling contexts” are specified
in Section 6.4.2 of the next chapter). This is critical to the reuse-oriented nature of
RORE. Integration (described in Section 5.10) is used by both the Inference and the
Elicitation tasks. Integration takes the set of facts produced by productive requirements
tasks (Inference and Elicitation), and either appends them to the target model, or uses
them to replace existing facts within the target model.

5.3 Analysis

Analysis is an evaluative task which does not itself modify any models, but evaluates
models in order to support decisions about what further refinements, if any, are nec-
essary. To achieve this aim, the requirements engineer retrieves Analysis Rules from
long-term memory and tests one rule at a time against the target model. Each rule
should assert some standard which the model should satisfy in order to be complete.
If a model fails an Analysis rule then the implication is that the standard asserted by
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that rule has not been met and an Information Requirement is generated to this effect.
If, however, all retrieved rules are passed during Analysis then the model is deemed
complete and no further refinement is required.

Analysis has two sub-tasks:

• Completeness Analysis is responsible for determining the degree of complete-
ness for a model and thereby deciding whether or not further requirements are
necessary. Completeness is defined in terms of a set of analysis rules, which are
stipulated by the knowledge engineer within long-term memory;

• Quality Analysis is responsible for evaluating the quality of a model against
a set of analysis rules — which have been specified within the KE perspective
— with a view to deciding specifically in what way the model is limited and
thus what kind of refinement should be applied next. The particular metrics
against which the quality of a target model is judged are encoded within the set
of analysis rules by which that model is tested.

These sub-tasks should be performed in this order, in accordance with the proce-
dure described by Algorithm 2, so that Quality Analysis is only performed in the event
that a model is deemed, by Completeness Analysis, to be incomplete.

Data: Context = A Modeling Context;
Complete = false;
Result: Complete AND Null, OR Not Complete AND Information

Requirement Returned
Complete = analyseForCompleteness(Context);
if not Complete then

return analyseForQuality(Context);
else

return null;
end

Algorithm 2: The top-level procedure for Analysis

Although the two sub-tasks are very similar in their structure, they are distinguished
in two regards. Firstly, they are distinguished by the output which they produce. Com-
pleteness Analysis produces a Boolean value indicating the completeness of a model,
whereas Quality Analysis produces an Information Requirement which specifies the
conditions that the next refinement should meet. Secondly, the two sub-tasks draw the
rules on which they are based from two distinct libraries. This allows optimised sets
of rules to be optimised for each of the two tasks.
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5.3.1 Completeness Analysis

During Completeness Analysis, all of the completeness rules retrieved from long-term
memory which are appropriate to the current modeling context are tested one at a time
against the current target model until either a rule fails or there are no more rules to test.
The product of this process is a single decision (yes or no) which indicates whether or
not the model is complete. The model is complete if all were tested and none failed.
The procedure for making this decision is described by the algorithm 3.

Data: Context = A Modeling Context;
Rule = null;
Complete = true;
Result: All rules satisfied and Complete == true
Context.RetrievedStructures = match(Context, AnalysisRules);
while Rule = pop(Context.RetrievedStructures) and Complete do

if not fireAnalysisRule(Rule, Context) then
Complete = false;

end
end
return Complete;

Algorithm 3: The procedure for performing Completeness Analysis

5.3.2 Quality Analysis

If, and only if, the model is not complete, then the requirements engineer next performs
Quality Analysis. To perform Quality Analysis, the requirements engineer retrieves
all relevant quality rules from long-term memory which are relevant to the current
modeling context. As in Completeness Analysis, these are tested on at a time against
the current target model until either a rule fails or there are no further rules. In the
event that a rule fails, the requirements engineer produces an Information Requirement
according to the procedure described in Section 5.6.2. If, however, all retrieved rules
are fired without any rule failing, then it is assumed that the completeness rules were
insufficiently well-defined and that the model is, in fact, complete. That being the case,
the requirements engineer notes this case, and terminates the Analysis-Action cycle.

The procedure for Quality Analysis is described by Algorithm 4.
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Data: Context = A Modeling Context;
Context.RetrievedStructures = match(Context, AnalysisRules);
Rule = null;
InformationRequirement = null;
Result: Context.InformationRequirement is not null
Context.RetrievedStructures = match(Context, AnalysisRules);
while Rule = pop(Context.RetrievedStructures) AND InformationRequirement
== null do

if not fireAnalysisRule(Rule, Context) then
InformationRequirement = constructInformationRequirement(Rule)

end
end
return InformationRequirement

Algorithm 4: The procedure for Quality Analysis

5.4 Inference

Inference is the first of two productive actions defined within RORE. The goal of this
task is to produce information which satisfies the information requirement that was
generated during Analysis. In particular, Inference does this based on the reuse of an
appropriate knowledge structure which is retrieved from long-term memory. In accor-
dance with the three problem-solving steps of heuristic classification, the requirement
engineer first matches the current modeling context to an appropriate knowledge struc-
ture in long-term memory, then fires this knowledge structure to produce a refined, yet
abstract, set of facts and then reifies and integrates these facts into the target model. In
this way, Inference advances the state of the target model in order to produce a more
“complete” model, where completeness is defined in terms of the analysis rules in
long-term memory. However, as discussed in chapter 3, without adequate stakeholder
validation — process for which are not built in to the current version of the RORE
framework – there is no guarantee that any inferences drawn by RORE will be correct.

Inference can utilise two different kinds of knowledge structure in order to guide
the production of new information to support refinement. These two kinds of knowl-
edge structures offer the desired mix of declarative and procedural reuse strategies.
The two kinds of knowledge structure are:

• Model Chunks (see Section 6.2.2 in the next chapter), which are declarative
structures representing abstract facts. These abstract facts describe some aspect
of an application domain or its requirements and can be directly integrated into
a model to significantly increase the information content of that model;
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• Production Scripts (see Section 6.2.3), which are procedural knowledge struc-
tures that describe how new facts can be produced by transforming facts in the
source model. No facts are explicitly specified by a production script, and the
output of a production script will tend to be finer-grained than the output of a
model chunk.

During inference, the requirements engineer will attempt to use both kinds of
knowledge structure to resolve an information requirement until the information re-
quirement has either been resolved or no more relevant knowledge structures can be
identified. Two sub-tasks are defined:

1. Chunk-based Inference (see Section 5.4.1), which attempts to utilise model
chunks to resolve an information requirement;

2. Rule-based Inference (see Section 5.4.2), which utilises production scripts to
resolve an information requirement.

Because this thesis anticipates that model chunks will typically produce more facts
than production scripts, and therefore yield a greater information gain for a similar
degree of effort, the two sub-tasks are executed in this order. The top-level procedure
for Inference is given below in Algorithm 5.

Data: Context = A Modeling Context;
Success = false;
Result: Success == true
Success = inferByChunk(Context);
if not Success then

Success = inferByRule(Context);
end
return Success;

Algorithm 5: The Top-Level Procedure for Inference

5.4.1 Chunk-based Inference

During Chunk-Based Inference the requirements engineer attempts to satisfy an infor-
mation requirement by using an appropriate model chunk, if any exists, to produce the
information which the information requirement mandates. Model chunks are specified
in full in Section 6.2.2 of the following chapter. Because a model chunk is a declarative
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structure which represents an abstraction of the facts that will ultimately be integrated
into the target model, chunk-based inference does not require any reasoning mecha-
nism to be fired - unlike other requirements tasks. However, the requirements engineer
may need to reify the chunk to satisfy the specific needs of the modeling context. To
this end, model chunks also specify an adaptation script which is similar in form to a
production script (see Section 6.2.3). This adaptation script specifies a procedure for
reifying the model chunk.

Chunk-based inference involves three main steps. Firstly, the requirements en-
gineer attempts to retrieve an appropriate model chunk by matching the source and
target models, and the information requirement to candidate model chunks. Secondly,
if an appropriate model chunk could be retrieved, the requirements engineer reifies this
chunk to fit the particular modeling context described in working memory at that point
in time. Thirdly, and finally, the result of this reification is integrated into the target
model. The full procedure for chunk-based inference is given in algorithm 6.

Data: Context = A Modeling Context;
Success = false;
Chunk = null;
Result: Chunk is integrated into Context.TargetModel⇒ Success = true
Context.RetrievedStructures = match(Context, ModelChunks);
if size(Context.RetrievedStructures) > 0 then

Chunk = Choice of chunk from Context.RetrievedStructures;
Chunk = reify(Chunk);
Integrate(Chunk, Context.TargetModel);
Success = true;

end
return Success;

Algorithm 6: The procedure for Chunk-based Inference

5.4.2 Rule-based Inference

Rule-based inference is so called because it uses sequences of production rules, known
as production scripts (see Section 6.2.3 of the next chapter for a full specification).
Production scripts can be seen as direct applications of heuristic classification to solve
the problems specified by an information requirement. Production scripts retrieve facts
from the source model and transform these in order to produce new facts which refine
the target model. Because production scripts directly transform information from the
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source model, they are inherently rooted in the current modeling context and so the
facts which they produce do not need to be reified.

Like chunk-based inference, rule-based inference consists of three main steps. As
with all requirements tasks, the first step is to match the modeling context to a set
of candidate knowledge structures. In the case of rule-based inference, these knowl-
edge structures are production scripts. Once an appropriate set of production scripts
has been identified, the requirement engineer selects the script which they deem most
likely to resolve the information requirement. This script is then executed, or “fired”,
according to the procedure described in Section 5.11.2. Briefly, this process involves
retrieving a set of source facts from the source model, and applying each production
rule in the script in turn to iteratively transform these source facts until all produc-
tion rules in the script have been completed. The result of a production script will,
therefore, be a set of transformed facts which can be integrated into the target model.

Algorithm 7 shows the complete procedure for rule-based inference.

Data: Context = A Modeling Context;
Success = false;
Facts = null;
Result: Facts are integrated into Context.TargetModel⇒ Success = true
Context.RetrievedStructures = match(Context, ProductionScripts);
if size(Context.RetrievedStructures) > 0 then

Rule = Choice of rule from Context.RetrievedStructures;
Context.GeneratedFacts = fire(Rule, Context);
Integrate(Facts, Context.TargetModel);
Success = true;

end
return Success;

Algorithm 7: The procedure for Rule-based Inference

5.5 Elicitation

Elicitation is the only requirements task described by RORE which attempts to resolve
an information requirement by interacting with external information sources. As such,
it is used primarily as a last resort when all other means of resolving an information
requirement have been exhausted, although it can also be used to provide a mechanism
by which a requirements engineer is requested to validate portions of model. During
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Elicitation, the requirements engineer retrieves structures known as “elicitation stim-
uli” (see Section 6.2.4). Each stimulus describes a question which has been proven
to be an effective way of eliciting a given kind of information from stakeholders. The
requirements engineer enacts the elicitation stimulus by interacting with relevant stake-
holders to ensure that they understand the question posed by the stimulus, and to elicit
from those stakeholders an appropriate response to the question. Within the RORE
framework, it is assumed that a requirements engineer who is applying the approach
understands the abstractions within the long-term memory knowledgebase that they
are utilising. Therefore, the requirements engineer is expected to validate the appro-
priateness of a stakeholder’s response to an elicitation stimulus. The reuqirements
engineer should treat an elicitation stimulus as a prompt to themselves to indicate the
kind of information which is required to refine the target model in line with the current
information requirement. They are, therefore, free to use their own skill and creativ-
ity to elicit an appropriate response from the stakeholder, but this is not a formal part
of the RORE process. RORE will also perform a certain degree of validation of the
response during the next round of analysis by determining whether or not the current
information requirement has been satisifed. If the requirements engineer determines
the stakeholder’s response to be appropriate, they then formalise the response into a
set of facts according to a chunk structure (see Section 6.2.2) specified by the stimulus.
The resulting set of facts is then integrated into the target model.

The requirements engineer follows four main steps during Elicitation. Firstly, they
must retrieve an appropriate elicitation stimulus according to the usual matching pro-
cedure. Next, they enact the Elicitation Stimulus by presenting the question to relevant
stakeholders and eliciting an appropriate response. Thirdly, they must formalise this
response according to the chunk structure specified by the Stimulus itself. The final
step is dependent on the Elicitation Stimulus itself. One of two courses of action are
possible. If specified by the Elicitation Stimulus, then the resulting set of facts can
be directly integrated into the target model as-is. However, this may not always be
appropriate, and so an Elicitation Stimulus can also indicate that a set of facts should
be used as the source facts for a round of inference. In this case, the usual inference
procedure is invoked, but the facts produced by elicitation are temporarily substituted
for the source model.

The procedure for Elicitation is specified in algorithm 8.
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Data: Context = A Modeling Context;
Success = false;
Stimulus = null;
Result: Facts are integrated into Context.TargetModel⇒ Success = true
Context.RetrievedStructures = match(Context, InferByRule);
if size(Context.RetrievedStructures) > 0 then

Stimulus = Choice of stimulus from Context.RetrievedStructures;
Context.GeneratedFacts = fire(Stimulus, Context);
Integrate(Facts, Context.TargetModel);
Success = true;

end
return Success;

Algorithm 8: The procedure for Elicitation

5.6 Control Procedures

The requirements tasks described by RORE are knowledge-driven procedures which
operate over several knowledge structures stored in working memory. These knowl-
edge structures persist for different periods of time and must be managed carefully in
order for the RORE process to run smoothly and efficiently. To this end, three ad-
ditional procedures are specified by RORE which are responsible for managing the
knowledge structures within working memory. These procedures are:

• Activity Initialisation is performed by the requirements engineer in order to
prepare working memory for the enactment of a particular activity. It is the
first action which the requirements engineer carries out when they begin a new
modeling activity;

• Generation of Information Requirements is the procedure by which informa-
tion requirements are produced based on the results of a particular test during
Analysis;

• Refreshing Working Memory involves ensuring that working memory is cleared
at the end of each Analysis-Action cycle to ensure that the requirements engi-
neer’s workspace is kept clutter free.

Collectively these actions manage the resources within working memory over which
each Analysis-Action cycle operates. As such, these actions are intrinsically linked to
the requirements tasks described above, but are not directly relevant to producing re-
quirements models. It is the control procedures which serve as the entry point to a
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RORE session, and it is these procedures which co-ordinate resources and other activ-
ities through that session. The top-level control procedure is described in Algorithm
9.

Data: LTM = A RORE Long-Term Memory Definition;
Phase = A Phase defined within that LTM to enact;
Activity = An Activity associated with Phase;
SourceModel = Any Model instantiating ModelType indicated by Activity;
TargetModel = Any Model instantiating ModelType indicated by Activity;
Context = null;
Result: Model is refined
Context = initialise(LTM, Phase, Activity, SourceModel, TargetModel);
if Context == null then

log(Context, failed);
else

invokeRequirementsTasks(Context);
end

Algorithm 9: The top-level Control procedure which invokes the Analysis-Action
cycle

First, the requirements engineer initialises a RORE session. This action involves
deciding what modeling task needs to be performed and identifying the source and tar-
get models for that session. New models are created if necessary. Next, the controller
commences an Analysis-Action loop. This loop continues until Completeness Anal-
ysis dictates that the model is complete. During this loop, each requirements task is
executed in turn, with Quality Analysis deferring to the controller in order to produce
Information Requirements as required. Once each requirements task has completed,
the controller refreshes working memory and the loop commences for a further itera-
tion.

5.6.1 Activity Initialisation

In RORE, activity initialisation is the process of preparing working memory for a par-
ticular activity. As noted in Section 6.5 of the next chapter, an “Activity” in RORE is a
unit of behaviour which involves the refinement of a particular kind of model. Activ-
ities are characterised by both a source and a target model type, and they involve the
transformation of the source model into a complete model of the target type. Three
general kinds of activity can be identified:
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• Construction activities are those which build a new target model from scratch.
In this case no source model is identified;

• Refinement activities are those which build a new target model of the same type
as a specified source model. The target model will be a new — more mature —
version of the source model;

• Transformation activities are those which build a new target model that is of a
different model type to the source model. This is analogous to traditional model
transformation systems.

Each activity specifies the type of both the source and target models (if any), and
during Activity Initialisation the requirements engineer must instantiate both the source
and the target models by specifying an existing source model (for refinement or trans-
formation activities), and either specifying an existing target model or instantiating a
new (empty) target model of the given type. Table 5.1 summarises these scenarios.

Activity Type Source Model Target Model
Construction - Typex
Refinement Typex Typex

Transformation Typex Typey

Table 5.1: Initialisation conditions for activity types

Once the desired source and target models have been specified for the RORE ses-
sion, these models must then be correctly organised in working memory so that the
RORE cycle can begin. In order to avoid the need for the RORE procedures to make
a special case of construction, RORE assumes that both a source and a target model
will be present in every case. Since, in the case of construction, no source model is
specified, therefore, the requirements engineer should treat the newly instantiated tar-
get model as both the source and the target model. Thus once the target model has
been instantiated, in the case of construction activities, a pointer should be created in
the source model slot of working memory to the target model.

Aside from the source and target models, the requirements engineer also needs
to load other aspects of the initial modeling context into working memory before the
RORE cycle can begin. In particular, the requirements engineer will use knowledge
about the location of the current modeling context within a broader requirements en-
gineering process to match the modeling context to appropriate knowledge structures.
Accordingly, the requirements engineer should also load both the activity knowledge
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structure and its associated phase knowledge structure (see Section 6.5 of the next
chapter for details) into working memory.

With these points in mind, the initialisation procedure is given below in Algorithm
10.

Data: LTM = A RORE Long-Term Memory Definition;
Phase = A Phase defined within that LTM to enact;
Activity = An Activity associated with Phase;
SourceModel = Any Model instantiating ModelType indicated by Activity;
TargetModel = Any Model instantiating ModelType indicated by Activity;
Context = null;
Result: Either Context is instantiated OR Context is not instantiated
if TargetModel == null then

log(TargetModel, failed);
else

if TargetModel.Type == Activity.TargetModelType then
if SourceModel == null then

if Activity.SourceModelType == Activity.TargetModelType then
SourceModel = TargetModel ;

else
log(SourceModel, failed);
return null;

end
end
if SourceModel.ModelType == Activity.SourceModelType then

Context = New Context(LTM, Phase, Activity, SourceModel,
TargetModel);

end
end
return Context;

end
Algorithm 10: The Procedure for Initialising a RORE Session

The requirements engineer first chooses from long-term memory a requirements
engineering process which they wish to employ, and then identifies the appropriate
phase and activity of that process. These knowledge structures are loaded into working
memory. Next, the requirements engineer specifies a target model of the type mandated
by the chosen activity. The requirements engineer may either specify a pre-existing
model as the target model, in which case this model will be refined further, or they may
create a new target model. In either case, the model must match the type mandated by
the chosen activity. Finally, if the activity requires it, the requirements engineer must
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select a pre-existing model as the source model.

5.6.2 Generating Information Requirements

Information Requirements are critical to the RORE process. They describe specifica-
tions of a specific problem with the target model and so represent a specific goal which
must be satisfied during the next Analysis-Action cycle. Their structure is specified
fully in the next chapter, Section 6.4.2. The requirements engineer produces a new In-
formation Requirement during each cycle in response to the failure of the target model
to satisfy a particular quality analysis rule, and it is from information about this failure
that new information requirements are produced.

The version of RORE presented in this thesis, Analysis Rules contain all of the
information that is needed in order to produce a new information requirement. Thus
the process of generating requirements is a simple process of instantiation based on
properties defined over the Analysis Rule, as shown in algorithm 11.

Data: Rule = An Analysis Rule;
IR = null;
Result: IR is instantiated
IR = new InformationRequirement();
IR.RequiredFactType = Rule.EnforcedFactType;
IR.GoalState = Rule.Antecedent;
return IR;

Algorithm 11: The procedure for creating an Information Requirement

5.6.3 Refreshing Working Memory

At the end of each Analysis-Action cycle, the requirements engineer should perform
some basic housekeeping tasks. In particular, they will need to dump any knowledge
structures produced during the cycle, so that these do not confound decisions and pro-
cedures during the forthcoming cycle. There are three kinds of knowledge structure
that will need to be dumped:

1. The Information Requirement should be dumped at the end of each cycle;

2. Any knowledge structures retrieved by matching should also be dumped;

3. The temporary store containing facts produced by either Inference or Elicitation
during the previous cycle will need to be dumped.
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As with Information Requirement generation, this is a simple but critical procedure,
and it is described by algorithm 12.

Data: Context = A Modeling Context
Result: All temporary data is cleared
Context.InformationRequirement = null;
Context.RetrievedStructures = null;
Context.GeneratedFacts = null;

Algorithm 12: The procedure for flushing working memory at the end of each cycle

5.7 Reuse Procedures

The requirements tasks described in Section 5.2 are each driven by the reuse of knowl-
edge structures from long-term memory. As Section 3.3.3 noted, the reuse model of
RORE is heavily influenced by Clancey’s heuristic classification, and as such each
requirements task broadly consists of three main activities:

• Matching, which relates the specific details of the current modeling context to
indexes in long-term memory which describe generalised statements of problems
and point to potential solutions as described by a range of reusable knowledge
structures (rules, model chunks, production scripts and elicitation stimuli) (see
Section 5.8);

• Firing or Reification during which the requirements engineer performs the
task mandated by a procedural knowledge structure, or else reifies a declara-
tive knowledge structure. Both produce a set of facts which fits the specific
context of the source and target models (see Section 5.11 for firing procedures,
or Section 5.9 for reification procedures);

• Integration, where the requirements engineer integrates the facts produced by
the current cycle into the target model in order to refine the model, and satisfy
the Information Requirement (see Section 5.10).

Each of the major steps of a given requirements task or sub-task invokes one or
other of these reuse procedures, as specified in the requirements task procedures. As
a result, there is no separate top-level procedure for invoking these reuse procedures;
invocation of a reuse procedure is directed entirely by the needs of a particular require-
ments task.
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5.8 Matching Modeling Contexts to Knowledge Struc-
tures

The requirements tasks on which the RORE approach is founded are individually
driven by reuse. They apply knowledge structures, which are retrieved from RORE’s
long-term memory, to analyse the quality of models and to refine models according
to the results of those analyses. The ability to find and retrieve knowledge structures
in long-term memory that are directly relevant to a given modeling context and which
will satisfy a given information requirement is critical to the RORE approach. In gen-
eral, the problem of component retrieval is a long-standing problem for reuse research
[Kru92, FK05], and this thesis aims to show that the RORE approach uses a mix of
strategies for library organisation and component retrieval which support a practical
approach to systematic reuse.

The matching process described in this section has been directly influenced by the
Domain Theory’s AIR tool [Sut02] in two ways:

• Firstly, like AIR, RORE’s matching approach uses procedures which are in-
expensive with respect to effort rapidly to narrow down the pool of candidate
knowledge structures before employing more time-consuming matching proce-
dures which produce more accurate matches;

• Secondly, like AIR, RORE’s matching approach uses both rule-based match-
ing and analogical (see [Gen83, Mai92, MS96]) matching algorithms to identify
suitable knowledge structures.

There are also important differences between the two approaches, however.

Firstly, AIR’s matching procedure matches directly against the knowledge struc-
tures which make up its library, whereas in RORE knowledge structures are each
tagged with meta-data against which the match is made. The specific structure of
these meta-data indexes is discussed in Section 6.2.5 of the next chapter.

Secondly, AIR organises its reusable knowledge structures into specialisation hier-
archies. The analogical matcher is used to match concrete models to general abstrac-
tions, while rule-based matching is then used to specialise that match. By contrast, in
RORE’s long-term memory, no such specialisation hierarchy exists. Instead, the meta-
data associated with each structure relates the knowledge structure to the behavioural
units (phases and activities), and model types, to which that knowledge structure is
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applicable. Furthermore, RORE allows the knowledge base administrator arbitrarily
to attach conditions — which may be formal rules or model chunks — to a meta-data
index which characterise more precisely the scenario to which the structure should be
applied. Each index has pre-, post- and trigger conditions which describe the trans-
formation that the associated knowledge structure represents. All of this meta-data
provides a rich source of information to support accurate matching.

The overall structure of the matching procedure is described by algorithm 13, and
Sections 5.8.2, refsec:chunkmatching and 5.8.4 drill down into the details of the par-
ticular matching procedures which make up this procedure.

5.8.1 Efficient Information Gain Means Efficient Matching

Note that the order in which matching procedures are performed by the requirements
engineer is dictated strictly and solely by the principle of efficient information gain
which Chapter 3 outlined. Another principle — the quality of a match between a can-
didate reusable knowledge structure and a target model — is also important. In order to
ensure the quality of the target model which is output at the end of a RORE session, it is
important also to ensure that the most appropriate knowledge structures (with respect to
the information requirement and target model) are retrieved to support transformation
of the target model in each Analysis-Action cycle. RORE does indeed take the quality
of a match into account and it is for this reason that analogical matching — which has
been shown by Sutcliffe and Maiden to be a highly effective means of producing good
quality matches between an abstraction and a concrete model (see, e.g., ?? and ??) —
is included as a part of the matching process. However, accurate matching procedures
— such as Analogical Matching — are computationally expensive?? and so the author
introduced additional matching procedures to the overall matching process, which are
less computationally expensive and which can significantly reduce the number of can-
didate structures to which analogical matching is applied. Matching procedures which
are computationally inexpensive are thus utilied in RORE to filter out as many false
positives from the candidate pool as possible, before analogical matching is applied to
determine which reusable knowledge structures are highly probable to be appropriate
in the sense of:

1. Satisfying the current information requirement;

2. Doing so within the context of the current target model.
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Data: LTM = A Long-Term Memory definition;
Context = A Modeling Context;
StructureTypeNeeded = Any from AnalysisRule, ModelChunk,
ProductionScript, ElicitationStimulus;
Structures = All ReusableStructures in LTM;
Structure
Result: Structures contains only structures that are relevant to Context
Structures = Filter(Structures, StructureTypeNeeded);
while Structure = pop(Structures) do

while Condition = pop(Structure.Index.Preconditions) do
if Condition is a ChunkCondition then

if not analogicalMatch(Condition, Context.SourceModel) then
Structures = Remove(Structure, Structures);

end
else

if not ruleMatch(Condition, Context.TargetModel) then
Structures = Remove(Structure, Structures);

end
end

end
while Condition = pop(Structure.Index.TriggerConditions) do

if Condition is a ChunkCondition then
if not analogicalMatch(Condition, Context.TargetModel) then

Structures = Remove(Structure, Structures);
end

else
if not ruleMatch(Condition, Context.TargetModel) then

Structures = Remove(Structure, Structures);
end

end
end
while Condition = pop(Structure.Index.PostConditions) do

if Condition is a ChunkCondition then
if not analogicalMatch(Condition,
Context.InformationRequirement.GoalState) then

Structures = Remove(Structure, Structures);
end

else
if not ruleMatch(Condition,
Context.InformationRequirement.GoalState) then

Structures = Remove(Structure, Structures);
end

end
end

end
return Structures;

Algorithm 13: The top-level matching algorithm
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The matching procedures within RORE are thus applied as a composite and are
not treated as alternatives, with the composite being designed to ensure a high qual-
ity match, and most of the parts being designed only to filter candidates out of the
matching process according to different criteria. Thus, while quality was a design con-
sideration for the composite as a whole, efficiency is the primary concern in sequencing
the different procedures within that composite. A further consideration is that all of the
matching procedures within RORE depend fundamentally on meta-data about reusable
knowledge structures which is specified in the design of a long-term memory knowl-
edgebase by the knowledge engineer, and so the quality of the matching procedures
can only be as good as the quality of that meta-data.

The principle of Efficient Information Gain, then, was the primary consideration in
sequencing the RORE matching procedure. This principle has a particular application
to the matching process, because it is the matching process through which information
in RORE is predominantly “gained” by the requirements engineer. In order to perform
a match, the requirements engineer must specify some input parameters against which
candidate structures can be matched. A matching procedure is considered “efficient” if
it is able to significantly reduce the size of the pool of candidate knowledge structures
based on a small amount of input information. That is, the efficiency of a matching
algorithm could be predicted using the Information Gain ratio:

In f ormationIn : In f ormationOut (5.1)

According to this definition, procedures which match against Phases and Activities
will be efficient because they rule out all knowledge structures which are not directly
relevant to the modeling activity at hand based on a small amount of input information.
By contrast, the chunk-based analogical algorithms require at least something of a con-
crete model to have been specified before it can operate effectively. As such, rule- and
chunk-based algorithms are less efficient - because they gain less information based on
more input information - than selection based on behavioural units. However, there is
a trade-off because simply selecting for a behavioural unit offers a limited guarantee
that retrieved knowledge structures will be relevant to the particulars of the current
modeling context. It is for this reason, that matching procedures in RORE are ordered
so that the most efficient procedures are used to rapidly reduce the size of the candidate
pool, and then more accurate — but less efficient — procedures are used to refine the
match.
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It should be noted that this approach follows the basic approach adopted by Maiden
[Mai92], who uses rule-based matching efficiently to identify a pool of candidate ab-
stractions that are likely to match a concrete model before using analogical matching
to identify the abstraction which best fits that model. Maiden found this approach to
produce accurate, high-quality matches between a concrete model and a domain ab-
straction. Maiden also validated his automated, analogical approach against matches
made by human experts [MMS95]. However, there is a critical difference between
Maiden’s approach and the approach presented in this thesis, which impacts on the
potential quality of a match. Whereas Maiden’s approach comes with a built-in set of
abstractions and matching rules — all of which have been carefully and empirically
validated my Maiden — the RORE approach does not preassume either the abstrac-
tions of the matching rules. Instead, these are stipulated within the KE perspective by
knowledge engineers. The task of validating both the abstractions and the matching
rules therefore falls on the knowledge engineers who have responsibility for designing
a long-term memory knowledgebase.

5.8.2 Filtering Candidate Structures

The first procedure in the matching approach is designed to identify, with the minimal
possible effort, all of those knowledge structures for which there exists a reasonable
likelihood of a relevance to the current modeling context. This is achieved by incre-
mentally narrowing the set of candidate knowledge structures. Initially, all reusable
knowledge structures in long-term memory are treated as plausible candidates and the
requirements engineer narrows this pool by identifying those criteria which satisfy five
criteria. In order, each candidate knowledge structure should match:

• The Structure Type (Analysis Rule, Model Chunk, Production Script or Elici-
tation Stimulus) specified by the requirements engineer as being relevant to the
current requirements task;

• The Phase associated with the current modeling activity;

• The Activity which the current RORE session is enacting;

• The Desired Fact Type which the current Information Requirement mandates
should be processed by this Analysis-Action cycle.

This procedure is summarised by Algorithm 14.
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Data: LTM = A Long-Term Memory definition;
Context = A Modeling Context;
StructureTypeNeeded = Any from AnalysisRule, ModelChunk,
ProductionScript, ElicitationStimulus;
Structures = All ReusableStructures in LTM;
Structure = null
Result: Structures contains only those relevant by Type, Phase, Activity and

FactType
while Structure = pop(Structures) do

if Structure.Type != StructureTypeNeeded then
Structures = Remove(Structure, Structures);

else
if Structure.Index.Phase != Context.Phase then

Structures = Remove(Structure, Structures);
else

if Structure.Index.Activity != Context.Activity then
Structures = Remove(Structure, Structures);

else
if Structure.Index.FactType !=
Context.InformationRequirement.RequiredFactType then

Structures = Remove(Structure, Structures);
end

end
end

end
end
return Structures;

Algorithm 14: The Filtering Procedure which is part of the overall Matching Proce-
dure
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Each of the filtering tests applied by this initial matching procedure requires only
that a direct comparison be made between a single property of knowledge structures
in working memory and a single property of the index associated with each candidate
knowledge structure. The last, cycle goal match, criterion is less trivial, however. This
criterion tests to see whether or not the post-condition specified by the index of each
knowledge structure would satisfy the goal specified by the Information Requirement.
The criterion therefore requires that the requirements engineer evaluate whether or not
one condition would hold if another condition would also be true. Formally:

(P(S)⇒ G(C))⇒ GoalMatch(S,C) (5.2)

Where P(S) is the postcondition associated with the structure currently being eval-
uated, G(C) is the goal of the current modeling context, and GoalMatch(S,C) is a
predicate asserting that S matches C according to the cycle goal criterion.

Current versions of OWL (Lite, DL and Full) and their associated rule language
(SWRL), however, only allow conditions to be tested against sets of OWL axioms
(facts in RORE’s terminology), and not against other conditions. This thesis does
not, therefore, offer detailed specifications on how this criterion should be evaluated
(investigating a general approach to this problem would have been a significant effort
in its own right) and so the requirements engineer must use their discretion to evaluate
this criterion.

5.8.3 Chunk-based (Analogical) Matching

We have adopted analogical matching in RORE because it has tried-and-proven appli-
cability for the reuse of knowledge structures in requirements engineering specifically
[Fin88, Mai92, MVL97]. In particular, analogical reasoning is attractive as a means
of retrieving knowledge structures in a reuse context because it provides a means of
applying knowledge structures beyond the scope of the domains from which they were
originally abstracted [Sut02]. As such, analogical reuse is one of the primary strate-
gies adopted by the Domain Theory to achieve a greater degree of generality than the
prevalent domain-specific approaches [SM98], and which RORE employs as one strat-
egy for achieving this same goal.

Analogical matching algorithms have been influenced by the work, in Cognitive
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Science, of Gentner [Gen83, GM97] and others [Mai92] who have attempted to un-
derstand the cognitive processes which underpin the formation of analogies in the hu-
man mind. According to Gentner’s theory, analogical reasoning involves transferring
knowledge from a source domain to a target domain based on structural comparisons
between the two domains. The particular entities from which the domain is composed
are not considered significant in an analogical match, but rather it is structural rela-
tionships between those entities that are considered important. Gentner and Markman
contrast this with similarity-based reasoning in which the entities, rather than struc-
ture, are considered important [GM97]. According to this structure-mapping theory,
the atom is analogous to a solar system because both share a similar structure: that of
small bodies orbiting a larger, central body.

The procedure which is described below for analogical matching essentially repli-
cates the original structure mapping algorithm described extensively by Maiden [Mai92]
and Maiden and Sutcliffe [MS96]. However, it was necessary to adapt the algorithm
to take into account two significant factors:

• Firstly, the analogical algorithm described by Maiden and Sutcliffe [Mai92,
Sut02] assumes their specific schema for representing domain knowledge. Within
this schema, fact types are ordered according to the impact that each fact type
has on an analogical match. For instance, within the Domain Theory’s model-
ing schema, matches between state transitions in the source and target domain
are considered to be more indicative of an analogical match than matches be-
tween objects and their so-called secondary states [SM98]. Thus the Domain
Theory’s analogical procedure focuses on matches between these higher-ranking
fact types and uses rule-based matching to refine the match according to lower-
ranking fact types [Mai92]. However, this is a decision taken predominantly to
ensure efficient matching by avoiding the need to check matches between all
facts in every model [MS96]. Because RORE does not assume a specific model-
ing schema, the analogical procedure presented in this thesis cannot rely on such
heuristics, and so instead it uniformly checks structural relations between facts
of any kind. This thesis assumes this will impact on the efficiency of the proce-
dure presented by this thesis, but predicts that it will not impact on effectiveness.
However, this prediction is not directly relevant to the research questions laid out
in Chapter 1 and so this thesis does not extensively validate the prediction. This
independence from any particular model schema also means that, in contrast to
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AIR’s model-specific matching algorithm, RORE’s matching procedure is capa-
ble of matching across model types. Chapter 9 considers the extent to which this
prediction holds.

• Secondly, the implementations described by Maiden [Mai92] and Sutcliffe [Sut02]
were based respectively on Prolog and ConceptBase. By contrast, the formali-
sation of RORE is based on the OWL knowledge representation language. The
procedures which previous authors describe, therefore, needed to be modified to
suit this new choice of formalism. The open-world assumption made by OWL
is a significant change from the closed-world assumption which underpins Con-
ceptBase and this fact needed to be taken into account.

In RORE’s analogical matching procedure, model chunks specified as conditions
in the index for a knowledge structure are matched against either the source or tar-
get model as specified. Algorithm 15 presents the top-level procedure for analogical
matching:

The algorithm for determining whether a candidate satisfies the matching threshold
is given in Algorithm 16.

The top-level algorithm checks for a match between a Model and a ChunkCondi-
tion in two stages. Firstly, it enacts a cheap algorithm to identify “Local Mappings”
between fact pairs (one from the model, one from the chunk condition) in order to de-
termine whether it is possible that a match exists. It then looks for a structural match
between facts in order to confirm whether or not the condition matches the chunk ana-
logically.

Local Mapping compares all facts from the Model against all facts from the Con-
dition Chunk, and identifies a Local Map if the two facts match semantically (see
Algorithm 17):

Identifying the Local Mappings which exist between a Chunk and a Model involves
determining whether two facts match semantically. This is so if they both instantiate a
shared Fact Type (see Algorithm 18):

If Local Mapping determines that there is the possibility of a match between the
Condition and the Model, then a full structural match is checked for. A structural
match is considered to exist if 70% of locally-mapped pairs are confirmed as structural
matches (see Algorithm 19). The 70% threshold is replicated from Maiden’s original
analogical algorithm, which Maiden determined through empirical validation to fine-
tune his own approach:
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Data: Condition = A Chunk Condition;
Model = A Model;
ChunkFacts = {};
ModelFacts = {};
PossiblePairs = {};
ConfirmedPairs = {};
MatchingThreshold = 70;
SatisfiesThreshold = false;
Result: True, if a match exists
ChunkFacts = All Facts in Condition.Chunk;
ModelFacts = All Facts in Model;
PossiblePairs = getLocalMapping(ChunkFacts, ModelFacts);
if size(PossiblePairs) > 0 then

ConfirmedPairs = getStructuralMappings(ConfirmedPairs);
if ) then SatisfiesThreshold(ConfirmedPairs, PossiblePairs,
MatchingThreshold

return true;
else

return false;
end

else
return false;

end
Algorithm 15: The top-level matching procedure first checks for local mappings,
and if any exist, performs a full structure match

Data: ConfirmedPairs = A set of fact pairs from a Model;
PossiblePairs = A set of fact pairs from a Model;
MatchingThreshold = A numerical value;
Satisfies = false;
Result: True, if the number of confirmed pairs as a percentage of possible pairs

satisfies the threshold
Satisfied = calculateMatchScore(ConfirmedPairs, PossiblePairs) �
MatchingThreshold ;
return Satisfied;

Algorithm 16: The procedure for determining whether or not the matching threshold
is satisfied by a candidate knowledge structure
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Data: ModelFacts = A set of facts from a Model;
ModelFact = null;
ChunkFacts = A set of facts from a Condition Chunk;
ChunkFact = null;
PossiblePairs = {};
Result: PossiblePairs is either empty or contains pairs of facts
while ModelFact = pop(ModelFacts) do

while ChunkFact = pop(ChunkFacts) do
if factsMatchSemantically(ModelFact, ChunkFact) then

add(PossiblePairs, ChunkFact, ModelFact);
end

end
end

Algorithm 17: Local Mapping is a cheap procedure for ruling out cases where ana-
logical matches could not exist

Data: ModelFact = A fact extracted from a Model;
ModelFactType = null;
ChunkFact = A fact extracted from a Condition Chunk;
ChunkFactType = null;
Result: True if the two facts share a parent fact type;
while ChunkFactType = pop(ChunkFact.instantiatedTypes) do

while ModelFactType = pop(ChunkFact.instantiatedTypes) do
if ChunkFactType == ModelFactType then

return true;
end

end
end
return false;

Algorithm 18: A procedure for checking whether or not two facts match semanti-
cally
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Data: PossibleFactPairs = A set of possible fact pairs, established by Local
Mapping;

PossibleFactPair = null;
ConfirmedFactPairs = {};
MatchingThreshold = 70;
Result: True, if a structural match exists
if size(PossibleFactPairs) == 0 then

return false ;
end
while PossibleFactPair = pop(PossibleFactPairs) do

if scoreFactPair(PossibleFactPair) ¿= MatchingThreshold then
add(ConfirmedFactPairs, PossibleFactPair);

end
end
return ((size(PossibleFactPairs) / (sizePossibleFactPairs)) * 100) ¿ 70;

Algorithm 19: Structural matching checks the structural relationship that exists be-
tween each fact pair

The score for a fact pair is calculated by evaluating the proportion of mappings that
can be established between the neighbouring facts of the two facts in the fact pair (see
Algorithm 20):

The ability to calculate the score for a fact pair is dependent on the ability to de-
termine whether two binary relationships are semantic matches. This is true if the two
relations share the same property type (see Algorithm 21):

5.8.4 Rule-based Matching

Whereas chunk-based matching uses model chunks to evaluate the applicability of
a knowledge structure to a given modeling context, rule-based matching uses condi-
tional tests similar to those specified by analysis rules. The rule-based procedure is
not designed as an alternative to, but rather complements, the chunk-based matching
procedure. As Sutcliffe and Maiden note [SM98], rules are useful for fine-grained
matching, whereas chunks are useful for coarser-grained matching of overall structure.

Rules, which may be arbitrarily specified as pre-, post- or trigger conditions in a
meta-data index, are tested against either the source or target model. The result will
be a Boolean (true or false) value indicating the applicability, or not, of the knowl-
edge structure to the current modeling context. The procedure is significantly more
straightforward, but nonetheless significant for RORE’s matching procedure, than the
chunk-based procedure.
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Data: ModelFact = Any fact from a Model;
ModelProperty = null;
ModelChildFact = null;
ChunkFact = Any fact from a Condition Chunk;
ChunkProperty = null;
ChunkChildFact = null;
ChunkPropertyTuple = {};
ModelPropertyTuple = {};
PossibleNeighbours = 0;
ActualNeighbours = 0;
Result: ActualNeighbours / PossibleNeighbours * 100
while ChunkProperty = pop(ChunkFact.Properties) do

while ChunkChildFact = pop(ChunkProperty.Values) do
while ModelProperty = pop(ModelFact.Properties) do

while ModelChildFact = pop(ModelProperty.Values) do
possibleNeighbours += 1;
ChunkPropertyTuple = {ChunkFact, ChunkProperty,
ChunkChildFact};
ModelPropertyTuple = {ModelFact, ModelProperty,
ModelChildFact};
if propertiesMatchSemantically(ChunkPropertyTuple,
ModelPropertyTuple) then

actualNeighbours += 1;
end

end
end

end
end
return (actualNeighbours / possibleNeighbours) * 100

Algorithm 20: Fact pairs are scored for their structural match by determining how
many structurally-matching properties the chunk fact shares with the model fact
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Data: ChunkPropertyTuple = A tuple containing the parent, property and child
from a chunk;

ModelPropertyTuple = A tuple containing the parent, property and child from a
model;
ParentsMatch = null;
ChildrenMatch = null;
ChunkPropertyType = null;
ModelPropertyType = null;
Match = true;
ShareType = false;
Result: True, if the type of the parent and child match across the two property

tuples
while ChunkPropertyType = pop(ChunkPropertyTuple.Property.PropertyTypes)
do

ShareType = false;
while ModelPropertyType =
pop(ModelPropertyTuple.Property.PropertyTypes) do

if ChunkPropertyType == ModelPropertyType then
ShareType = true;

end
end
if not ShareType then

Match = false;
end

end
ParentsMatch = factsMatchSemantically(ModelPropertyTuple.Parent,
ChunkPropertyTuple.Parent);
ChildrenMatch = factsMatchSemantically(ModelPropertyTuple.Child,
ChunkPropertyTuple.Child);
return ParentsMatch and Match and ChildrenMatch;

Algorithm 21: A Procedure for Checking the Semantic Match Between Two Prop-
erties
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Essentially, the requirements engineer applies rules for a given index, and uses
one of the firing procedures identified in Section 5.11.1 to test each rule against the
appropriate model. If all rules are satisfied by the modeling context, then the overall
set of conditions returns true.

Data: Rule = Any analysis rule;
Model = A model over which to test the AnalysisRule;
return satisfiesRule(Model, Rule);

5.9 Reifying Solutions

The model chunks which are used by chunk-based inference to produce new facts
tend to be abstract and therefore need to be reified. To achieve this, the requirements
engineer must reify the chunks by modifying key elements of the chunk using infor-
mation acquired from the source model. RORE uses a reification approach based on
the concept of a requirements template [LMV97]. Facts within a model chunk can be
designated - by the use of special tags in their names (see Section 6.2.2) - as being
abstract labels. The requirements engineer can then employ two strategies to reify the
chunk by substituting concrete labels for abstract labels.

Firstly, the requirements engineer can use their own discretion to decide which
information from the source model should be substituted for each abstract label. RORE
specifies no formal procedure for this approach. Secondly, if an adaptation script is
specified by the model chunk, then the requirements engineer should follow this script
to achieve the necessary substitutions. The adaptation script should retrieve facts from
the source model and transform these to produce the concrete labels mandated by the
model chunk.

The procedure by which a requirements engineer applies an adaptation script is
in essence identical to that required to enact a production script (see Section 5.11.2).
There is an important difference, however, which is that the results of the script are
integrated into the model chunk and not into the target model itself. It is the reified
model chunk which is then integrated.
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5.10 Integrating Reified Facts

Integration is the final step of the productive requirements tasks (Inference and Elici-
tation). During this step, the requirements engineer attaches the new facts produced by
the requirements task to the current target model. This changes the state of the target
model and allows the model to be reassessed to determine the need for a further round
of refinement.

The basic procedure for integrating facts into a model is to map new facts to exist-
ing facts within the target model, and then to attach properties of the new facts to the
associated existing facts. Facts which are not part of a graph formed by a fact pairing
are simply appended to the model as “free” facts. RORE distinguishes two specific
procedures for achieving this goal. These procedures are distinguished by the manner
in which they treat the paired new and existing facts. The procedure that is used is
to be specified by the index of the knowledge structure by which the new facts were
produced.

5.10.1 Additive Integration

Additive Integration is a procedure which, as the name suggests, appends the new
facts to the existing target model so that all information in the initial state of the target
model is preserved after the integration procedure is complete. In this case, the existing
properties of each existing paired fact are preserved, and the requirements engineer
adds the properties of the matched fact are added to the existing fact. The procedure is
described by algorithm 22.

5.10.2 Substitutive Integration

Substitutive Integration is an alternative form of integration which allows for existing
facts to be superseded by new facts. In this case, the information represented by the
old fact is substituted by the information represented by the new fact. For each existing
fact that references an existing matched fact, the requirements engineer removes the
reference to the existing fact and replaces it with a reference to the associated new
fact. The requirements engineer performs this procedure for all matched new facts.
Algorithm 23 describes this procedure.



5.10. INTEGRATING REIFIED FACTS 173

Data: TargetModel = A model, into which the source facts are to be integrated;
FactPairs = A set of fact pairs which the requirements engineer has specified;
FactPair = null;
Property = null;
PropertyValue = null;
SourceFact = null;
TargetFact = null;
Result: All child facts of paired facts are copied from the source to the target
while FactPair = pop(FactPairs) do

SourceFact = FactPair.Source;
TargetFact = FactPair.Target;
while Property = pop(SourceFact.Properties) do

while PropertyValue = pop(Property.Values) do
add(TargetFact.Property[Property].Values, PropertyValue);

end
end

end
Algorithm 22: The procedure for additive integration, assuming a set of fact pairs

Data: TargetModel = A model, into which the source facts are to be integrated;
FactPairs = A set of fact pairs which the requirements engineer has specified;
FactPair = null;
SourceFact = null;
TargetFact = null;
Result: All target facts are replaced by source facts in target model
while FactPair = pop(FactPairs) do

SourceFact = FactPair.Source;
TargetFact = FactPair.Target;
replace(TargetModel, TargetFact, SourceFact);

end
Algorithm 23: The procedure for substitutive integration, assuming a set of fact pairs
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5.11 Reasoning Procedures

In RORE, analytical and productive knowledge is represented by a large body of logical
rules. In order for RORE to be effective, some mechanism is required to enact or “fire”
these rules. One option is for the requirements engineer to enact these rules manually.
In the case of conditional rules (Analysis Rules, matching criteria) this can be done
manually by treating the rule as a logical theorem and attempting to prove or disprove
it from the relevant model. Production rules can similarly be enacted manually by
treating them as operations which replace an input set of facts by an output set of facts.

Manual enactment of RORE rules, however, would be time consuming and, given
the number of rules that would need to be enacted in a RORE session to build a model,
would not be practicable. The main advantage of using an existing knowledge for-
malism, such as OWL, to formalise knowledge in RORE is that there exists a wide
range of reasoning support which a requirements engineer can use to automatically
enact rules. Assuming that a mechanism exists for firing individual conditions and
productions, therefore, this section describes the higher-level procedures which are re-
quired directly by the requirements tasks for firing analysis rules, matching criteria,
and production scripts.

5.11.1 Firing Analytical Rules

In the current version of RORE, there is no essential difference between an Analysis
Rule and a matching criterion. However, each plays a different role. Analysis rules are
reusable structures which are utilised during analysis to evaluate the completeness or
quality of a model. Matching criteria are not considered reusable, because they do not
directly play a role in any requirements task, and instead are used to evaluate a model
for the purpose of matching a reusable knowledge structure to it.

Analytical rules consist of two basic components (see Section 6.2.1 of the next
chapter for details). The antecedent describes the condition which must be tested, and
the consequent describes the value (true or false) which is to be returned if this condi-
tion is positive. Two steps are, therefore, needed to fire either a matching condition or
an analysis rule, as described by Algorithm 24.

Firstly, the antecedent - which is represented by a SPARLDL Ask query - is exe-
cuted over the desired source or target model. The result of this query is then evaluated
in order to determine whether the consequent, or its negation, should be returned as the
value of the rule.
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Data: Rule = Any analysis rule;
Model = Any model;
AskQueryHolds = false;
Result: AnalysisRule.Consequent if AnalysisRule holds; else not Consequent
AskQueryHolds = sparqlDlASK(Rule.Antecedent, Model);
if AskQueryHolds then

return Rule.Consequent;
else

return not Rule.Consequent;
end

Algorithm 24: Procedure for firing an analysis rule

5.11.2 Firing Production Scripts

Production scripts are described in detail in Section 6.2.3 of the following chapter.
Structurally they consist of an input query and a linked list of production rules. The
input query is used to retrieve the facts from the source model over which the produc-
tion script will operate. The input query is a SPARLDL select query which retrieve
axioms, rather than returning a Boolean value. The requirements engineer performs
this query either manually or using an appropriate reasoner, and places the results into
the temporary fact slot in working memory.

The requirements engineer then retrieves the first production rule from the pro-
duction script and iterates over each subsequent rule in turn, applying it to the facts
that currently reside in the assigned temporary slot. Each production rule is similar
in structure to an Analysis Rule, consisting of an antecedent and a consequent. In the
case of a production rule, the antecedent is a further SPARQLDL select query which is
performed on the selected source facts to select the specific facts which that production
rule will transform. The consequent specifies the production rule using a proprietary
language which was designed as part of this thesis specifically for representing RORE
productions. The language is described fully in Grammar 6.2.3. It consists predomi-
nantly of two kinds of operations - fact creation and assignments - which can be used to
instantiate new facts based on source facts and previous productions. It also includes an
iterative operation which allows one-to-one mapping between source and target facts.
To execute a production rule, the requirements engineer performs the query described
by the antecedent over the temporary slot in working memory. The production rule is
then applied to the retrieved facts in order to generate new facts which can be integrated
into the target model.

This full procedure for executing production scripts is described in algorithm 25.
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Data: Script = Any production script;
Model = Any model;
InputFacts = null;
TransformFacts = null;
CurrentRule = null;
OutputFacts = null;
Result: A set of facts
InputFacts = sparqlDLSELECT(Script.InputQuery, Model);
while CurrentRule = pop(Script.NextRule) do

TransformFacts = sparlDLSELECT(CurrentRule.Antecedent, InputFacts);
OutputFacts = applyProductionExpression(TransformFacts);
add(InputFacts, TransformFacts);

end
Algorithm 25: The procedure for firing production scripts over a model

5.12 Summary

This chapter has described in detail each of the high-level procedures, and the lower-
level algorithms, which underpins RORE and the prototype implementation of the tool.
At the highest level, RORE defines a set of five procedures to support Requirements
Engineering corresponding to the Requirements Engineering Tasks described in Chap-
ters 3 and 5: Analysis, Inference and Elicitation. These procedures are broadly similar
in structure in that they: retrieve reusable knowledge structures from long-term mem-
ory; apply those structures in order to make inferences about and reason over require-
ments models; and, in the case of Inference and Elicitation, integrate the product of
that reasoning into the target model.

Each of these three generic steps (Matching, Reasoning and Integration) is defined
more precisely by an underlying set of algorithms. Matching comprises, in the first
instance, a filtering process, in which candidate knowledge structures are ruled out
by comparing the Index Description of those reusable structures to the current Mod-
eling Context. This is followed by a combination of two specialised types of posi-
tive matching algorithm. Analogical matching compares the structure of Chunk-based
Conditions to either the source or target model in order to determine a match between
a reusable knowledge structure and a Modeling Context. Rule-based matching fires
rules, which are specified through Rule-based Conditions, over either the source or the
target model in order to determine a match.

Different procedures are defined for reasoning over models during the second step
of each Requirements Engineering Task. This is a result of the fact that different tasks
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utilise knowledge structures which express inferential knowledge in different ways.
Analysis Rules are evaluated by a SPARQL-DL query engine (as discussed in Chapter
4 which represents a rule-firing, or query resolution, mechanism. Production Scripts
are executed through a parse-and-execute interpreter process. Detailed reasoning pro-
cedures are not defined for Chunk-based Inference or Elicitation because the reification
of a Model Chunk in the first case, and production of information as a response to a
stimulus in the latter case, are manual processes.

This chapter has also presented two types of Integration Procedure. While these
two types of Integration Procedure are highly similar in structure, they differ in the
crucial mechanism by which they integrate new information into the target model.
Both Additive and Substitutive Integration match new Facts as produced by Inference
or Analysis to facts in the target model, and then traverse the network which branches
out from the new Facts in order to transfer new information into the target model. The
difference is that Additive Integration appends the new Facts to the existing Facts in the
target model, whereas Substitutive Integration replaces the Facts in the target model by
the new Facts.



Chapter 6

The Knowledge Structures of RORE

6.1 Introduction

The procedures described in the previous chapter assume a set of knowledge structures
which guide the approach, and from which requirements artefacts can be constructed.
Figure 6.1 presents an overview of the knowledge structures specified by RORE which
formalise the knowledge over which the procedures described in the previous chapter
operate.

RORE is a framework for building models of application domains, their require-
ments and specifications of software systems to satisfy those requirements. The central
workpiece in a RORE session, therefore, is the Model (see Section 6.4.1). In order to
facilitate unambiguous and precise definition of the procedures discussed in the previ-
ous chapter, this thesis should also provide a precise syntax through which Models can
be expressed.

However, a key design goal of this framework is to provide systematic support for
requirements-level reuse independent of any specific requirements modeling frame-
work. Therefore, whereas many other approaches to requirements-level reuse assume
a particular language through which requirements models will be expressed, RORE
does not assume any specific schema for representing domain or requirements knowl-
edge. Instead, RORE can support multiple model types, the meta-models for which are
expressed formally (see Section 6.3) as a part of RORE’s long-term memory. RORE
is, therefore, able to reason about the definition of a model type in order to interpret the
information contained within a concrete model, rather than assuming this knowledge a
priori.

178
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Figure 6.1: Detailed overview of the knowledge structures defined in RORE’s im-
mutable layer
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This aspect of RORE allows knowledge base administrators to introduce their pre-
ferred requirements modeling representation into the RORE framework by aggregating
facts types which have already been defined in RORE’s long-term memory. Once a
model type has been defined, the RORE requirements tasks can be applied to construct
instances of that model type by reuse. Models instantiate model types in the sense that
the model is an aggregation of facts, such that each fact instantiates a fact type from
which the model type is aggregated.

The ability of RORE to construct a model for a new model type is dependent on the
availability of reusable knowledge structures within the knowledge library. Reusable
knowledge structures in RORE are not, however, confined to a single type of model
and instead it is possible in RORE to transfer reusable knowledge between model-
ing representations. Reusable structures are defined in terms of types of fact, rather
than in terms of types of model. A reusable structure therefore is applicable to any
kind of model which is aggregated from the fact types over which that structure is
defined. While there are differences between the major requirements modeling lan-
guages, there is also much overlap with respect to the kinds of fact which they each
contain (see Chapter 2). As a result, this thesis claims that it should not be necessary to
populate RORE’s reuse library entirely from scratch for every new type of model that
is introduced.

This chapter describes and specifies the structure of RORE’s two knowledge-bases:
long-term memory and working memory. This chapter drills down into the details of
each knowledge base, specifying the abstract syntax of each of the knowledge struc-
tures which make up RORE’s knowledge model. A full OWL-DL formalisation is
given in Appendix A.

6.2 Reusable Knowledge Structures

Reusable knowledge structures in RORE are defined by knowledge engineers in order
to support the adaptation, by parameterisation [Sut02], of RORE’s Requirements En-
gineering Tasks to the needs of a particular Action-Analysis cycle. RORE defines four
types of reusable knowledge structure. These are: Analysis Rules, Model Chunks,
Production Scripts and Elicitation Stimuli. Each of these is specialised to provide
the knowledge which is required to adapt a particular Requirements Engineering Task.
Section 5.2 described in detail how reusable knowledge structures in RORE are utilised
by the generic Requirements Engineering Tasks to transformation a concrete model in
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a particular way. This section summarise the purpose and detailed structure of each
reusable knowledge type.

6.2.1 Analysis Rules

Of the four kinds of reusable knowledge structure defined by RORE, Analysis Rules
are the only structure type which are not utilised for the production of new information.
Instead, their function within RORE is to define tests which can be fired against a
model in order to draw conclusions about that model, specifically with respect to the
quality or the completeness of the model. The capability provided by Analysis Rules
is critical to the decision-making capability of the Analysis requirements task.

No general definition of model “completeness”, or “quality” is given by the RORE
framework. Instead, it is the rules themselves which inherently encode such defini-
tions. A model is assumed to exhibit a certain aspect of quality if it satisfies a single
analysis rule. A model is assumed to be complete if it satisfies all of the quality condi-
tions that are associated with the type of that model.

A common structure for this kind of test in a range of human discourse is the logical
rule. In formal logic, for instance, inference rules are used incrementally to prove
that one proposition follows from another. Similarly, conditional statements in most
high-level programming languages take the form of a rule or condition tested against
an underlying set of variables. Given the tried-and-tested nature of this approach, this
research chose the rule as the most appropriate representation for modeling conditional
(analytical) knowledge in RORE.

Figure 6.2 illustrates the precise structure of an Analysis Rule.

+description : IndexDescription

+antecedent : SPARQLAskQuery

+consequent : bool

AnalysisRule

CompletenessAnalysisRule QualityAnalysisRule

Figure 6.2: The structure of analysis rules

Aside from the description attribute, which is common to all reusable knowledge
structures in RORE, Analysis Rules have two other attributes.
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Antecedent is the attribute which stipulates the condition that an Analysis Rule im-
poses on a requirements model. This is a test which a model must pass in order to be
considered of sufficient quality in a particular respect. The antecedent of an Analysis
Rule is specified as a SPARQL-DL Ask query [SP07]: a kind of query over a model
which returns a Boolean value indicating whether or not the model satisfies that query.
Specifically, the antecedent is specified using Derivo’s syntax [Sys12] for Ask queries.
This was a pragmatic decision taken because it is Derivo’s SPARQL-DL API through
which the RORE prototype executes SPARQL-DL queries.

Consequent is a Boolean value which is the value to be returned in the event that
the antecedent is satisfied by a model. This was introduced as a result of limitations
in the contemporary syntax and semantics of SPARQL-DL Ask queries. Certain kinds
of negative assertion cannot easily be expressed as an Ask query. The consequent

provides a way of handling assertions of this kind by expressing a positive assertion
and then negating the result.

6.2.2 Model Chunks

The most common form of reusable content described within the software engineering
literature is a chunk of knowledge expressed through some representation, for example
reusable source code [Kru92], components [LW05], or patterns [Gam95, Sut02]. The
common theme which underpins such paradigms is the reuse of aggregations of sen-
tences, in which each sentence is represented by a chosen (possibly natural) language,
in which each sentence represents some fact or goal regarding an application domain
or its software solution.

This approach is, as Maiden notes [MMS95], also naturally occurring. Experts
reuse knowledge acquired through past experience in order to compose solutions to
new problems [Gui90, Sut02]. Along these lines, the CHREST+ cognitive architec-
ture is a theoretical framework, based on Simon’s conception of ill-structured problem
solving [Sim74] and his EPRAM architecture, which models human expert problem
solving as a function of chunk abstraction and reuse [GLC+01]. Similarly, the reuse
of sets of facts (“Model Chunks”) about an application domain or its software solution
facilitates a compositional approach to software design [Sut02]. This is powerful be-
cause it is an efficient approach to problem solving since it reduces the need to reason
from-scratch about a problem or its solution. Maiden has shown that it can also have
advantages for model correctness, because reusable fact sets can serve as prompts to
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aid in clarifying rationale [Mai92]. It is for these reasons that this research opted to
introduce Model Chunks as a mode of reuse in RORE.

The particular syntax of a Model Chunk is heavily inspired by that given in Sut-
cliffe and Maiden’s Domain Theory [SM98, Sut02], which represents models as ag-
gregations of facts, each instantiating a particular fact type. In RORE, both concrete
Models and Model Chunks are represented in this way. However, whereas the Domain
Theory identifies a concrete schema through which models are represented, RORE
abstracts away from this and deals generically with Fact Types and Facts. It is this
abstraction which enables RORE to support a range of requirements engineering mod-
eling notations.

Figure 6.3 presents the structure of Model Chunks in RORE.

+description : IndexDescription

+type : ModelChunkType

+facts : FactAggregation

+adaptor : AdaptationScript

ModelChunk

+firstRule : ProductionRule

AdaptationScript

Figure 6.3: The structure of model chunks

Aside from the standard description attribute - which all reusable RORE knowledge
structures share - Model Chunks have the following additional attributes.

Type links the Model Chunk to the Model Chunk Type which it instantiates.

Facts aggregates the Facts which the Model Chunk comprises. Facts are aggregated
through a Fact Aggregation, which provides a layer of indirection between Model
Chunks and the Facts themselves. Each Fact Aggregation aggregates multiple Facts
of a particular Fact Type. In the case of Model Chunks, the Fact Aggregation must
satisfy the cardinality constraint which is imposed by the Model Chunk Type for the
corresponding Fact Type.

Adaptor is an optional attribute which allows the knowledge engineer to specify
an Adaptation Script which can be applied to reify the Model Chunk for a given set
of facts. The Adaptor cannot be utilised independently of the Model Chunk. When
applying a Model Chunk to a target model, requirements engineers may need to reify
the Model Chunk to fit the particular circumstances of its reuse context. Adaptation
Scripts enable knowledge engineers to specify sequences of transformations through
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which this reification can be automated, where this is possible. It should be noted that
the current RORE prototype does not implement Adaptation Scripts.

6.2.3 Production Scripts

A major goal in designing the RORE framework was to offer support for procedural
reuse to complement the declarative reuse of the Domain Theory. This goal was moti-
vated by the claim of this thesis that procedural reuse is inherently more general than
declarative reuse. Production Scripts provide an implementation of procedural reuse
to satisfy this design goal.

The design of Production Scripts in RORE is heavily influenced by that of POSE
problem transformations [HRJ08]. However, POSE operates by matching structures in
a concrete problem description to the conclusion of a problem transformation, and then
substituting the matched structure by the premise of that transformation. By contrast,
RORE defines a number of operators through which is expressed the process by which
a transformation can be realised. Compositions of these operators are encapsulated as
Production Scripts.

Figure 6.4 illustrates the structure of Production Scripts, and of Production Rules
from which Production Scripts are composed.

-description : IndexDescription

-inputQuery : SPARQLSelectQuery

-firstRule : ProductionRule

ProductionScript

+inputQuery : SPARQLSelectQuery

+productionExpression : string

+nextRule : ProductionRule

ProductionRule

Figure 6.4: The structure of production scripts

Production Scripts themselves have two attributes:

• inputQuery is used by the Production Script to select from the source model
the set of facts which the Production Script should transform. The inputQuery

is expressed as a SPARQL-DL Select query [SP07], again using Derivo’s syntax
[Sys12]. SPARQL-DL Select queries are analogous to SQL Select queries in
that they return a set of OWL Axioms which satisfice the query. Section 4.3.2
described the internal design of the prototype RORE Production Engine, which
has an internal Production Dictionary. Facts which are selected by the input-

Query of a Production Script are copied into this Production Dictionary where
they are transformed by the script.
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• firstRule is a pointer to the first Production Rule in the Production Script: the
starting point for the transformation which the Production Script enacts. Produc-
tion Rules within a Production Script are organised into a linked list.

Production Rules, from which Production Scripts are composed, have three at-
tributes:

• inputQuery is used by individual Production Rules to select, from the set of
Facts that were retrieved into the Production Dictionary by the inputQuery of
the Production Script, the specific Facts which that particular Production Rule
will transform;

• productionExpression provides a textual description (the “source code”) of the
transformation which the Production Rule represents. The syntax for specifying
the productionExpression is described below;

• nextRule provides a pointer to the next Production Rule in the linked list of
Production Rules which defines the body of the Production Script.

Production Expressions in RORE are specified through a specialised and novel
transformation language. Each Production Expression comprises three main elements:

• A label which is the name of the value, defined in the Production Dictionary,
which will be returned as the result of the Production Script;

• A sequence of declarations which declare variables which the Production Script
will transform and specify the initial value for each. The value may either be a
reference to an object in the Production Dictionary, or it may be a literal value,
or it may be the result of creating a new Fact;

• A sequence of productions which are the operations that collectively comprise
the production rule.

Every production in a Production Expression is either an assignment or an iteration:

• Assignment operations update labels in the Production Dictionary with a new
value;

• Iteration operations perform a specified sequence of transformations for each
element in a value of type list.
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Three kinds of value are defined in the Production Expression language:

• Literal values which must be primitives (strings, integers or Boolean values);

• Objects which are references to complex knowledge structures such as lists or
RORE Facts;

• Fact Creation statements which create new Facts of the specified type.

The Backus-Naur grammar for Production Expressions is given below.

〈production exp〉 ::= 〈label〉 ‘< (’ (〈declaration〉 ‘;’)* ‘) < (’ (〈production〉 ‘;’)*
‘)’

〈declaration〉 ::= ‘VAR{’ 〈label〉 ‘,’ 〈value〉 ‘}’

〈production〉 ::= 〈iteration〉 | 〈assignment〉

〈iteration〉 ::= ‘[’ 〈label〉 ‘<-’ 〈list-value〉 ‘*:’ (〈production〉 ’;’)* ‘)’

〈assignment〉 ::= ‘ASSIGN{’ 〈label〉 ‘,’ 〈value〉 ‘}’

〈value〉 ::= 〈label〉 | 〈fact creation〉 | 〈object〉

〈object〉 ::= 〈literal〉 | 〈list-value〉 | 〈fact〉

〈label〉 ::= 〈name〉 ( ‘.’ 〈name〉 )*

〈name〉 := [a-Z]([a-Z0-9 ]*)

〈literal〉 ::= 〈boolean〉 | 〈integer〉 | 〈string〉

〈fact creation〉 ::= ‘CREATE{’ 〈label〉 ‘,’ 〈fact-type-label〉 ‘}’

〈list-value〉 ::= 〈label〉

〈special-var〉 ::= ‘RESULTSET’ | ‘name’ | ‘iri’ | ‘factType’

〈fact-type-label〉 ::= 〈label〉
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6.2.4 Elicitation Stimuli

The introduction of Elicitation Stimuli into RORE was intended as a means of ab-
stracting the knowledge which underpins the Fact Acquisition Dialogue in Maiden’s
earliest versions of the Domain Theory [Mai92] and of the Requirements Capturer in
later versions of the AIR toolset [SM98]. In the Domain Theory, facts are elicited from
the user through a computer-directed dialogue. AIR prompts a user to input facts of a
particular kind at key moments in time, and the user responds by using the provided
interfaces to input the requested knowledge. Specialised dialogues are used to elicit
instances of the particular set of fact types and reusable abstractions which the Domain
Theory prescribes [Mai92, Sut02].

However, RORE has no in-built knowledge of any pre-defined fact types, beyond
those discussed in this chapter, and assumes no reusable knowledge structures. Con-
sequently, if RORE is to provide a procedure for communicating with information
sources outside of the RORE framework itself (the requirements engineer is considered
internal to the RORE framework, as they are responsible for enacting its processes),
then a procedure is also required to reify the computer-directed dialogue for the needs
of a specific context.

Elicitation Stimuli are a kind of reusable abstraction which hold the declarative
knowledge needed to inform this reification. The concept of an “elicitation stimulus”
was introduced by [SW90], who provide a detailed cognitive account of the knowledge
acquisition process. According to this account, a knowledge engineer uses “elicitation
stimuli” to prompt a response from domain experts, and so to elicit knowledge from
them. These stimuli are derived from that knowledge which has already been acquired
during prior elicitation cycles.

The structure of Elicitation Stimuli is given in Figure 6.5.
Figure 6.5 shows three specialised types of Elicitation Stimulus: the Fact Editing

Stimulus, the Chunk-based Stimulus and the Multiple Choice Stimulus. The original
specification of RORE defined just one type of Elicitation Stimulus which had the same
structure as the Chunk-based Stimulus. However, evaluation of the RORE prototype
indicated the need to support different types of response structure and so the three
specialised types of Elicitation Stimulus, shown in Figure 6.5, were developed.

All three types of Elicitation Stimulus share in common two attributes, in addition
to the standard Index Description attribute:

• contextualSummary is a string attribute which provides a textual description of
the Modeling Context to which the Elicitation Stimulus is applicable. Through



188 CHAPTER 6. THE KNOWLEDGE STRUCTURES OF RORE

+indexDescription : IndexDescription

+contextualSummary : string

+stimulus : string

ElicitationStimulus

+selectionQuery : SPARQLSelectQuery

FactEditingStimulus

+responseChunkType : ModelChunkType

+adaptationScript : AdaptationScript

ChunkBasedStimulus

+optionSelectionQuery : SPARQLSelectQuery

MultipleChoiceStimulus

Figure 6.5: The structure of elicitation stimuli

this attribute, the Elicitation Stimulus provides to the requirements engineer
broad contextual knowledge which may be useful in responding to the stimu-
lus.

• stimulus is a string attribute which provides a textual description of the stimulus
itself (usually a question about the target model or the requirements scenario
being modelled).

In addition to these common attributes, each type of Elicitation Stimulus defines
additional attributes which configure the structure of the response.

The Fact Editing Stimulus presents to the requirements engineer a set of Facts,
selected from the source model, and asks the user to reify them to suit the target model.
The Fact Editing Stimulus has just one additional attribute - selectionQuery - which is
a SPARQL-DL Select query which stipulates the Facts which should from the source
model that are to be presented to the user.

The Chunk-based Stimulus requests a user to provide a response in the form of a
Model Chunk. The Chunk-based Stimulus defines two addition attributes:

• responseChunkType stipulates the Model Chunk Type to which the response
Model Chunk must conform. It defines the structure of the Model Chunk, and is
also used in the RORE prototype to configure the Chunk Manager to provide an
intuitive interface through which to specify the response chunk.
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• adaptationScript points to an optional Adaptation Script (which reusable Model
Chunks also optionally stipulate). The Adaptation Script stipulated by a Chunk-
based Stimulus is used to perform any post-processing on the response chunk,
as deemed appropriate by the knowledge engineer when specifying the Chunk-
based Stimulus.

The Multiple Choice Stimulus presents to the requirements engineer a set of Facts
as optional responses to the stimulus question. The optionSelectionQuery attribute
specifies a SPARQL-DL Select query through which are selected the Fact options that
will be presented to the requirements engineer.

6.2.5 Index Descriptions

Index Descriptions capture meta-data about the range of requirements Modeling Con-
texts to which a reusable knowledge structure in RORE is likely to be applicable. They
formalise statements about each of these facets of a reusable knowledge structure so
as to support the efficient retrieval of reusable knowledge structures that will likely be
applicable to resolving a particular Information Requirement.

The question of how to organise RORE’s knowledge bases to support both ef-
fective and efficient knowledge retrieval has been a significant challenge in design-
ing RORE. Recent advances in search algorithms (such as the analogical algorithms
[Fin88, Mai92] which Chapter 2 reviewed, and recommender systems [AT05] have
mitigated against the need for classification schemas for organising knowledge bases
because, as search algorithms have evolved, the focus has shifted from requiring users
to select components manually towards using intelligent algorithms to retrieve context-
relevant components. Taxonomies may still be relevant because they provide a compu-
tationally cheap way of narrowing down the pool of candidates over which more pre-
cise search algorithms will operate, as in the Domain Theory [Mai92, SM98, Sut02].
However, taxonomies in modern reuse libraries are intended for computational, rather
than human, consumption.

In designing the retrieval process for RORE and, accordingly, the indexing system
this research took all of these historical developments into account. As 5 discussed,
RORE adopts the filtering approach taken by the Domain Theory’s AIR tool. The
goal of retrieval in RORE is to identify reusable knowledge structures which will be
applicable to satisfy an information requirement in the context of a given source and
target model. Thus this thesis sought to identify properties of a Modeling Context (see
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Section 6.4.2) which could be used to rapidly filter out all reusable structures which
are not appropriate in the current context.

This review of requirements reuse presented by Naish and Zhao [NZ11] identifies
three main aspects of a Modeling Context are particularly salient for the retrieval of a
reusable knowledge structure:

• The Requirements Task which is currently being enacted by the requirements
engineer;

• The Problem Domain which is currently being modelled;

• The level of abstraction at which the reusable structure is described.

Figure 6.6 illustrates the structure of an Index Description.

+phaseCondition : Phase

+activityCondition : Activity

+transformsFactType : FactType

+producesFactType : FactType

+preConditions : MatchingCondition

+postConditions : MatchingCondition

+triggerConditions : MatchingCondition

IndexDescription MatchingCondition

+contextElement : string

+conditionChunk : ModelChunk

ChunkCondition

+contextElement : string

+conditionRule : AnalysisRule

RuleCondition

Figure 6.6: The structure of index descriptions

Index Descriptions define seven key attributes. The Matching procedure tests each
of these in turn against the current Modeling Context and Information Requirement in
order to determine whether or not a reusable knowledge structure matches that context.
The first four attributes support very lightweight equality checks (direct string compar-
isons between the Index Description and the Modeling Context). This allows unlikely
matches to be ruled out rapidly and cheaply:

• phaseCondition indicates that a reusable knowledge structure is applicable to a
particular Phase of a requirements engineering method and so allows a match to
be dismissed on the grounds that a reusable knowledge structure is not appropri-
ate in the current Phase;

• activityCondition links a reusable knowledge structure to a particular Activity
so that it can be ruled out as a match in the event that it is not applicable to that
Activity;
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• transformsFactType stipulates the types of Fact which a reusable knowledge
structure seeks to transform (recall that reusable knowledge structures transform
input Facts into new sets of Facts). This allows, as a kind of simple precondition,
the Matching Engine to check that Facts of the necessary type are available in
the source model to enable a Transformation to be applied successfully.

• producesFactType specifies the types of Fact which a reusable knowledge struc-
ture produces. This is matched against the Information Requirement to ensure
that the the reusable knowledge structure will satisfy the goal of the current
Analysis-Action cycle.

The final three attributes (pre-, post-, and triggerConditions) allow for the fine tun-
ing of a match, but are more costly:

• preConditions describe conditions over a Model which must hold true in order
for application of the reusable knowledge structure successfully to satisfy the
Information Requirement;

• postConditions describe conditions over a Model which describe what will hold
true if the reusable knowledge structure was applied successfully;

• triggerConditions describe conditions over a Model which indicate that this
reusable structure should be applied in the current context.

Conditions which are assigned to these final three attributes can be expressed through
one of two condition types:

• Chunk Conditions express conditions over Models in the form of Model Chunks.
Chunk Conditions are evaluated against a Model using the Analogical Matcher

described in Section 5.8.3. The conditionChunk attribute of a Chunk Condition
indicates a Model Chunk which should be analogically valid for the given Model
in order for the Model to satisfy the Chunk Condition.

• Rule Conditions express conditions over Models in the form of Analysis Rules.
Rule Conditions are evaluated against a Model in the same way that Analysis
Rules are. The Analysis Rule defines the rule which a Model should satisfy in
order to satisfy the condition as a whole.

Both types of condition also specify a contextElement attribute which indicates
whether the condition should be tested against the source or target model.
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6.3 Knowledge Structures for Metamodeling

The main purpose of RORE as a whole is to produce requirements models by reuse.
However, as discussed in Chapter 3, RORE abstracts away from the details of any
specific requirements modeling method in order to support a range of different nota-
tions. However, RORE requires some knowledge modeling formalism through which
reusable chunks of declarative requirements knowledge can be (semi-)formally spec-
ified. RORE therefore introduces a metamodeling layer through which requirements
RORE can be extended to support specific modeling notations without building knowl-
edge of that notation into the RORE framework itself. It is at this layer that the Model,
Chunk and Fact Types are defined, and it is this layer of RORE with which the Knowl-
edge Engineering perspective is predominantly concerned.

This thesis sought to adapt existing work to suit the needs of the RORE frame-
work. This work draws in particular on the Telos knowledge representation framework
[MBJK90] and on the Object Modeling Group’s MetaObject Facility (MOF) [Gro11]
which is the meta-modeling framework used to define the UML [Gro09] and other
OMG specifications. Figure 6.7 shows the RORE knowledge structures through which
metamodeling is achieved.

The first knowledge structure which is defined in the metamodeling layer of RORE
is the Model Type. The Model Type aggregates together all of the Fact Types through
which knowledge can be expressed within a particular requirements modeling notation.
The Model Type comprises two attributes:

• A name which corresponds to the name of the requirements modeling notation
which this Model Type represents (e.g. i* or KAOS);

• comprisesTypes is a list of Fact Type aggregations through which the Model
Type is associated with the Fact Types which it comprises.

Fact Type Aggregations provide a layer of indirection between the Model Chunks
and Facts themselves, and comprise a single attribute (aggregatesType) which is a
pointer to the Fact Type which they aggregate.

Mirroring the schema through which Model Types are defined, the metamodeling
layer of RORE also provides support for defining Model Chunk Types. Model Chunk
Types broadly mirror Model Chunks in structure (the comprisesFactType attribute of a
Model Chunk Type plays the same role as the Model Type’s comprisesType attribute),
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Figure 6.7: Knowledge structures for metamodeling
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but are distinguished from Model Types as they entail additional constraints: partic-
ularly a cardinality constraint which limits the granularity of a Model Chunk. This
cardinality constraint is stipulated for each Fact Type in a Model Chunk Type through
the cardinality attribute of the Chunk Fact Type Aggregation. The Chunk Fact Type
Aggregation is a specialisation of the Fact Type Aggregation.

Both Fact Type Aggregations, and Chunk Fact Type Aggregations, aggregate Fact
Types through their aggregatesType attribute. Fact Types are divided into two sub-
classes: Complex Fact Types and Simple Fact Types. Complex Fact Types aggregate
Simple Fact Types into larger structures of arbitrary complexity. They comprise two
attributes:

• A name which defines the public identifier of the Fact Type;

• comprisesProperyType which identifies the Property Types that the Complex
Fact Type aggregates.

It is through Property Types that Complex Fact Types aggregate less complex Fact
Types. Property Types are used to provide a name to the binary relationship which
holds between a Complex Fact Type and another Fact Type. A Complex Fact Type
may be related to any one Fact Type through multiple Property Type relations. Property
Types define two attributes:

• A name which identifies the Property Type;

• factType which identifies the Fact Type of the value of this Property Type.

Ultimately, all Complex Fact Types are hierarchical aggregations of Simple Fact
Types. Simple Fact Types have just one value which must a primitive value (string,
Boolean, or integer). Simple Fact Types have two attributes:

• A name which identifies the Simple Fact Type;

• A primitiveType which points to the kind of primitive value that instances of this
Fact Type may have.
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6.4 Structures for Representing Requirements Knowl-
edge

6.4.1 Facts and Models

Requirements Models in RORE are instantiations of the Model Types which are de-
fined at the meta-level as discussed in the previous section. Models are the primary
concern of the Requirements Engineering perspective. Figure 6.8 illustrates the struc-
ture of Models in RORE.

+type : ModelType

+aggregatesFacts : FactAggregation

Model

+aggregationType : FactTypeAggregation

+aggregatedFacts : Fact

FactAggregation
Fact

+type : ComplexFactType

+properties : Property

ComplexFact

+type : SimpleFactType

+value

SimpleFact

+type : PropertyType

+value

Property

1

*

1
*

Figure 6.8: Knowledge structures for modeling

The structure of Models in RORE was dictated primarily by that of Model Types.
The hierarchy of individuals which form a Model precisely reflects the hierarchy of
types which form a Meta-model in RORE (see Figure 6.9).

FactType PropertyTypeFactTypeAggregationModelType

Model FactAggregation Fact Property

Figure 6.9: Symmetry between the structure of RORE’s meta-model and model layers

Thus, for each type class (ModelType, FactType, PropertyType) defined at the
meta-level, an individual class is defined at the Model-level. The exception is the
Model Chunk, which is defined in the reuse library.
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Models in RORE comprise aggregations of Facts. Models have two attributes:

• type is a pointer to the Model Type which this Model instantiates. The Model
Type defines the general structure for the Model;

• aggregatesFacts is a pointer to a set of Fact Aggregations through which this
Model aggregates Facts.

Fact Aggregations also have two attributes:

• aggregationType is a pointer to the particular Fact Type Aggregation which
this Fact Aggregation instantiates. The Fact Type Aggregation which a Fact
Aggregation instantiates must be valid for the Model Type which is instantiated
by the Model to which that Fact Aggregation belongs.

• aggregatedFacts is an attribute which points to the list of all Facts that are ag-
gregated by this Fact Aggregation. All of the Facts which are aggregated by a
single Fact Aggregation must be of the same Fact Type, and that Fact Type must
be the one which is specified by the Fact Aggregation type.

Facts in RORE fall into two subtypes: Complex Facts and Simple Facts, mirroring
the distinction made in the metamodeling layer. Complex Facts have two attributes:

• type is a pointer to the Complex Fact Type which this Complex Fact instantiates;

• properties is a pointer to each of the Property instances which this Complex
Fact Type aggregates.

Properties at the Model-level instantiate the Property Types which are associated
with a Complex Fact Type at the meta-level. Instantiation of a Property Type involves
assigning a value to that Property Type for a particular Complex Fact. Properties de-
scribe these instantiations. They comprise two attributes:

• type is a pointer to the Property Type which this Property instantiates;

• value is a pointer to the Fact which is assigned as the value of this Property.

Finally, Simple Facts are the primitive knowledge structures from which Complex
Facts are aggregated, mirroring the aggregation of Simple Fact Types into arbitrarily
Complex Fact Types. They are defined by two attributes:

• type which points to the Simple Fact Type that this Simple Fact instantiates;

• value which points to the primitive value of this Simple Fact.



6.4. STRUCTURES FOR REPRESENTING REQUIREMENTS KNOWLEDGE197

6.4.2 Defining the Modeling Context

In RORE, the terms “Modeling Context” and “Contextual Knowledge” are used to
refer collectively to the sum total of knowledge which consistutes the state of the re-
quirements engineering process at a given instant in time. The Modeling Context is
therefore primarily relevant to the Requirements Engineering perspective. This in-
cludes both domain knowledge, captured in the form of the source and target model,
and information about the requirements engineering process itself, in particular the
current Information Requirement. Contextual Knowledge is stored in working mem-
ory, and largely instantiates the knowledge which is defined in Long-Term Memory.
With the exception of the Information Requirement, the Modeling Context contains no
knowledge for which this is not true.

A Modeling context, therefore, is an aggregate knowledge structure which aggre-
gates the knowledge that a requirements engineer uses to undertake a particular mod-
eling activity. This is illustrated in Figure 6.10

+phase : Phase

+activity : Activity

+informationRequirement : InformationRequirement

+sourceModel : Model

+targetModel : Model

ModellingContext

+hasCycleGoal : FactType

+hasCyclePostcondition : SPARQLAskQuery

InformationRequirement

Figure 6.10: The structure of modeling contexts

A Modeling Context aggregates five attributes which collectively define the current
state of working memory:

• phase represents the current Phase in which the requirements engineer is en-
gaged within the Requirements Engineering perspective. phase points to a par-
ticular Phase which is defined in long-term memory;

• activity represents the current Activity of the requirements engineer at a given
moment in time. It is a pointer to an Activity which is part of a particular re-
quirements method that is defined in long-term memory;

• informationRequirement points to the Information Requirement which was
generated during the current Analysis-Action cycle. Information Requirements
specify the goal of a RORE cycle. Their structure is defined more fully below;
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• sourceModel points to the Model from which information is to be extracted to
support refinements during the current requirements engineering Activity;

• targetModel points to the Model in working memory which the current require-
ments engineering Activity aims to refine.

The structure of Information Requirements is also illustrated in Figure 6.10. Infor-
mation Requirements have two attributes:

• hasCycleGoal which points to the Fact Type which the current Analysis-Action
cycle is primarily concerned with producing. This attribute is compared against
the producesFactType attribute of Index Descriptions during matching;

• hasCyclePostcondition which records the SPARQL-DL Ask condition of the
Analysis rule from which the Information Requirement was generated. The post-

Condition of an Index Description satisfies an Information Requirement if it is
logically equivalent to this attribute of the current Information Requirement.

6.5 Modeling the Requirements Engineering Process

Section 6.2.5 discusses how different properties of an index description are used during
knowledge structure retrieval to rapidly reduce the size of the pool of candidate knowl-
edge structures. Procedural modeling in RORE is motivated by this filtering process, as
it provides a landscape within which a particular modeling context can be situated. In-
dex descriptions point to the behavioural units for which associated reusable structures
are relevant. The modeling context also references the phase and activity associated
which are currently being enacted by a particular RORE session. This arrangement
facilitates the matching of reusable structures to modeling contexts.

It is common in the literature on software methodology to define requirements
methods at two levels of abstraction. The Booch method, for instance, distinguishes
macro-processes, which consist of sequences of engineering phases, from micro-processes
RORE models, which are lower-level activities that are enacted iteratively to realise the
goals of a phase. RORE models requirements engineering processes at three levels of
abstraction:

• Phases are coarse-grained, high-level behavioural units which produce an arte-
fact, or set of artefacts, of a particular kind;
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• Activities are finer-grained, lower-level activities which interact are carried out
collectively to realise the goals of a phase;

• Refinements are the lowest-level form of procedural specification representing
individual changes to requirements models. Refinements are represented by the
reusable structures described in Section 6.2 and are enacted by RORE’s require-
ments tasks so they are not discussed further here.

Phases and Activities are treated in RORE as specialisations of the more general
concept of a “Behavioural Unit”. This decision was made to support extensibility in fu-
ture versions of RORE, to allow modeling of process at arbitrary levels of abstraction.
Figure 6.11 shows the structure of Phases and Activities in RORE:

+name : string

+nextPhase : Phase

+firstActivity : Activity

Phase
+name : string

+producesModelsOfType : ModelType

+fromModelsOfType : FactType

+nextActivity : Activity

Activity

1 *

BehaviouralUnit

Figure 6.11: Knowledge structures for modeling the RE process

Phases have three attributes:

• A name by which the Phase is known to requirements engineers;

• nextPhase indicates the Phase which follows this Phase in the requirements en-
gineering method of which this Phase is a part;

• firstActivity which indicates the Activity that starts the process by which this
Phase is realised.

Activities are defined by the following four attributes:

• A name by which the Activity is known to requirements engineers;

• producesModelsOfType indicates the type of target models which this Activity
aims to produce or refine;
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• fromModelsOfType indicates the type of source models from which this Activ-
ity produces target models;

• nextActivity indicates the Activity which immediately follows this Activity in
the Phase of which this Activity is a part.

6.6 Summary

This chapter described the knowledge structures through which requirements knowl-
edge is represented in RORE. Knowledge specifications in RORE are described at three
layers of abstraction, as discussed in Section 3.5.1. At the highest level of abstrac-
tion (the Immutable Layer), the RORE schema defines the structures through which
knowledge is specified in the lower layers of abstraction. The Meta Layer instantiates
a subset of the knowledge structures which are defined in the Immutable Layer in order
to support the Knowledge Engineering view of RORE. At this layer, knowledge struc-
tures are instantiated in order to describe meta-models for the requirements modeling
notations and requirements engineering methods which RORE will support, as well as
the construction of libraries of reusable requirements knowledge structures. Finally,
the lowest layer - the Modeling Layer - instantiates a subset (non-overlapping with the
knowledge structures that are instantiated at the Meta Layer) of the Immutable Layer
knowledge structures in order to support the definition of concrete, project-specific re-
quirements models. The Modeling Layer also supports the instantiation of knowledge
structures which define the current state of working memory at a particular point in
time during a particular RORE session. All knowledge structures in RORE - at every
layer of abstraction - are fully formalised using the Web Ontology Language (OWL)
knowledge formalism [BVHH+04].



Chapter 7

Representing Reusable RE
Knowledge:
The KE Viewpoint

7.1 Introduction

This chapter describes a novel procedure for producing ISMs (Information System
Models) from OSMs (Object System Models). The procedure uses a combination of
heuristics (procedural reuse) and patterns (declarative reuse) to achieve the transfor-
mation. Because of the mix of reasoning styles on which the procedure depends, this
thesis considers it to be the prototype of an effective RORE procedure. This chap-
ter demonstrates how a requirements activity and the knowledge which underpins that
activity can be formalised using the RORE approach. This chapter first presents a
refined version of the Domain Theory’s meta-schema for describing OSMs. Next,
this chapter presents a novel representation schema for describing software specifica-
tion knowledge in the form an ISMs. Finally, this chapter describes the procedure for
transforming between these two requirements modeling notations. These three com-
ponents have each been formalised using RORE, and the resultant long-term memory
knowledge base is presented in full in Appendix B.
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7.2 Representing Software Requirements

This case study uses a refined version of Sutcliffe and Maiden’s Domain Theory meta-
schema and OSM library to model requirements. Chapter 2 briefly summarises the Do-
main Theory as Sutcliffe and Maiden defined it [SM98, Sut02]. This section presents
the refined version of the modeling formalisms which underpin the theory. Figure 7.1
presents the refined meta-schema:
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Figure 7.1: The Refined Domain Theory Meta-schema

The most radical refinements occurred at the highest-level, although this research
also made some lower-level refinements. The significant changes are as follows:

• The introduction of a Domain fact type which aggregates all of the facts for an
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individual concrete domain. A complex application domain model will aggre-
gate multiple domains;

• The introduction of a Domain Type fact type which enumerates the kinds of
domain (Physical, Conceptual, Financial) that an OSM might model;

• The introduction of a Domain Goal fact type which enumerates a set of reusable,
pre-defined goal states from which a domain can be composed;

• The redefinition of the State Transition fact type so that state transitions can
transform either primary or secondary states;

• The generalisation of the Secondary State fact type so that secondary states ag-
gregate properties and their values;

• The introduction of three new Agent Subtypes: Human, Software, Peripheral
Device.

These refinements are clear when the modified metaschema (as in Figure 7.1) is
compared to Sutcliffe and Maiden’s original metaschema as illustrated in Figure 2.1
and reproduced in Figure 7.2.
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Figure 7.2: The Domain Theory’s meta-schema for expressing domain knowledge as
described in [SM98]
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For those fact types which were defined in Sutcliffe and Maiden’s meta-schema
for representing domain knowledge [SM98], the definition of the fact type remains
unchanged unless specified otherwise.

The remainder of this section gives detailed definitions for those fact types which
are novel in the refined OSM meta-schema (Domain, Domain Type, Domain Goal,
Agent Subtype).

7.2.1 Domains

Domains are the highest-level fact type within the restructured meta-schema. Each
Domain has a single Domain Goal, through which the Domain aggregates the facts
that describe its structure and behaviour. They also have a Domain Type attribute
which denotes whether the domain is physical, conceptual or financial. Finally, they
have an attribute “Monitored” which has a Boolean value and denotes whether or not
the to-be software system is to gather information about, and report on, this domain.

7.2.2 Domain Goals

Goal Type Description
Allocation An activity in which a planned (but currently unrealised)

association is created between a set of key objects and a
target structure.

Control An activity in which one key object representing a mes-
sage is passed to a second key object, representing a re-
source, causing that resource to adjust its behaviour.

Composition An activity in which one set of key objects is aggregated
to produce a new set of composite key objects.

Decomposition An activity in which a set of composite key objects is
disaggregated to produce a set of component key objects.

Manipulation An activity in which a controlling agent performs actions
in order to transform the secondary state of a set of key
objects.

Sensing An activity in which some Agent must detect and moni-
tor changes in either the primary or secondary state of a
key object.

Transfer An activity in which a key object is transferred in some
sense from a source structure to a target structure.

Table 7.1: Domain Goals, derived from top-level OSMs
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Domain Goals are reusable abstractions, analogous to OSMs in that they represent
high-level abstractions which describe commonly occurring goals and structures across
a range of domains. This research identifies eight atomic Domain Goals which are
derived from the top-level OSM families identified by Sutcliffe and Maiden [SM98]
(see Figure 2.2). The Domain Goals are described in Table 7.1.

Each Domain Goal is defined by a single goal state, which in turn consists of an
initial state, a goal state and a set of transitions which take the system represented by
the Domain Goal from the initial state to the goal state. Domain Goals, then, have
all of the structure which the original OSM library defined. However, Domain Goals
contain no information about the type of domain within which they occur.

Goal Type Defining Concept Representation
Allocation Relationship to Slot Structural Relationship

Control A Behaviour -
Composition A Composition Relationship Between Key Objects

Decomposition A Composition Relationship Between Key Objects
Manipulation A Secondary State A Secondary State

Sensing A State Secondary State
Transfer Location Structural Relationship

Table 7.2: Domain Goals are characterised semantically by Defining Concepts

Within the refined Domain Theory, each Domain Goal is associated with a defining
concept which is the key concept which is which must be grasped in order to acquire
a semantic understanding of the goal. Defining concepts are the elements of a domain
which are transformed by the state transitions within that domain and so define the
subject matter of that domain. The defining concepts for each Domain Goal are shown
in Table 7.2.

7.2.3 Domain Types

We identify four Domain Types. These are presented in Table 7.3:
Domain Types provide additional context for Domain Goals by providing semi-

formal definitions for the defining concepts of each Domain Goal. Each Domain Type
is associated with a library of reusable object properties and relationship types from
which these definitions are constructed. Table 7.4 presents the definition for each defin-
ing concept where these can be fixed a priori.

The primary advantage of the Domain Type library in the refined version of the
Domain Theory is that it supports the introduction of a rich body of knowledge about
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Domain Type Description
Physical A domain which is grounded in the physical, material

world
Conceptual A domain which is rooted, at some level, in the physical

world, but which is abstract and consists predominantly
of informational structures and resources

Physical Financial A domain grounded in the physical, material world but
in which objects are of interest primarily because they
have some economic value

Electronic Financial A conceptual domain in which conceptual objects have
financial value. This includes domains in which financial
transactions are processed electronically

Table 7.3: Domain Types, derived from key object types, define the nature of entity to
which objects within a domain pertain

different kinds of domain. This knowledge is in addition to the general knowledge
which is provided by the Domain Goal, and the context-specific knowledge which
is provided by the Requirements Engineer. As Section 7.4 discusses, this additional
knowledge can be utilised by reuse designers and model generators in order to reason
about software solutions to the domain problems which Domain Goals represent. Fur-
thermore, this knowledge can be assumed to be relatively stable. This is because each
Domain Type, in essence, represents a particular kind of system, each of which has
been studied from a scientific perspective over several centuries. Table 7.5 shows the
academic and scientific disciplines which have studied the types of system represented
by each Domain Type:

Because of the nature of scientific discourse, each of these disciplines has de-
veloped a relatively stable ontological understanding of the systems which they each
study. It is from these scientific bodies of knowledge that this research identified the
reusable properties which are associated with each Domain Type. The International
System of Units (SI) was a particularly useful resource for defining the Physical Do-
main Type as it provides a readily-available list of standard properties for different
aspects of chemical and physical entities. However, this research also drew on a range
of other literature from the disciplines identified in Table 7.5 in constructing the refined
Domain Type library. Table 7.6 summarises the most commonly useful properties for
each Domain Type.



7.2. REPRESENTING SOFTWARE REQUIREMENTS 207

D
efi

ni
ng

C
on

ce
pt

Ph
ys

ic
al

C
on

ce
pt

ua
l

Ph
ys

ic
al

Fi
na

nc
ia

l
E

le
ct

ro
ni

c
Fi

na
n-

ci
al

Sl
ot

Ph
ys

ic
al

L
oc

at
io

n
-

Ph
ys

ic
al

Fi
na

nc
ia

l
L

oc
at

io
n

E
le

ct
ro

ni
c

Fi
na

nc
ia

l
L

oc
at

io
n

-
-

-
-

-
C

om
po

si
tio

n
Ph

ys
ic

al
Pr

ox
im

ity
M

at
he

m
at

ic
al

/L
og

i-
ca

lR
el

at
io

ns
hi

p
A

dd
iti

on
/

Su
bt

ra
c-

tio
n

A
dd

iti
on

/
Su

bt
ra

c-
tio

n
Se

co
nd

ar
y

St
at

e
D

efi
ne

d
by

Ph
ys

ic
al

Pr
op

er
tie

s
D

efi
ne

d
by

C
on

ce
p-

tu
al

Pr
op

er
tie

s
D

efi
ne

d
B

y
Ph

ys
ic

al
Fi

na
nc

ia
lP

ro
pe

rt
ie

s
D

efi
ne

d
B

y
E

le
c-

tr
on

ic
Fi

na
nc

ia
l

Pr
op

er
tie

s
L

oc
at

io
n

X
,Y

an
d

Z
Po

si
tio

ns
L

og
ic

al
Pa

th
an

d
Ph

ys
ic

al
(I

P)
ad

-
dr

es
s

B
an

k
A

cc
ou

nt
,C

us
-

to
m

er
,

M
er

ch
an

t,
Ti

ll

B
an

k
A

cc
ou

nt
N

um
-

be
r,

So
rt

co
de

Ta
bl

e
7.

4:
D

om
ai

n
Ty

pe
s

pr
ov

id
e

m
or

e
co

nc
re

te
de

fin
iti

on
s

fo
rt

he
de

fin
in

g
co

nc
ep

ts
as

so
ci

at
ed

w
ith

ea
ch

D
om

ai
n

G
oa

l



208 CHAPTER 7. THE KE VIEWPOINT

Domain Type Related Disciplines
Physical Physics, Chemistry
Conceptual Information Science, Computer Science, Mathematics
Physical Finan-
cial

Economics, Business, Financial Science

Electronic
Financial

Economics, Business, Financial Science

Table 7.5: Domain Types represent types of system which are studied by a range of
scientific disciplines

Domain Type Property Values Unit

Physical

Length Real Number Metre
Height Real Number Metre
Width Real Number Metre
X Position Real Number Point
Y Position Real Number Point
Z Position Real Number Point
Mass Real Number Kilogram
Temperature Real Number Kelvin, Celsius,

Fahrenheit

Conceptual

Quantity Real Number Bit
Physical Loca-
tion

IP Address -

Logical Location File Path -
Structure Attribute Type

List
-

Financial Value Double Currency
Currency EUR, GBP,

USD...,
-

Electronic
Financial

Account Number Formatted String -
Sort Code Formatted String -

Table 7.6: Domain Types are associated with libraries of pre-defined reusable proper-
ties which add semantic value to a domain model
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7.2.4 Agent Types

Agent Type Related Disciplines
Human A human actor manually enacts the state transitions

within a domain
Software A software system directly enacts the state transitions

within a domain
Peripheral Device A software system controls a peripheral device to enact

the state transitions within a domain

Table 7.7: Agent Types indicate the kind of actor which enacts the state transitions
within a domain

The restructured Domain Three introduces three Agent Types as presented in Ta-
ble 7.7. These Agent Types add pieces of information to a domain model which begin
to describe the requirements for the to-be system. They denote, in conjunction with
the “Monitored” attribute of a Domain fact, the degree of responsibility which the
to-be-implemented software system has within that Domain. This knowledge is par-
ticularly useful in the later stages of system specification when it is necessary to know
in what way the software system should interact with the domain. The primary dis-
tinction between the “Monitored” attribute and the Agent type is that the “Monitored”
attribute indicates the data and reports which the to-be system must gather and report
on, whereas the Agent Type indicates the extent to which the to-be system will be re-
sponsible for transforming the Domain. Table 7.8 illustrates the generic requirements
that are implied by each Agent Type. These generic requirements are central to the
transformation process, which is outlined in Section 7.4.

Agent Type Generic Requirement
Human None

Software Manipulate the domain to realise the goal state
Peripheral Device Control the Peripheral Device Agent to realise the goal

state

Table 7.8: Agent Types indicate the level of interaction which a software system may
have with the activities within an application domain

There are strict rules governing the Domain Types to which each Agent Type is
applicable. These rules arise from the fact that in order to enact a state transition, an
Agent must have the faculties which are necessary to allow it to enact that transition.
Table 7.9 illustrates which Agent Types are applicable to which Domain Types. In
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general, Software is designed to manipulate information structures which are repre-
sented by conceptual domains, but can also manipulate Electronic Financial domains.
Software has no way, however, to interact with the Physical world, except through
Peripheral Devices (such as printers, card readers, robotic arms, and so on). Thus
Peripheral Devices can interact with Physical Domains, where Software cannot. In
principle, Peripheral Devices can also interact with conceptual structures, but empir-
ically this research found no examples of domains in which this actually occurred.
Human actors have both physical faculties which allow them to manipulate Physical
Domains, and conceptual faculties (brains) which allow reasoning over Conceptual
domains. However, Human interaction with Electronic Financial domains tends to
be through software systems and peripheral devices, so the Human Agent cannot be
considered a primary actor in these Domain Types.

Domain Type Human Software Peripheral Device
Physical X - X

Conceptual X X -
Physical Financial X - X

Electronic Financial - X X

Table 7.9: An overview of the types of agent which can enact an activity in different
types of domain

7.3 Information System Models: An Overview and Ra-
tionalisation

The original formulation of the Domain Theory introduced the concept of an Informa-
tion System Model (ISM) [SM98, Sut02]. According to Sutcliffe [Sut02]:

[ISMs] represent processes that feed off, report on and provide exter-
nal representations of information contained within OSMs...The essential
model of the business...would be modelled in an OSM...The information
system that then tracks the progress [of activities within the OSM]...is han-
dled by [an ISM].

Sutcliffe identifies a library of four highly generic classes of information system,
each of which is specified informally [Sut02]. The approach outlined by Sutcliffe to
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modeling information systems, however, has two significant limitations. Firstly, nei-
ther Sutcliffe [Sut02] nor Maiden [Mai92, SM98] describe a detailed schema through
which information system specifications can be represented. A significant aim of re-
quirements engineering, however, is to incrementally formalise knowledge about the
application domain so that detailed and precise specifications for a software solution
can be written [NE00, Jac01b, Sut02, CA07]. Ideally, these detailed specifications
should indicate the algorithms and data structures which the software system will ul-
timately comprise. The Domain Theory’s approach to Information System Modeling
is inadequate, therefore, because it does not provide any schema through which such
precise specifications of a software system can be represented.

A second limitation lies in the range of software systems which Sutcliffe’s con-
ception of an ISM can model. Sutcliffe considers only that class of software system -
the Information System - which gathers and reports on information [Sut02]. However,
as Jackson notes [Jac01b], a wide range of different kinds of interaction are possible
between a machine and its context. In order for the Domain Theory to have general
applicability, it should be possible to use the framework to model requirements (and
specifications) for software systems which extend beyond simple information gather-
ing and reporting.

Given these limitations, this research was motivated to revisit the ISM concept
and to provide a detailed schema - similar to that which Sutcliffe and Maiden define
for modeling Object Systems [SM98] - which is capable of representing in detail the
specifications for a software system. This schema is presented in Figure 7.3. The
schema assumes an object-oriented approach to software development, in line with the
assumption which fundamentally underpins the original formulation of the Domain
Theory.

An Information System Model (ISM) is designed to provide a detailed software
system specification for a single OSM domain. It consists of four sub-models which
provide an international (Goal Model), structural (Object Model), behavioural (Process
Model) and component (Resource Model) view of the software system. This section
now presents each of these models in turn.

The schema consists of four types of model. However, only three of these actually
represent the software specification itself:

• Object Models describe the software units (object-oriented classes) from which
the Model layer of the new software system will be composed;

• Process Models describe the business activities which the software system will
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Figure 7.3: A Novel Schema for Modeling Information Systems Specifications
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implement in terms of operations over classes defined in the Object Model;

• Resource Models specify the low-level resources from which the software sys-
tem will acquire the data which it processes, and to which the software system
will write data.

The fourth model within the ISM schema, the Goal Model, is actually a subset
of the restructured OSM schema. Each Object System which is defined within an
Object Model, and each Process, is associated with precisely one Goal Model. This
Goal Model provides traceability between an OSM and an ISM, indicating which ISM
specifies software support for each OSM. However, the Goal Model has another role.
According to Jackson, software specifications consist in statements about the relation-
ship between a machine and the domains which that machine supports [Jac01b]. In
line with this approach, the restructured version of the Domain Theory assumes that
OSMs strictly model the application domain and its activities, whereas ISMs model the
software system which supports those activities. The Goal Model provides the link be-
tween these two specifications by defining the relationship that should exist between
the application domain (modelled by the OSM) and the software system (modelled
by the ISM). The relationship is stated in terms of Agent Types, and in terms of the
“Monitored” attribute of the domain fact. Figure 7.4 illustrates this idea.
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Figure 7.4: The relationship between OSMs and ISMs in the refined Domain Theory

7.3.1 The Goal Model

The Goal Model (see Figure 7.5) is a subset of the restructured OSM schema which
Section 7.2 discucssed. This thesis does not, therefore, discuss each fact type in detail.
The primary purpose of the Goal Model is to provide a link between the software speci-
fication which is represented by an ISM and the domain model which is represented by
an OSM. A Goal Model is the first of the models within an ISM to be generated by the
novel transformation procedure as it simply involves extracting significant information
from an OSM. Furthermore, the Goal Model contains the knowledge that is needed to
construct a structural model as well as two pieces of information (the Agent Type and
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Figure 7.5: The Schema for a Goal Model

the “Monitored” attribute of a domain) which tell the transformation procedure what
functionality needs to be specified. The “Monitored” attribute indicates the extent of
reporting that needs to be done on the domain represented by a Goal Model, whereas
the Agent Type indicates the nature of any additional functional requirements which
the transformation procedure should specify. The main function of the Goal Model,
therefore, is to aggregate the information which is needed to bootstrap other models
within the ISM.

The Goal Model consists of four fact types:

• The Domain itself, as discussed in Section 7.2, which contains information about
a single atomic aspect of a complex application domain;

• The Domain Goal which characterises the predominant behaviour within that
atomic domain;

• A set of State Transitions which describe in more detail the behaviour repre-
sented by the Domain Goal;

• An Agent Type which specifies generic functional requirements which must be
specified during the transformation procedure.

7.3.2 The Object Model

Figure 7.6 illustrates the schema for an Object Model, which is part of the more general
ISM schema. An Object Model is, in effect, a simplified version of a UML class dia-
gram and represents the low-level software units from which the new software system
shall be constructed. Its main function within an ISM is to provide a low-level structure
for the grouping of data and operations which transform those data. The transformation
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Figure 7.6: The Schema for an Object Model

procedure which is described by Section 7.4 is a domain-driven approach to software
specification and so the Object Model in an ISM will, in some sense, reflect the ob-
ject structure within the OSM from which that ISM was generated. Each object in an
ISM Object Model is, therefore, a software class which represents some real or imag-
ined entity in the application domain. Collectively, Objects in an Object Model form
the software model which will form the basis of an implementation of the reports and
other functional requirements that are mandated by an OSM.

An Object Model consists of five inter-related fact types:

• An Object System is a purely structural concept which aggregates the Objects
that are derived from each OSM;

• An Object models a software class as defined by a high-level object-oriented
programming language such as Java;

• Objects may be related to one another in one of two ways: by inheritance, which
represents a sub-typing relationship between software classes; by association,
which represents either functional or data dependency between software classes;

• Each Object aggregates a set of Properties which represent data that describes
that class;
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• Each Object aggregates a set of Operations, or “Methods”, which operate over,
and thus transform, the Properties of that same software class;

• Each Property defines a set of Data Sources and Data Sinks. A Data Source

indicates where the Property gets its initial value from. A Data Sink indicates
where the data contained within a Property. Data Sources and Data Sinks define
mappings between Properties of an object, and Resource which are defined in
the resource model.

7.3.3 The Process Model
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Figure 7.7: The Schema for a Process Model

Figure 7.7 illustrates the schema for the Process Model, which is also a part of
the general ISM schema. The low-level operations, from which will be composed the
functionality of the to-be software system, are defined in the Object Model. However,
the operations which are defined by classes within a software system must typically be
composed into coarser-grained, higher-level processes. Within the Object Model itself
there is no construct for representing control flow between different class methods.
Rather, this is the function of the Process Model, which aggregates the low -level
operations that are defined within Object Models into higher-level Processes. This is
necessary for two reasons.

Firstly, when an OSM is fully enacted by a Software agent, the OSM represents
high-level domain behaviour which may be implemented by several low-level opera-
tions as defined within an Object Model. The Process Model provides a mechanism
for specifying how these low-level operations should be co-ordinated in order to re-
alise the high-level domain behaviour. Secondly, OSMs can themselves be composed
to model more complex domain activity [Sut02]. Process Models thus provide a mech-
anism through which can be aggregated interactions between the operations which are
defined for several OSMs to define ever-more complex domain behaviour.
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Process Models are essentially simplified versions of UML sequence diagrams and
consist of sequences of messaging passing between operations defined within an Ob-
ject Model. They consist of two inter-related fact types:

• Processes represent high-level units of activity whose behaviour is defined in
terms of a sequence of lower-level operations;

• Message Invocations represent calls to methods within an Object Model. They
consist of a pointer to the operation which is to be invoked, as well as of a pointer
to the next Invocation in the process.

7.3.4 The Resource Model
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Figure 7.8: The Schema for a Resource Model

Figure 7.8 illustrates the schema for a Resource Model. A Resource Model consists
of dictionary of Resources. A Resource is a component of a software system which is
capable of persisting, processing or generating data. Resource Models were motivated
by the desire to provide some fundamental constructs through which the operations
defined in the Object Model could be given a truly formal definition. This thesis notes
that fundamentally software consists of two basic kinds of operation:
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• Local Operations which are typically mathematical and logical operations (as
in the Intel 64 processor[Cor12]) directly implemented by the Central Processing
Unit (CPU) of the platform on which the software is executed;

• External Operations which are implemented by a piece of hardware which is
external to the CPU, and is accessed via some interface.

These operations transform data which are loaded into the CPU from some external
storage device, and from where the results of the operations are output. Every software
system mirrors this basic structure. By defining resources from which a software sys-
tem will be composed, therefore, Information System Models provide an unambiguous
basis through which the operations defined in the Object Model can be given meaning.
This is a useful precursor to the task of generating code (which is not attempted in this
thesis).

We define two high-level types of Resource:

• Data Stores are components which persist data externally to a software system
and over an extended period of time;

• Interfaces are functional components which either produce new data by some
mechanism, or transform data in some way.

We distinguish two types of Data Store:

• Files are Data Stores which represent information in the form of a (possibly
well-structured) flat file. This includes XML, CSV and Fixed-Length files. They
are defined by a name, and an EBNF specification of their structure;

• Databases are Data Stores which store information in a Relational Database
Management system, and so provide powerful functionality for querying and
retrieving data. They are defined by a name, and a set of tuples indicating the
structure of each table within the database.

We also distinguish two types of Interface:

• Protocols are software interfaces to external systems. External systems may
include network systems such as Application or Web Servers, or peripheral de-
vices such as Printers, Scanners, or domain-specific peripherals. Protocols are
specified as a set of operations which are provided by the driver for the external
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system, as well as the input and output parameters, and the pre- and postcondi-
tions for each operation. This provides a rich set of data about the structure of a
Protocol which indicates to a software designer how the Protocol can be utilised
to implement some desired behaviour;

• User Interfaces are Graphical or Command-Line User Interfaces which support
interaction between the software system and a human user. Information System
Models distinguish two types of User Interface: the Form, which allows a user
to act as a data source for the software system; and the Report, which outputs
processed information to the user. Both are defined by the mapping from a data
structure to a set of user interface components.

7.4 The Transformation Procedure

The procedure for transforming restructured OSMs into ISMs is shown in Figure 7.9.
The procedure assumes, as input to the process, a complex domain model comprising
a set of Domains, represented through the restructured Domain model.

7.4.1 Specify Object Properties

The first step in the transformation process is to ensure that Object in the input model
has the necessary properties specified. This step is necessary for two reasons:

• There is no guarantee that any process for generating OSMs will require the user
to specify the properties of objects as, within the Domain Theory’s matching
approach, structure and not secondary states are the significant concern;

• Subsequent stages of the novel transformation procedure depend on certain prop-
erties having been specified, depending on the Domain Goal and Type of the
OSM.

To this end, an Elicitation Stimulus is defined which asks the requirements engineer
to specify properties for each Object in the each Domain in the input model. The
requirements engineer should elicit this knowledge from relevant stakeholders, and so
has a degree of discretion in respect of the properties which they can specify.
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Figure 7.9: The Procedure for Transforming Restructured OSMs into ISMs
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7.4.2 Generate Object Model

The next step in the process is to generate an initial form of the Object Model from
the current state of the complex domain model. This is done by applying three simple
heuristics in the following order:

1. Each Object in the input Domain Model becomes an Object in the corresponding
ISM Object Model;

2. Each Object Property for a given Object in the input Domain Model becomes a
Property of the corresponding Object in the ISM Object Model;

3. Each Relationship connecting two Objects in the input Domain Model becomes
a relationship connecting the two corresponding Objects in the target ISM Object
Model.

These heuristics are applied in this order for each Object in each Domain in the
input model.

7.4.3 Assign Functional Responsibilities

For each Domain Goal in the input model, a single Operation is added to an Object

in the ISM Object Model. Operations are added to the ISM Object which represents
the OSM Key Object whose state is affected by the realisation of the Domain Goal.
Depending on the kind of Domain Goal which the Operation enacts, the Operation

will have one of a number of possible pre-defined Operation Structures as specified in
Table 7.10:

Additionally, one Operation is added to each Object representing an Agent for
each Domain Goal which that Agent is responsible for enacting. Agent Operations are
shown in Table 7.11.

7.4.4 Add Monitor Reports

This step produces a set of Reports which support the monitoring of each Key Object

in each Domain which has its “Monitor” attribute set to true. For each Key Object in
each such Domain a Report resource is added to report on the state of the Key Object.
The Report is structured such that it displays a list of instances of the Key Object and,
for each instance, displays both the primary and secondary state of that instance.



222 CHAPTER 7. THE KE VIEWPOINT

Goal Type Operation Name Input Parameters
Allocation allocateTo targetStructure - An ISM Object repre-

senting a structure object in the corre-
sponding OSM

Control issueCommand command - An ISM Object representing
a key object which, in turn, represents a
command to the controlled object

Composition addComponent component - An ISM Object representing
a key object which, in turn, represents the
component that is to be added to the com-
position

Decomposition removeComponent component - An ISM Object representing
a key object which, in turn, represents the
component that is to be removed from the
composition

Manipulation manipulateProperty property - An ISM Property represent-
ing the property of the ISM object whose
value is to be manipulated; value - Any
object which is a valid value for property
and represents the value which should
hold true for the to-be-manipulated prop-
erty once the manipulation is complete

Sensing sensePropertyValue property - An ISM Property which is the
property of the sensed key object whose
value is to be sensed

Transfer transferTo targetStructure - An ISM Object repre-
senting a structure object in the corre-
sponding OSM

Table 7.10: Rules for adding operations to ISM objects representing key objects which
are manipulated in order to realise Domain Goals

Goal Type Operation Name
Allocation allocateObjects

Control commandObjects
Composition composeComponents

Decomposition decomposeComposition
Manipulation manipulateObjects

Sensing senseObjects
Transfer transferObjects

Table 7.11: Rules for adding operations to ISM objects representing agent objects
which manipulate Domain Goals
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7.4.5 Select Generic Algorithm

As part of the restructuring process, this thesis also identified a set of generic algo-
rithms. During the Algorithm Selection step of the transformation procedure, a generic
algorithm is matched to each Domain whose Agent Type is either a “peripheral device”
or “software”. Facts within a Domain are tested by rule against candidate algorithms in
order to identify the algorithm which best satisfies the specific problem which that Do-

main represents. The Generic Algorithm is then selected and linked to the functional
operations within that Domain.

Generic Algorithms are selected by rule-based classification which uses facts within
an input OSM to determine which Generic Algorithm would best satisfy the require-
ments which that OSM represents. The permutation of Domain Goal and Domain Type

which the OSM embodies significantly narrows down the range of candidate structures,
while state transitions and properties over key facts narrow candidates down to a final
selection. Each Generic Algorithm defines the conditions under which it is applicable.

7.4.6 Configure Functional Resources

Some Generic Algorithms may introduce Resources into the ISM Resource Model.
However, it will typically not be possible automatically to specify the structure of Re-

sources that are generated by Generic Algorithm. This is because when designing a
Generic Algorithm it is often possible to identify the type of Resource with which an
algorithm must interact, but the particular structure of that Resource will generally vary
dependent on context. Resources that are not fully specified (because they lack impor-
tant structural properties) need to be configured in order for the ISM to be complete.
To this end, a set of Elicitation Stimuli are defined which allow the user to more fully
specify incomplete Resources. Different stimuli are defined to support the specification
of different kinds of Resource.

7.4.7 Specify Data Sources and Sinks

The previous three steps have focused on applying a range of heuristics to generate
Data Sources and Data Sinks for a range of Objects. However, it may be necessary
for the requirements engineer to specify sources and sinks which were not introduced
by these heuristics. Therefore, an Elicitation Stimulus is defined to enable the require-
ments engineer to specify additional Sources and Sinks for each Object in the complex
domain model which lacks these resources.



224 CHAPTER 7. THE KE VIEWPOINT

7.4.8 Compose Process Model

Once the Object and Resource Models have been defined for the input Domain Model,
the operations within the Object Models can be composed into a coherent process.
Process Models are composed from the operations which are defined over Agent-
representing Objects in the Object Models. Jackson proposes an approach to the com-
position of domains based on phenomena shared between domains [Jac01b], and the
transformation adopts this notion through an approach to composing OSMs based on
the passing of Key Objects between OSMs. An Elicitation Stimulus is provided which
asks users to indicate the passing of Key Objects from one OSM to another. The re-
sponse to this Elicitation Stimulus is in the form of a 2-tuple in which the first attribute
of the tuple represents an OSM which passes a Key Object to the OSM represented by
the second attribute. The object-passing dictionary which is defined by a requirements
engineer in response to this stimulus is used to produce the Process Model. The Agent
operations for each OSM are added to the process model, and then for each entry in the
object passing dictionary, the Agent operation which is defined for the second OSM in
the entry is set as the “next” operation for the Agent operation which is defined for the
first OSM in the entry. In this way, the Process Model is iteratively constructed.

7.5 Summary

This chapter has demonstrated the knowledge engineering perspective of RORE by
showing how a requirements engineering activity, and its support modeling notations,
can be formalised in the Meta Layer of RORE. Firstly, this chapter presented a re-
fined version of Sutcliffe and Maiden’s schema for representing domain knowledge
[SM98, Sut02]. Secondly, this chapter presented a novel modeling schema for express-
ing software system specifications: Information System Models. Information System
Models as presented in this thesis expand on, and give structure to, the concept as dis-
cussed by Sutcliffe [SM98]. Appendix B illustrates how both modeling notations have
been formalised using the knowledge structures which are defined in the Immutable
Layer (see Appendix A). As such, the examples presented in this chapter - as realistic,
and complex examples of requirements modeling notations - provide a demonstration
of how RORE can be used to formalise requirements modeling notations.

Finally, a step-by-step procedure was described for transforming refined Object
System Models into Information System Models. Each step of this process was de-
scribed, and a brief description was given of how each step could be modeling as a
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reusable knowledge structure in RORE. Appendix B presents the formalisation of these
steps as RORE knowledge structures, using OWL syntax. This chapter also shows,
therefore, how reusable knowledge structures can be used in RORE to formalise re-
quirements engineering activities as a sequence of reuse-driven transformations.



Chapter 8

Applying Reusable RE Knowledge:
The RE Viewpoint

8.1 Introduction

Chapter 7 demonstrated the Knowledge Engineering perspective (see Section 3.5.2)
by showing how RORE can be used to build a long-term memory by formalising a
procedure for transforming Object System Models into Information System Models.

This chapter complements that demonstration by illustrating the Requirements En-
gineering perspective. This chapter demonstrates how the long-term memory knowl-
edge base that was generated in Chapter 3.5.2 can be used by a requirements engineer
to generate new model instances by reuse. To this end, this chapter presents three
concrete examples taking both from the software engineering literature and from this
author’s experiences of software development, and show how RORE’s Requirements
Task Assistant can be used to produce ISMs for each scenario. The three scenarios are:

1. The Autopilot Example;

2. The Order Management Example;

3. The Online File Transfer Example.

The following sections present each of these examples in turn. Each example is
presented in four parts:

1. A brief textual description of the scenario is given;

2. A graphical representation of the refined OSM is shown for that scenario;

226
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3. A step-by-step description of the application of the transformation procedure
(see Chapter 7) to the OSM is given;

4. The resultant ISM is presented and briefly summarised.

The graphical representations of both the OSMs and ISMs for each of the exam-
ples in this Chapter were generated automatically by a prototype visualisation feature
of RORE. This feature generates basic graph-based representations of RORE models
which illustrate facts as nodes and properties of facts as arcs. Because of the complex-
ity of some of the models which were input to, and produced by, RORE, the visualisa-
tion of some of these diagrams is not clear. Nonetheless, these diagrams are presented
in this thesis because they provide visual validation of the input to and output from the
RORE process in each case. As a result of the difficulty in presenting these models
clearly within the space constraints of this thesis, a textual description is given — in
order to assist readers — for diagrams which are not clearly visible.

8.2 The Autopilot Example

8.2.1 The Autopilot Scenario

The Autopilot Scenario is taken from Coad [CNM95]. Andi’s small business repairs
and upgrades small aircraft, and is looking to introduce a novel, low-cost autopilot
system into the market for her hobbyist clientle. Andi has done some research into
autopilot systems, and has discovered that an autopilot system consists of two basic
kind of component:

• A gyroscope which measure the angle of an object (a plane in this case);

• A controller which interprets instructions in order to manipulate mechanical as-
pects of the plane.

A plane moves in three basic directions; along each of three axis. Accordingly, the
autopilot system must collect information about the angle of the plane along each of
these axis, and adjust that angle in line with some assumptions about the desired flight
plan. The autopilot system therefore requires three gyros - one for each axis along
which the plane rotates - and three controllers. Each gyro should feed information to
the appropriate controller which should then adjust the angle of the plane accordingly.
For performance reasons which are discussed in Section 9.3.4.1, however, this example
models just the X and Y axis of the plane.
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8.2.2 The Autopilot OSM

The prototype RORE implementation is capable of automatically generating basic
graphical representations of formal RORE models. Figure 8.1 illustrates the auto-
generated Object System Model for the Auotpilot Scenario.

This model stipulates that for two axis of an aeroplane (X and Y) there exists a
gyro and a controller. The same basic pattern is repeated for each axis, and so the Z
axis was not included in this example. There are two Domain facts for each axis which
is represented: a Gyro domain (XAngleGyro, YAngleGyro) and a Controller domain
(XAngleController, YAngleController). All four Domains share the Physical domain
type. The two Gyro domains share the Sensing goal type and the two Controller do-
mains share the Control domain type. Each of the four domains has a single Agent
object, of type Peripheral Device in each case, which represents: the Gyro itself, for
Gyro domains; and the Controller for the Controller domains. A key object, repre-
senting the Plane, is also shared across all four domains and is associated with two
properties which represent the XAngle and YAngle of the plane respectively. The Ini-
tial state for the OSM captures the initial values of both XAngle and YAngle. For each
of the Gyro domains, state transitions capture the sensing of a change in the angle of
the plane along the corresponding axis (X or Y respectively), and Goal states capture
the result of this angle change. For each of the Controller domains, state transitions
capture the dispatch of commands to the Controller agent in order to change the plane
angle along the corresponding axis, an Event captures the reception of this command
and a Goal state captures the fact of the resulting change in the angle of the Plane.

The four domains map onto a refined OSM context as follows:

• A 〈Sensing, Physical, Peripheral Device〉 domain, each modeling the gyro for
a single axis. These domains have a key object which represents the aeroplane.
The key object has a single property representing its angle of rotation along each
axis. Events from the gyro to the plane notify the plane of its angle change;

• A 〈Control, Physical, Peripheral Device〉 domain, each modeling the controller
for a single axis. These domains also have a key object representing the plane
with properties representing the angle of rotation along each axis. In this case,
however, events from the plane to the controller inform the controller of a change
in angle so that the controller can respond accordingly.
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Figure 8.1: The Auto-generated Diagram of the RORE-formalised Autopilot OSM
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8.2.3 Producing the Autopilot ISM

This section now briefly summarises the steps by which RORE transformed the Au-
topilot OSM into an Autopilot ISM. The tool generates detailed logs of its activity, and
the Autopilot Spec Generation log is presented in Appendix C.

Cycle One: Generating System Classes Analysis failed on the first test: “HasIS-
MObjectsRule”. This rule is a broad rule which tests to see whether any ISM objects
(representing system classes) exist within the target model. Accordingly an informa-
tion requirement was generated which mandated that cycle 1 should focus on produc-
ing system classes as input to the target model. Chunk-based Inference was attempted
and model chunks were identified as potentially relevant. However, closer manual in-
spection confirmed that they were not ideally applicable to the empty model, as they
contained floating operations (unattached to any containing class). RORE therefore
progressed to Rule-Based Inference where matching identified one potentially-relevant
Production Script (“GenerateISMObjects”). RORE fired this, as manual inspection
confirmed that it would satisfy the Information Requirement (IR), and the result was
that a single system class was generated for each object in the source model, and for
each property of a source object a corresponding target property was also generated.
This produced the basic structure of the ISM Object Model.

Cycle Two: Generating Monitor Reports During completeness analysis the “Ha-
sISMObjectsRule” was refired to confirm that the information requirement from cycle
1 had successfully been satisfied and the test was indeed passed. However, analysis
now failed on a second rule “HasMonitorReportRule” which checks to see whether
reports exist in the ISM for each domain within the input OSM for which the monitor
tag is set to “true”. Reports are user interface forms which report on the state of data
within the software system. On the failure of the target model to satisfy this rule, an
information requirement was generated mandating the generation of such reports for
the input source model. Chunk-based inference was skipped in this case because the
user was already aware of a production script which would resolve this information re-
quirement. The user therefore instructed RORE to retrieve relevant production scripts
and opted to fire the “GenerateMonitorReports” script. The input source model con-
tains a single key object - the Plane object. The production script therefore generated
two reports:

• The first report, PlaneListReport, represents a list of all planes about which the
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software system has information;

• The second report, PlaneReport, reports on the state of a single aircraft from
this list.

Cycle Three: Assigning Functional Responsibilities In addition to the “HasIS-
MObjectsRule”, the “HasMonitorReportRule” was also fired successfully in cycle 3.
This time, however, the “HasFunctionalResponsibilitesRule” (the term is taken from
Larman [Lar04]) - which checks to see whether operations have been appropriately
assigned to system classes in the ISM - failed. Accordingly, an information require-
ment was specified mandating that operations should be added to system classes in the
ISM as necessitated by the goals defined in the OSM. In order to satisfy this informa-
tion requirement, chunk-based inference was attempted. However, while this returned
several relevant model chunks, no chunk would fully satisfy the specified information
requirement. RORE therefore progressed to rule-based inference, which identified one
relevant production script: “AssignFunctionalResponsibilities”. This production script
consists of two production rules which add relevant command operations [Mey88]
to the ISM classes which represent respectively the Key Objects and Agent Objects
within the OSM. The command method for each system class representing a Key Ob-
ject commands instances of that class to change state in the manner specified by the
goal in the associated source OSM domain. The command method which is assigned
to each system class representing an Agent Object invokes the Key Object command
over all instances of classes representing key objects. Accordingly, for the Autopilot
domain, the following operations were generated for each class:

• PlaneClass: issueCommandToPlane(), which accepts a command from an agent-
representing system class to modify the specified property of the plane in the
specified way; sensePropertyOfPlane(), which detects the value of the specified
property for the given plane;

• XGyroClass: sensePlaneObjects(), which retrieves the value of the XAngle
property from each Plane object in the autopilot system by invoking the sense-
PropertyOfPlane() method;

• XControllerClass: commandPlaneObjects(), which commands each Plane ob-
ject to adjust its XAngle by invoking the issueCommandToPlane() operation;
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• YGyroClass: sensePlaneObjects(), which retrieves the value of the YAngle
property from each Plane object;

• YControllerClass: commandPlaneObjects(), which commands each Plane ob-
ject to adjust its YAngle.

Cycle Four: Selecting a Generic Algorithm During this cycle, the target model
passed all of the analysis rules which have failed in previous cycles. However, the
target model failed the “HasDataSources” test which checks whether or not the data
sources for properties of system classes have been properly specified. An informa-
tion requirement was generated mandating that the current cycle should attempt to link
properties to appropriate data sources in the ISM, and to this end the user attempted a
round of chunk-based inference. One model chunk was retrieved (the “DataSample-
SensingAlgorithm”) which appeared a plausible candidate to resolve the information
requirement. RORE fired this but did not make any modifications in order to refine
the algorithm. Instead, during the integration phase this research paired the “senseAll-
Properties” method in the chunk to the existing “sensePlaneObjects” method in the
ISM, and the “senseProperty” method to the ISM method “sensePropertyOfPlane”.
This integrated generic algorithms for each of these two ISM methods into the ISM.

Cycle Five: Selecting a Generic Algorithm The generic algorithm which was ap-
plied in the previous cycle did not, however, resolve the information requirement. In
the fifth round, therefore, RORE fired the “HasDataSources” rule again and again it
failed. The user therefore returned to chunk-based inference for a second attempt at re-
solving the resultant information requirement. This time RORE applied the “Notified-
SampleControlAlgorithm” which represents event-based Control operations, where
commands are dispatched in response to discrete events. This resulted in a Con-
trolInterface resource being integrated into the ISM to represent the communications
protocol between the autopilot system and the X and Y controller devices. A Noti-
fiedSampleCommand class was also introduce to the ISM object model to represent
the commands which are issued by the autopilot system to these components. Fi-
nally, the user paired the “dispatchAllNotifiedSampleCommands” operations to the
“commandPlane” method, and the “dispatchNotifiedSampleCommand” operation to
the “issueCommandToPlane” operation. This resulted in generic algorithms for each
method being integrated into the existing ISM.
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Cycle Six: Configuring Functional Resources Again, the chunk-based inference
method introduced valuable new information into the ISM but did not succeed in satis-
fying the information requirement. The user therefore fired the “HasDataSources” rule
for a third time and again it failed. The user attempted both chunk- and rule-based in-
ference, but in neither case was any further component identified which looked promis-
ing and which had not previously been fired. RORE therefore progressed to elicitation
where matching identified the “FunctionalResourceConfiguration” stimulus. This elic-
itation stimulus is a fact-editing stimulus which can be used to configure the structure
of resources. However, the user did not make any significant modifications to the cur-
rent structure of either the SensorInterface or ControlInterface resources.

Cycle Seven: Specifying Data Sources and Sinks Still the “HasDataSources” test
was not passed by the autopilot ISM model. As in cycle six, no appropriate model
chunk or production script was identified. The user therefore attempted Elicitation as
a means to resolve the information requirement. Matching identified a single relevant
elicitation stimulus - “DataSourceAndSinkStimulus” - which is a fact-editing stimulus
that supports the editing of the data sources and sinks of properties over objects defined
within the ISM. The user used this stimulus in order to set the data source and sinks of
the XAngle and YAngle properties of the Plane class. The data source in each case was
the SensorInterface resource, whereas the data sink was the ControlInterface. Finally,
RORE integrated these new facts into the ISM model by pairing the PlaneClass fact
which was produced by executing the stimulus with the PlaneClass fact in the ISM.

On a further round of analysis, all tests were passed and so no further action was
taken.

8.2.4 The Autopilot ISM

The result of this process is a substantial (but incomplete) Information System Model
of the resources, software system classes and algorithms that would make up the Au-
topilot software solution. This illustrates the role which RORE can play in bridging
the gap between requirements and architectural design. An overview is given in Figure
8.2:

It should be noted that the auto-generated diagrams do not display simple (string,
integer, or boolean) facts as while these generally represent useful low-level informa-
tion, they contain a level of detail that is not conducive to a diagram which is intended
to provide a brief overview of the structure of a specification. For this reason, while
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Figure 8.2: The Auto-generated Diagram of the RORE-formalised Autopilot ISM
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key facts such as generic algorithms are described in the logs and full formalisations,
they are not displayed in the model.

8.3 The Online File Transfer Example

The following brief example is a common-enough problem, but provides just a brief
glimpse into some of the difficulties encountered during the production of this thesis.

8.3.1 The Online File Transfer Scenario

James is a Doctor of Philosophy (PhD) student at a well-established British Univer-
sity. As such, he spends much of his time producing documents addressing a range
of fascinating - if arcane - topics for consumption by a similarly-minded international
audience (he hopes). Spending, as he does, much of his life indoors and at a computer
screen, James appreciates the occasional change of scene. He is, therefore, in the habit
of working variously from a small home office and a better-sized office on his Uni-
versity’s campus. However, on those occasions that James sees fit to make a switch
from one office to another, he encounters a problem. His thesis - and related materials
and code - amount to several gigabytes of data, and he will usually refer to a sizeable
portion of this data during any single thesis-writing session. It is, therefore, imperative
that James have some means to transfer his wealth of knowledge between offices as
necessary. He has, in the past, attempted to use rewritable CDs and DVDs to this end.
However, James’ home computer only has the ability to burn such discs, and he was
therefore compelled to use a brand new disk each time he changes location - a costly
solution, given the recent termination of his research funding! Similarly, he has con-
sidered the use of so-called “pen drives”. However, confessing as he does to a degree
of absent-mindedness, this also proved too costly a solution as such devices needed
frequent post-misplacement replacement. James therefore turned to an old friend for
help: the Internet.

Fortunately, James has access to a not-insubstantial volume of online webspace
left: a relic of his ill-fated venture into freelance website development. Both he, and the
University, also have a reasonably speedy internet connection. James envisions that his
data-transfer woes could be resolved if only there were some way for him to package
up his thesis-relevant files and transfer them to his webspace, from whence they can
be downloaded on arrival at his next destination. He vaguely recalls that his webhost
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allows him to use the File Transfer Protocol (FTP) - a standard protocol for its stated
purpose - to upload files to, and download files from, his webspace. However, he also
recalls this being a time-consuming process for large operations if he uses his existing
FTP client. He would therefore like an application which was better specialised to his
particular thesis-related needs. In particular, he would like a tool automatically, at the
touch of a button, to grab files automatically from pre-defined “thesis-relevant” local
directories and upload them to relevant directories on his webspace. His PhD work
just might be able to help him capture the requirements for such a tool!

8.3.2 The Online File Transfer OSM

Figure 8.3 illustrates the Object System Model for James’ online file transfer problem.
The domains in the File Transfer example map onto the following OSM contexts:

• The first domain in each case is an 〈Allocation, Conceptual, Software〉 domain
in which the software determines by applying some pre-specified schema which
files are “relevant” to James’ thesis, and thus which files should be downloaded.
In doing so, the software system allocates files in the source location to space in
the target location. For the upload process, the source is the local file system and
the target is the remote one. For the download process, this scenario is precisely
reversed. These two domains consist of a set of key objects representing the files
to be transferred, as well as two structure objects representing the source and
target file systems. The agent object represents the software system itself which
will be responsible for forming this allocation;

• The second domain in each case is a 〈Transfer, Conceptual, Software〉 domain
which represents the transfer of each file from its source to its allocated target
space. This process realises and so fulfils the allocation which was determined
in the first step. The structure of these domains is strongly similar to the structure
of the allocation domains. The transfer domains also contain a set of key objects
representing the files to be transferred, and two structure objects representing the
source and target file systems. The agent for the transfer domain also represents
the software system which is responsible for the transfer. However, the transfer

domains are distinguished from the allocation domains by a single event which
indicates the completion of the transfer operation.

The upload process thus consists of an allocation operation during which local files
are allocated to space on the remote file system. This is then followed by the transfer
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Figure 8.3: The Auto-generated Diagram of the RORE-formalised File Transfer OSM
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operation during which the local files are actually uploaded to their allocated remote
space.

In inverse, the download process consists of an allocation operation which allocates
remote files to space on the local file system. This is followed by the transfer operation
during which the files are downloaded to their allocated local space.

8.3.3 Producing the Online File Transfer ISM

In sum, the steps which were taken in order to produce the Online File Transfer ISM
specification from the input Online File Transfer OSM requirements model are as fol-
lows.

Cycle One: Generating ISM Objects The “HasISMObjects” analysis rule was fired
and failed, thus indicating that the goal of cycle one should be to generate the system
classes that should comprise the basis for the ISM Object Model. Chunk-based In-
ference was attempted and several model chunks were returned. However, careful
manual inspection of these model chunks indicated that while they defined a number
of resources and operations, they did not define the ISM Objects associated with those
operations. As such, none of the returned chunks would satisfy the information re-
quirement for this cycle. RORE therefore progressed to attempt rule-based inference.
This returned the “GenerateISMObject” production script, which was executed and
generated the following objects (one for each object in the input File Transfer OSM):

• DownloadFileClass;

• RemoteDirectoryClass;

• UploadFileClass;

• FileUploaderClass;

• FileDownloaderClass;

• LocalDirectoryClass.

With no existing facts in the ISM, these objects were integrated directly.
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Cycle Two: Generating Monitor Reports On the second cycle the “HasISMOb-
jects” rule passed, but the “HasMonitorReports” rule failed. This generated an infor-
mation requirement to the effect that a set of reports should be generated in the ISM
for each key object in the input OSM. The user attempted chunk-based inference, but
no chunk produced a report and chunk-based inference was not suitable for resolving
the information requirement therefore. RORE progressed to rule-based inference. The
matcher identified one production script - “GenerateMonitorReports” - which was ide-
ally suited for the task. RORE fired it, but no Monitor Reports were produced. Manual
inspection of the production script revealed that this was because monitor reports were
generated only for those domains whose “Monitor” tag was set to “true”.

Cycle Three: Assigning Functional Responsibilities We therefore returned to anal-
ysis. Inspection of the “HasMonitorReport” rule indicated that the implementation of
the report mismatched the “GenerateMonitorReport” production script because the for-
mer examined only whether reports existed within the target ISM, and did not take into
account the status of the “Monitor” tag. The user therefore chose to ignore this produc-
tion rule throughout the remainder of this scenario. Instead RORE progressed to fire
the “HasFunctionalResponsibility” rule, which failed. This resulted in the generation
of an information requirement which mandated that the current cycle should focus on
assigning responsibility to classes within the ISM for the implementation of the var-
ious state transitions modelled within the input File Transfer OSM. While operations
were defined within the various model chunks that were returned during Chunk-based
Inference, these operations were not associated with any classes, and so would not sat-
isfy the information requirement. RORE therefore progressed to rule-based inference,
during which the matcher returned the “ObjectModelGeneration” script. The user fired
this and two operations were generated to represent the major state transition for each
domain in the input OSM:

• DownloadFileClass: allocateToDownloadFile, transferDownloadFileTo;

• UploadFileClass: allocateToUploadFile, transferUploadFileTo;

• FileDownloaderClass: allocateDownloadFileObjects, transferDownloadFileOb-
jects;

• FileUploaderClass: allocateUploadFileObjects, transferUploadFileObjects.
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During integration the user paired each of the classes which were returned by the
production script with their corresponding (namesake) classes in the target ISM and
applied the integration, thus associating the generated operations with the appropriate
ISM classes.

Cycle Four: Selecting a Generic Algorithm The “HasISMObjects” and “HasFunc-
tionalResponsibility” rules passed, and the user again ignored the “HasMonitorRe-
ports” rule as previously stated. RORE was therefore instructed to fire the “HasData-
Sources” rule which failed. The user attempted chunk-based inference and identified
two generic algorithm chunks which would introduce the resources which would ul-
timately act as the data sources and sinks for the key data within each domain. The
user selected to apply the first of these chunks, the “ClassificationAlgorithm” which
represents rule-based allocation. The result was to produce a new ISM object - the
AllocationRule - and a new resource fact - the AllocationRuleDataSource resource
object. Generic algorithm pseudocode was also produced for each of the allocation
operations in the target ISM, and by pairing the operations within the model chunk
as shown in the log, the user was able to assign the correct pseudocode to the correct
operation in the target ISM model.

Step Five: Selecting a Generic Algorithm We again attempted the “HasMonitor-
Reports” analysis rule, which again failed. RORE thus progressed onto chunk-based
inference and on this occasion identified a model chunk - “CompleteRemoteTransfer-
Algorithm” - which represents the transfer of complete data structures or files across
a remote network. The previous cycle had generated pseudocode algorithms for the
allocation element of the File Transfer application, but not for the actual data transfer
aspect of the application. The user therefore applied this CompleteRemoteTransferAl-
gorithm in order to generate such code. The result was a new resource - the Remote-
DataTransferProtocol - as well as pseudocode for each of the transfer operations that
already exist in the ISM domain. The user paired the operations from the model chunk
with the transfer operations in the target ISM as shown in the log for this scenario, and
the result was that the pseudocode defined in the model chunk was assigned to each of
the file transfer operations in the ISM.

Step Six: Configuring Functional Resources We attempted to fire the “HasData-
Sources” rule for a third time, but again it failed. No further model chunks or pro-
duction scripts were identified that were relevant to the current RORE context, and so
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RORE progressed to elicitation. One Elicitation Stimulus - “ConfigureFunctionalRe-
sources” - looked potentially promising. RORE fired this, and the user was prompted
to reify each of the resource objects within the ISM. However, the user did not iden-
tify any significant reifications that needed to be made at this stage, and so simply
reintegrated the facts presented by the stimulus as-is back into the ISM.

Step Seven: Specifying Data Sources and Sinks We fired the “HasDataSources”
analysis rule again and again it failed. Again, no further model relevant chunks or
production scripts were identified and so RORE progressed to Elicitation again. This
time the user attempted the “ConfigureDataSourcesAndSinks” stimulus. This provided
an opportunity to set the data source and sink for each property that was defined in the
current state of the ISM. The user made the following assignments:

• AllocationRule: The user set the data source of the AllocationRuleAntecedent
and AllocationRuleConsequent properties to be the AllocationRuleDataSource
resource;

• DownloadFileClass: The user set the data sink of the “DownloadData” property
to be the RemoteDataTransferProtocol;

• FileDownloaderClass: The user set the data source of the “DownloadStatus”
property to be the RemoteDataTransferProtocol;

• UploadFileClass: The user set the data sink of the “UploadData” property to be
the RemoteDataTransferProtocol resource;

• DownloadFileClass: The user set the data source of the “UploadStatus” prop-
erty to be the RemoteDataTransferProtocol resource.

By pairing the class associated with each property with its namesake class in the
ISM, the user was able to integrate these relationships into the ISM.

We fired all analysis rules again (excluding the “HasMonitorReport” rule) and each
rule passed indicating the model was completed (when the user took into account that
the HasMonitorReport rule should be ignored).

8.3.4 The Online File Transfer ISM

The Online File Transfer ISM is shown in Figure 8.4.
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Figure 8.4: The Auto-generated Diagram of the RORE-formalised File Transfer ISM
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8.4 The Order Management Example

The Order Management example is taken from a practical project which the author of
this thesis has previously undertaken in an industrial context. However, for contrac-
tual reasons the specific details of the project cannot be published, and so this section
outlines an Order Management scenario in the context of a fictional business.

8.4.1 The Order Management Scenario

Grunnings is a medium-sized-but-growing firm based in Surrey which manufactures
electric drills for the domestic Do-It-Yourself enthusiast. In order to consolidate the
sales growth recently experienced by the company, as well as to facilitate a contin-
uation of this trend going forwards, Mr Dursley, the Chief Executive Officer (CEO)
at Grunnings has introduced a new “lean manufacturing” policy. As part of this pol-
icy, the company is in the process of moving from a policy of mass manufacture to
a build-to-order process. In the past the marketing and sales directors would collab-
orate to set quarterly sales targets, and the manufacturing director would then set the
manufacturing targets accordingly. However, this has proven to date to be an inexact
approach to target setting with the result that in some quarters Grunnings would lose
customers to its competitors as it was unable to satisfy greater-than-estimated demand,
whereas in other quarters Grunnings would lose profit to waste having over-estimated
demand for the quarter. The new build-to-order business model which CEO Vernon
Dursley is introducing at Grunnings will resolve these issues by allowing Grunnings to
manufacture, each quarter, precisely the number of drills it will be capable of selling.

To support the new build-to-order approach, CEO Dursley has also commissioned
the development of a new software system to manage orders end-to-end. The goal is to
ensure prompt and timely fulfilment of orders by facilitating efficient order scheduling,
providing live picking information to production-line operatives, and providing up-to-
date stative information about the fulfilment of an order at all times. At Grunnings a
sales system is already in place which allows the sales teams to record details of drill
sales to customers. The new order-management software system should connect to this
sales system in order to retrieve sales from which orders can be inferred and added to
an in-house database. The system should then apply a simple procedure in order to
prioritise orders according to the date on which the order was placed, the deadline for
the order, the number of previous orders a customer has placed, and the type of drill
the customer has ordered. The output of this procedure should be a build schedule for
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the production line to cover a one-day period. The system should provide a means
for printing scheduled drills out onto “T-Cards”, which represent the schedule for a
day. The system should also allow production line operatives to scan drills onto the
production line to indicate that production of a particular drill for a particular order
has commenced, as well as scanning drills offline to indicate that the build of such a
drill has now been completed and that the drill is ready for dispatch. The system should
provide adequate reports on the state of the drill and its associated order as it progresses
through the manufacturing process, although online updates are not a requirement.

8.4.2 The Order Management OSM

Figure 8.5 provides the auto-generated overview diagram for the Order Management
OSM:

This diagram consists of four domains as follow:

• The OrderRetrievalDomain captures the transfer of order records from the
sales system to the order management system and has the “Conceptual” Do-
main Type. It is acted on by a “Software” Agent — the order retrieval software
which connects to the sales database to download the latest order batch. The
Key Object (Order) represents orders within the system. The Initial State of the
Domain is a Primary State (OrdersNotRetrievedState) indicating that orders are
stored in a Structure (OrderServer) representing the interface to the sales sys-
tem. The Goal (OrderRetrievalGoal) is represented by a primary state (Order-
RetrievedState) which stipulates that no orders are stored in the OrderServer and
all orders are now contained in a Structure object (OrderManagementSystem)
which represents the order database. This transition is captured by the “Order-
RetrievalTransition” State Transition, which triggers the “OrderRetrievalCom-
pleted” event once all Orders have been transferred from OrderServer to Order-
ManagementSystem.

• The OrderSchedulingDomain represents the process of organising orders into
a schedule for a particular day and has the “Conceptual Domain Type”. It is
acted on by a “Software” Agent (OrderScheduler) which represents the soft-
ware algorithm which is responsible for producing order schedules for a given
day. The Key Object is the Order object, which is shared with the OrderRe-
trievalDomain. The Initial State (OrdersNotScheduledState) is a primary state
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Figure 8.5: The Auto-generated Diagram of the RORE-formalised Order Management
OSM
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stipulating that Orders exist which are contained within a Structure object (Or-
derPool), which represents the pool of currently-unscheduled Orders. The Goal
State (OrderSchedulingGoalState) stipulates that all orders are contained within
a Structure (OrderSchedule) representing an Order Schedule. The scheduling
process is represented by the “OrderSchedulingTransition” State Transition.

• The TCardPrintingDomain represents the process of printing a build schedule
onto a set of T-shaped cards and has the “Physical” Domain Type. It is acted on
by an Agent (TCardPrinter), of type “Peripheral Device”, which represents the
printer that will be used to print orders onto T-Cards. The Key Object (TCard)
represents the TCards themselves, and have a Property (PrintingData) through
which the status of a T-Card (“Printed” or “Not Printed”) is denoted, and which
might also contain the Order information that is to be printed onto a particular
T-Card. The Initial State of the Domain is a Secondary State (TCardNotPrint-
edStatus) denotes that all T-Cards in the system have the “Not Printed” status.
The Goal State stipulates that all T-Cards in the system have the “Printed” sta-
tus. The printing process is represented by the “TCardPrintingTransition” State
Transition which produces the “PrintingCompleted” Event when the Goal State
is achieved.

• The BuildMonitoringDomain represents the path of each drill through the pro-
duction line and to the dispatch area as it is first scanned online, then constructed,
and then dispatched. The domain has the Physical Domain Type and has an
Agent (ProductionLineOperative) of type “Human” which represents builders on
the production line who have responsibility for producing a drill. Drills within
this Domain pass through several stages of production: Not Started; Online;
Completed; Dispatched. The stage of production which each drill has reached
is recorded by a set of Primary States (respectively: BuildNotStartedState, Buil-
dOnlineState, BuildCompletedState, BuildDispatchedState) which describe the
containment of the drill in a set of Structure objects representing the area of
the factory in which the drill is stored during that production stage (respec-
tively: TCardPool, ProductionLine, DispatchArea, DeliveryVan). The Transi-
tion between each of these states is captured by a sequence of State Transi-
tions (respectively: BuildStartedTransition, BuildCompletedTransition, Build-
DispatchedTransition) each of which produces an Event on completion (respec-
tively: BuildStarted, BuildCompleted, BuildDispatched). The Goal State states
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that each of these events must be captured.

These domains map onto the following OSM contexts.

• The first domain (OrderRetrievalDomain) is a 〈Transfer, Conceptual, Software〉
domain;

• The second domain (OrderSchedulingDomain) is an 〈Allocation, Conceptual,
Software〉 domain;

• The third domain (TCardPrintingDomain) is a 〈Manipulation, Physical, Pe-
ripheral Device〉 domain;

• Finally, the fourth domain (BuildMonitoringDomain), a 〈Transfer, Physical,
Human〉 domain.

Cycle One: Generating System Classes The “HasISMObjects” analysis rule was
fired and failed. Accordingly, an information requirement was generated mandating
that cycle one should aim to generate the system classes that will form the basis for
the Order Management ISM’s object model. In order to satisfy this requirement, the
user attempted chunk-based inference. While inference chunks were found, a close
inspection of each of these indicated that each was insufficient to fulfil the information
requirement satisfactorily. RORE therefore progressed to rule-based inference. As for
the previous examples which this thesis has reported, the “GenerateISMObjects” was
identified as the most appropriate production script for resolving the current informa-
tion requirement. RORE fired this production script and a large set of objects was
generated, reflecting the complexity of the input OSM. The full list is reported in the
log in Appendix E and is shown in the ISM model presented in Figure 8.6.

Cycle Two: Generating Monitor Reports In the second cycle, the “HasISMOb-
jects” rule passed, by the “HasMonitorReports” test failed. The resulting information
requirement specified that cycle two of the Order Management example should focus
on generating monitor reports for each of the key objects specified in the OSM for
domains whose monitor tag is specified as “true”. While chunk-based inference was
attempted, manual inspection of the retrieved model chunks confirmed that none of the
chunks was appropriate at this stage. RORE therefore moved on to attempt rule-based
inference. The “GenerateMonitorReports” script was returned at this stage and fired.
As a result, four reports were produced to report on the Order and Drill key objects.
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For each of these key objects a ListReport was generated to display a list of all relevant
objects within the software system, and a singleton Report was generated to display
the details of a specific Order or Drill object respectively.

8.4.2.1 Cycle Three: Assigning Functional Responsibilities

In cycle three both the “HasISMObjects” and “HasMonitorReport” rules passed, while
the “HasFunctionalResponsibility” rule failed. The consequence of this outcome was
that an information requirement was generated requiring that cycle three focused on
the assignment of the functional requirements modelled by the input OSM across the
system classes modelled in the output ISM. Chunk-based inference returned a handful
of model chunks which specified operations, but did not specify the classes to which
these were to be assigned. RORE therefore progressed to rule-based inference. The
“FunctionalResponsibilityAssignment” script was retrieved and fired. As in the pre-
vious examples, it generated a batch of operations for ISM classes representing both
OSM key objects and OSM agent objects. The assignment of functionality determined
by this script in the case of the Order Management example was as follows:

• DrillClass: transferDrillTo() which updates the location property of a Drill ob-
ject;

• OrderClass: allocateToOrder() which allocates a TCard time slot to a given
order; transferOrderTo() which retrieves a particular order from the sales man-
agement system to the order management system;

• TCardClass: manipulatePropertyOfTCard() which prints a TCard by producing
an appropriate instruction for the TCardPrinter;

• ProductionLineOperativeClass: transferDrillObjects() maintains the current
location of all drills within the order management system;

• OrderSchedulerClass: allocateOrderObjects() runs a complete TCard schedul-
ing session by allocating individual TCard slots to orders;

• OrderDownloaderClass: transferOrderObjects() retrieves all order objects from
the sales system;

• TCardPrinterClass: manipulateTCardObjects() prints all TCard objects that
are in the current TCard allotment.
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Cycle Four: Selecting a Generic Algorithm In cycle four, all three of the previ-
ous analysis tests - “HasISMObjects”, “HasMonitorResource” and “HasFunctional-
Responsibility” passed. The “HasDataSource” analysis rule was therefore fired and
failed producing an information requirement mandating the production of data source
links between objects and resources in the ISM. Chunk-based inference was attempted
at this point, and generic algorithm chunks were identified. The “CompleteRemote-
Transfer” chunk was identified, which represents the transfer of a complete data file
from a source to a destination across a remote computer network. This chunk intro-
duced a new fact - a resource representing the communication protocol by which data is
transferred in this domain. Two operations were also introduced: transferAllComple-
teObjects() and transferCompleteObject(), each specifying the generic algorithm pseu-
docode for their respective methods. These were paired to the transferOrderObject()
and transferOrderTo() methods respectively, and all associated facts were integrated
into the OrderManagementSpecs model accordingly.

Cycle Five: Selecting a Generic Algorithm In cycle five, the “HasDataSource”
analysis rule was, again, failed by the Order Management ISM. Accordingly, the cor-
responding information requirement was generated. Chunk-based inference was again
performed, this time retrieving the “AllocateObjectByClassification” algorithm. This
produced a new class - AllocationRule - to implement the logic for an individual allo-
cation rule. The generic algorithm also produced two operations: allocateAllObjects
and allocateToOrder. By pairing these with the allocateOrderObjects and allocateTo-
Order methods in the current ISM model the user ensured that the associated generic
algorithm pseudocode would be integrated into the resultant model.

Cycle Six: Selecting a Generic Algorithm Cycle six involved a third round of
generic algorithm selection. The third round corresponded to the fact that the Order
Management OSM comprises three domains with software or peripheral device agents.
Again the “HasISMObjects”, “HasMonitorReport” and “HasFunctionalResponsibili-
ties” rules passed, while the “HasDataSources” rule failed. Chunk-based inference
was attempted and the “ScriptedDeviceManipulation” chunk was selected. This model
chunk aggregates a set of generic algorithms for manipulation of a physical object by
a peripheral device which accepts as input from the control software a string repre-
senting a script which the device interprets before executing. The chunk introduces
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a new resource representing the interface to the communications protocol for the ma-
nipulation device, as well as an ISM class which implements a method for generating
a script from some input object. The generic algorithm also introduces two methods:
a manipulateAllObjects method, which was paired with the manipulateTCardObjects
method in the Order Management ISM; and the manipulateObject method, which was
paired to the manipulatePropertyOfTCard method. The generic algorithm pseudocode
was integrated accordingly.

Cycle Seven: Configuring Functional Resources During the seventh cycle, no fur-
ther model chunks or production scripts were identified to effectively resolve the “Has-
DataSource” information requirement. The user therefore attempted Elicitation using
the fact-editing “ConfigureFunctionalResources” stimulus, but no significant changes
were made to any resource at this stage.

Cycle Eight: Specifying Data Sources and Sinks In the final cycle of the Order
Management example, the “HasISMObjects”, “HasMonitorReports” and “HasFunc-
tionalResponsibilities” rules passed, while the “HasDataSources” rule failed. Again,
no new structures could be retrieved for Inference, and so RORE progressed onto Elic-
itation. The user undertook elicitation using the fact-editing “ConfigureDataSource-
sAndSinks” stimulus. This allowed the user to specify the sources and sinks for each
property in the ISM model:

• The RemoteDataTransferProtocol was assigned as the data source for the “cur-
rentLocation” property of the Order class;

• The ClassificationRuleSource was assigned as the data source for each property
of the AllocationRule class;

• The ManipulationDeviceCommsProtocol was assigned as the data sink for the
“printData” property of the ScriptGenerator class, and as the data source for the
“printStatusProperty” of the TCardClass.

We paired the various facts that were retrieved and edited using this stimulus to
facts in the Order Management ISM as shown in the log (see Appendix E), and then
applied Integration to complete the production of the sample ISM specs for the Order
Management scenario.
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8.4.3 The Order Management ISM

The resulting Information System Model for the Order Management problem is illus-
trated in Figure 8.6.

8.5 Summary

This chapter has demonstrated the requirements engineering perspective of RORE by
showing how the OSM-ISM transformation procedure, which was formalised as a set
of RORE reusable knowledge structures in long-term memory in Chapter 7, can be
applied in the Model Layer to specific requirements engineering scenarios. Three such
requirements engineering scenarios were presented: the Autopilot Example, the File
Transfer Example, and the Order Management Example. For each scenario, a textual
description was given, and the scenario was also represented as a refined OSM. The
prototype Requirements Task Assistant was then used to show, step-by-step, how the
reusable knowledge structures that were produced in the previous chapter can be ap-
plied in the Model Layer to transform each of these OSM into a corresponding ISM.
The transformation procedure as applied to each of the requirements scenarios is de-
scribed in the logs shown in Appendices C, D and E respectively. This chapter has,
therefore, demonstrated how a requirements Activity which is formalised as reusable
knowledge structures in long-term memory can be applied to specific requirements
engineering scenarios to produce and refine requirements Models.
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Figure 8.6: The Auto-generated Diagram of the RORE-formalised Order Management
ISM



Chapter 9

Research Validation

9.1 Introduction

The introduction to this thesis laid out the following research aim:

To find a better balance between generality and systematicity than do
existing approaches [to requirements reuse] while maintaining a high level
of utility.

This chapter evaluates the research presented in this thesis, specifically considering
the extent to which the RORE framework satisfies the research aim above. This chapter
first defines the evaluation criteria against which RORE will be evaluated. The chapter
then applies those criteria to evaluate RORE on its own terms. Finally, this chapter
draws on that discussion in order to compare RORE to three of the major approaches to
requirements-level reuse: the Domain Theory, Hall et al’s Problem-Oriented Software
Engineering, and Requirements Patterns as a general approach.

9.2 Evaluation Criteria

The research aim outlined in the introduction of this thesis implicitly identifies four
criteria against which the RORE framework is to be evaluated. These are:

• Generality: The range of domains, reuse contexts and requirements engineering
methods to which a reuse approach can be applied;

• Utility: The effort reduction achieved by reusing a reusable artefact versus
achieving the same goal manually;

253
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• Systematicity: The extent to which reuse is a driving force, rather than an inci-
dental occurrence, in the software development process, and to which such reuse
is supported by a repeatable set of procedures and tools;

• Practicality: The ability of a reuse approach to satisfy the organisational, eco-
nomic, legal and technical constraints imposed of a practical setting while still
yielding utility.

Before evaluating the RORE framework, this chapter briefly defines each of these
criteria, and identify specific qualitative measures which this research will utilise to
evaluate the framework in respect of each criterion.

9.2.1 Generality

In evaluating the research presented in this thesis, this chapter adopts and refines the
definition of generality given by Sutcliffe [Sut02]: “[g]eneric artefacts have a wider
potential target for future reuse by virtue of their abstraction, but pay the penalty of
delivering less detailed advice to the designer”.

This thesis modifies this definition to take into account the possibility of design
tactics for achieving generality, other than abstraction:

Generality is a measure of the range of domains, reuse contexts and
requirements engineering methods to which a reuse approach can be ap-
plied.

This definition identifies three types of generality, in accordance with three vari-
ables which significant change the overall context to which a reusable approach might
be applied:

• Domain Generality: The capacity of a component to support problem solving
across a range of different application contexts and domains;

• Task Generality: The capacity of a component to support a range of different
engineering tasks for each application domain to which that component is appli-
cable;

• Method Generality: The capacity of a component to be integrated into the nota-
tions and techniques comprised by a range of different engineering approaches.
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Dimension of Generality Observable Measure
Domain Scenario Number and Range

Task Task Number and Range
Method Method Number and Range

Table 9.1: Observable Metrics for Evaluating RORE along Dimensions of Generality

This chapter evaluates RORE — in addition to the Domain Theory and POSE —
with respect to each of these three types of generality. In order to assess systematically
each kind of generality the evaluation will apply the following objective measures (see
Table 9.1).

These measures are further defined in the following way:

• Scenario Range: A qualitative evaluation of the degree to which two domains
that were tested during the case study differ from one another;

• Scenario Number: A quantitative evaluation of the number of qualitatively dis-
tinct scenarios that were tested during the case study;

• Task Range: A qualitative evaluation of degree to which two tasks that were
attempted during the case study differ from one another;

• Task Number: An evaluation of the number of qualitatively distinct tasks that
were tested during the case study;

• Method Range: A qualitative evaluation of the degree to which requirements
engineering methods (notations, techniques, strategies) that were applied during
the case study differ from one another;

• Method Number: An evaluation of the number of qualitatively distinct methods
that were tested during the case study.

Range measures are important because they provide an indication of the extent to
which two different domains that are tested during a case study actually provide an
indication of generality. Recall that generality is defined by the range of distinct sce-
narios to which a component can be applied. The quantitative element of the evaluation
is significant because it provides an indication of the extent to which the conclusions
of a case study can be generalised.
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9.2.2 Systematicity

The definition of systematicity given in this thesis draws on existing definitions within
the reuse literature [LMV97, Sch99, Kon96]. This thesis defines “systematicity” in the
following way:

Systematicity is the extent to which reuse is a driving force, rather
than an incidental occurrence, in the software development process, and
to which such reuse is supported by a repeatable set of procedures and
tools.

The definition above identifies two key components of systematicity:

• Centrality to the software engineering process;

• Repeatability of the procedures which support reuse operations.

These are illustrated in Table 9.2.

Component of
Systematicity

Observable Measure

Centrality Percentage of manual operations versus total operations
Repeatability Average frequency of the application of a given opera-

tion

Table 9.2: Observable Metrics for Evaluating RORE with Respect to Systematicity

The two criteria outlined above can be characterised as follows:

• Percentage of Manual versus Total Operations: An indication of the propor-
tion of manual operations to reuse-driven operations from which the engineering
process is composed. A high number of reuse operations versus the total number
of operations performed in order to refine a model is indicative of the centraility
of reuse to a model transformation framework. This is because it suggests that
— in line with the design objective of RORE which is stated in section 3.3.3 —
operations are driven “predominantly by reuse” rather than by manual reasoning;

• Average Frequency of the Application of Operations: A measure of the extent
to which reuse operations recur throughout the RORE life-cycle.
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9.2.3 Utility

At least three clear definitions of the term “utility” are given in the literature [Sut02,
YF00, NF00]. This thesis draws these definitions together into the following definition:

Utility measures the effort reduction achieved by reusing a reusable
artefact versus achieving the same goal without the aid of reuse.

This definition points to two major components of the utility equation:

• The financial and temporal capital which an organisation must invest in a reuse
approach in order to establish the program;

• The return which that approach will deliver in terms of the reduction which is
delivered by the reuse approach in the total effort required to produce a software
system.

At this stage, however, RORE has been tested only as a proof-of-concept prototype
and not as a commercial product. This thesis cannot, therefore, fully and accurately
evaluate RORE with respect to either criterion. The evaluation therefore focuses on the
extent to which RORE exhibits the kinds of features which are known or commonly
acknowledged to offer utility, as shown in Table 9.3.

Component of Utility Observable Measure
Initial Investment Time to formalise requirements method

Time Savings Proportion of adaptation time versus total time
Time Savings Usability of the prototype tool

Table 9.3: Observable Metrics for Evaluating RORE with Respect to Utility

This thesis clarifies each of these metrics as follows:

• Time to Formalise: The time spent formalising the Object and Information
System Model schemas, and the associated requirements tasks and associated
knowledge structures, into a long-term memory knowledge base.

• Adaptation versus Total Time: The time spent adapting reusable knowledge
structures as a proportion of the total time spent applying the RORE require-
ments engineering tasks to construct new models. This provides an indication
of the extent to which the RORE approach actually reduces manual reasoning in
the requirements engineering process.
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• Usability of the Prototype: A necessary condition of the claim that the RORE
approach offers a high degree of utility, usability refers to the ease with which a
user is able to utilise a tool to achieve a particular goal. This can be evaluated
through user testing or, as in this thesis, through a qualitative self-evaluation of
the application of the tool to a case study.

This thesis notes that data for each of these metrics was collated under laboratory
test conditions for a small number of examples, and not in real-world conditions. Fur-
thermore, control studies were not undertaken to evaluate these measures in the case of
a manual process. These limitations undermine the rigour of the evaluation of utility
presented in this thesis. However, the above metrics are sufficient indicators to enable
this thesis to draw tentative conclusions about the utility of the RORE approach.

9.2.4 Practicality

Several articles published in the 1990s address the practicalities of reuse in industry
[MR92, Gri94, Joo94, Bas96, LL98], and more recently several authors have attempted
to identify success and failure factors for reuse projects [Kru02a, MET02, MDS03].
Practicality is a criterion which this thesis considers critical in the design of a novel
reuse approach: a reuse approach should be capable of delivering utility in the organi-
sation, not just in the laboratory. This thesis defines practicality as follows:

Practicality is the ability of a reuse approach to satisfy the organisa-
tional, economic, legal and technical constraints imposed of a practical
setting while still yielding utility.

Given the prototypical nature of RORE in its current stage of development, the
evaluation of RORE with respect to practicality is predicated on the following assump-
tions about the application of RORE in a real-world scenario:

• Distribution within a single organisation as a standalone application to run on
the workstation of each individual developer;

• Adoption by the organisation of requirements engineering methods which de-
pend exclusively on public domain technologies, notations and techniques;

• Population of the knowledge bases with published model chunks and production
scripts, as well as those abstracted by the organisation itself;
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• A full-time team exists to review documentation produced by development teams
within the organisation in order to abstract and formalise reusable knowledge
structures from the work of the organisation;

• All intellectual property produced by the organisation is the property of that
organisation; there are no contractual obligations to the contrary.

These constraints largely rule out the economic, organisational, social and legal
factors which usually constrain reuse in practice and so allow the evaluation to focus
on technical constraints instead. There are two potential issues which are likely to
impact on practicality as illustrated in Table 9.4:

Component of Practicality Observable Measure
Technical Feasibility Performance of the Prototype Implementation
Technical Feasibility Scalability of the Prototype Implementation

Table 9.4: Observable Metrics for Evaluating RORE with Respect to Practicality

These metrics are defined as follows:

• Performance of the RORE prototype tool with respect to spatial and temporal
performance over the course of several analysis-action cycles.

• Scalability: An evaluation of the capacity of RORE to perform reasonably with
grow in the complexity of requirements models and long-term memory knowl-
edge bases.

9.3 Evaluation

9.3.1 With Respect to Generality

9.3.1.1 Scenario Number and Range

Table 9.5 shows a breakdown of the type and number of each domain used for each
case study.

Six domain types were tested in total. This equates to two context types for each
example which this research tested. In fact, every example consisted of precisely four
application domains indicating that the examples were of comparable complexity, and
this average is a result of the fact that some context types were reused both within and
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Context Type Autopilot File Trans-
fer

Order
Manage-
ment

ACS 0 2 1
CPP 1 0 0
MPP 0 0 1
SPP 0 0 1
TCS 0 2 1
TPH 0 0 1

Table 9.5: Breakdown of Context Types by Example

across application domains. The number of context types tested can be calculated as
a percentage of the total number of context types which could have been evaluated
within the constraints of the demonstration which this thesis adopted:

100(
T

D×G×A
) (9.1)

where:

• T = 6 is the number of context types tested;

• D= 4 is the number of domain types defined by the restructured Domain Theory;

• G = 7 is the number of goal types defined by the restructured Domain Theory;

• A = 3 is the number of agent types defined by the restructured Domain Theory.

To summarise:

• Ten concrete domain instances were tested, spanning a total of six different con-
text types;

• This amounted to an average of 1.7 concrete instances tested per context type;

• The statistic also represented 7.14% of the total range of OSM context types
which are expressible using the refined OSM schema.

This thesis considers that this sample has not allowed this evaluation extensively
to explore the capabilities and limitations of the RORE approach, in particular because
the evaluation has not been sufficiently extensive to discover the domains, model types,
and activities which RORE might not be able to support. In order to determine the
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potential generality of RORE, therefore, this thesis will need to apply the approach for
generalisation from case studies which is recommended by Gomm et al [GHF00] — to
generalise by reasoning over the relevant homogeneity and heterogeneity between the
observed and unobserved cases. To support this analysis, Table 9.6 shows an analysis
of the reusable structures that were used through all three of the case studies against
the context types to which they were applied. Context types are coded as follows:

• ACS: Allocation, Conceptual, Software;

• CPP: Control, Physical, Peripheral Device;

• MPP: Manipulation, Physical, Peripheral Device;

• SPP: Sensing, Physical, Peripheral Device;

• TCS: Transfer, Conceptual, Software;

• TPH: Transfer, Physical, Human.

The first conclusion which may be drawn with certainty from Table 9.6 is that the
RORE approach can, under certain circumstances, support cross-domain reuse. This
is evidenced by the fact that every production script and elicitation stimulus listed in
the table was reused across every context type that this research tested in Chapter 8.
However, it is clear that this is not true for all reusable structures in the table: not one
model chunk was reused between any two distinct domains. Chapter 3 claimed that
procedural reuse (as exemplified by Production Scripts) would prove more general than
declarative reuse (as exemplified by Model Scripts) and these results appear to confirm
that claim, although further data from additional case studies would be required to test
the generality of this conclusion.

Two factors can be identified which would have affected the results, and the impact
of these must be assessed in order that this thesis avoid drawing a false conclusion of
generality:

• The degree of difference between the tested contexts;

• The respective designs of the tested reusable components.
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Degree of Difference. The results illustrated by Table 9.6 cannot truly be said to be
indicative of domain generality unless there exists a substantial conceptual distance
and structural distance between the domains that were tested. When this thesis refers
to “domain generality” it means the range of different scenarios to which a reusable
structure can be applied. The greater the range of scenarios which may be modelled,
the greater the domain generality. Accordingly, the important concept here is not the
difference between the representations of the scenarios themselves, but the conceptual
and structural differences which exist between the domains themselves.

It is immediately clear that there is at least a small degree of variation between the
application domains as pointed to by the fact that testing of RORE covered domains
spanning all three agent types and two of the four domain types as shown in Table 9.7.

These differences are significant. Each Agent Type gives rise to a substantially
different set of generic requirements and concerns. For instance, a Peripheral Device
domain generally gives rise to functional requirements which necessitate the software
system to control that device, while a Software domain gives rise to a functional re-
quirement that the goal of a domain be enacted predominantly by some part of the
software system. A Human domain, by contrast, requires no such functional require-
ment to be introduced at all. These represent substantially different software systems.
However, as Sutcliffe observes [Sut02], the structure of the domain is the primary fac-
tor which distinguishes one domain from another. Accordingly, Table 9.8 summarises
the structures of each of the tested domain goals, and lists the tested domains for each
goal type.

The above table reveals that there are in fact some striking structural similarities
amongst some of the goal types described in Table 9.8. However, as the pairwise
comparison in Table 9.9 shows there are, in fact, some important distinctions between
the goal types. Each cell states how the row’s Goal Type is ditinguished from the
column’s Goal Type:

There are, then, clear structural distinctions between each of the domain goals
which, taken together with the conceptual distinctions that arise from differences be-
tween contexts in agent and domain type, suggest that each of the domains which this
research tested are indeed significantly different. There is a final piece of evidence to
support this conclusion, however. Chapter 7 stated that each Goal Type is associated
with an underlying deeper semantics which cannot directly be represented by Sutcliffe
and Maiden’s meta-schema, or the restructured form of it. Each Goal Type is associ-
ated with a key concept which defines the central idea which underpins the behaviour
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Goal Type Structure Sample Domains
Allocation A key object resides in a sec-

ond structure. An agent ob-
ject creates an association be-
tween the key object and a
second structure object

OrderSchedulingDomain,
DownloadFileAllocation,
UploadFileAllocation

Control An agent dispatches events
which are detected by a key
object. The key object
changes its state accordingly.

XAngleControllerDomain,
YAngleControllerDomain

Manipulation An agent interacts with a key
object directly to change its
secondary state. An event
is triggered when the state
change is complete.

TCardPrintingDomain

Sensing A key object changes its state.
The secondary state change
produces an event which is
detected by an agent object.

XAngleSensingDomain,
YAngleSensingDomain

Transfer An agent object interacts with
a key object causing it to
change its primary state. An
event is produced denoting
completion of the activity.

OrderRetrievalDomain,
BuildMonitoringDomain,
UploadFileTransferDomain,
DownloadFileTransferDo-
main

Table 9.8: Structural Summary of Tested Domains with Examples
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of that goal type. When this is examined, this thesis observes that the semantics of
each goal type is in fact substantially different in each case:

Goal Type Key Concept
Allocation Location
Control State Transitions
Manipulation Secondary State
Sensing A State
Transfer Location

Table 9.10: Structural Summary of Tested Domains with Examples

These semantic concepts are human interpretations - rather than formalised inter-
pretations - of the meaning of a Domain Goal. However, as shown in Table 9.8, these
semantic interpretations differ significantly between most of the goal types. While
there is some overlap between certain goals, however, Goal Types which share a com-
mon key concept are distinguished by significant structural. This thesis concludes,
therefore, that there is a sufficient degree of distinction between the contexts which
this research tested in the demonstration to support the conclusion that the particular
set of knowledge structures which this thesis identified do indeed support domain gen-
erality, and that the reuse of procedural and elicitation knowledge supports a greater
degree of domain generality than the more conventional declarative reuse.

Comparison of Designs. A second factor could also explain, and potentially falsify,
the results which Table 9.6 presented is the comparative design of each knowledge
structure that was used during the case study. More precisely, generality is related to
both granularity and abstraction [Sut02], and so if model chunks were designed at a
lower level of abstraction and coarser level of granularity than either the production
scripts or elicitation stimuli that were used, then this variation would be a probable
explanation for the observed variation in generality between model chunks and pro-
duction scripts.

There exists an inherent methodological difficulty in comparing the granularity
and abstraction of production scripts and model chunks. The granularity of production
scripts can be estimated in terms of logical distance which measures (crudely) the
number of logical inferences that need to be drawn to produce an output from a given
input. One might also consider the granularity of the output from a production script
rather than the granularity of the script itself. A reasonable heuristic, however, might
be that a fair test of the relative generality of a production script and a model chunk
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might pitch:

• A coarse grained model chunk against a logically distant production script;

• OR a fine-grained model chunk against a logically “close” production script.

A more concrete heuristic constrains the two types of knowledge structure as fol-
lows:

• Model chunks should comprise no more than two or three nodes, as per Sut-
cliffe’s prescription [Sut02];

• Production scripts should be geared towards producing facts of no more than two
or three fact types.

One could apply either measure to constrain an elicitation stimulus:

• Either the model chunk which a user provides as a response to a stimulus should
comprise no more than two or three nodes;

• OR the elicitation stimulus should be geared towards eliciting facts of no more
than two or three fact types.

We adopt the second of these two measures as it is applicable to all three elicitation
stimulus types.

A brief survey of the reusable knowledge structures which this research applied
throughout the demonstration in Chapters 7 and 8 reveals that these constraints were
indeed satisfied. For instance, the transformation procedure which is described in sec-
tion 7.4 identifies elicitation stimuli to request from the requirements engineer facts of
three different types.

• Object properties;

• Resources;

• Data sources and sinks.

Separate elicitation stimuli are defined for each fact type, and so these stimuli sat-
isfy the criterion that a stimulis should elicit “facts of no more than two or three fact
types”. The granularity and logical distance of all components was, therefore, largely
comparable suggesting a fair test.
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There is, however, a second factor which impacts on the generality of individual
components: abstraction. The more abstract a component, the more general it will
be. Conversely, the less abstract a component is, the less general [Sut02]. Comparing
the abstraction of production scripts and model chunks, however, presents a significant
challenge because the concept of abstraction has different emphases when applied to
processes as opposed to models. In either case, abstraction refers to information hid-
ing, but when applied to models the term abstraction refers to the amount of informa-
tion that is hidden about the nature of the concepts and activities which that model
describes. By contrast, what is hidden when a process is abstracted is the detailed se-
quence of steps by which the goal of that process is realised: the “implementation”.
This is of little value in comparing the abstraction of a production script to that of a
model chunk. What is more significant is the specificity of the facts over which a script
operates and produces.

The model chunks which Chapter 7 defined may be considered to reside at about
the same level of abstraction as the generic domain abstractions described by Sutcliffe
and Maiden [SM98]. The facts which comprise the model chunk in each case give an
indication of the general type of concept to which the fact refers, and of the role of
the fact within the scenario described by the chunk. However, neither set of chunks
identifies the specific attributes of the concepts to which they refer, leaving flexibility
in the range of interpretations which the model may be given.

The production scripts which were defined generally do not refer explicitly to spe-
cific facts. Instead, they use labels and references to refer to facts which are retrieved
through queries and provided as input when the production script is initially fired. This
makes a general evaluation of the level of abstraction of the production scripts which
were described in Chapter 7 difficult since this property is dependent on the specificity
of the input facts provided and of those retrieved through any queries. However, this
thesis does conclude that in the context of the specific examples which were tested
(the Autopilot, File Transfer and Order Management examples), each fact over which
these production scripts operated described a specific concept in a specific domain.
Furthermore, the facts which each production script produced were context-specific
and needed no further adaptation to reify them. Were it true that each production script
referred explicitly to specific facts within an input and output model, this would sug-
gest that these production scripts are, in fact, less abstract than the model chunks. This
is not the case, however, because like model chunks the production scripts use place-
holders (variable names in the case of production scripts, abstract names in the case
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of model chunks) to refer to facts in specific domains. This thesis concludes, there-
fore, that the production scripts and the model chunks which this research produced
represent an equatable level of abstraction.

9.3.1.2 Task and Method Number and Range

Task Number and Range. The case study which Chapters 7 and 8 present is a small
scale study which ranges over just one task: that of transforming Object System Mod-
els into Information System Models. The central purpose of this task is the transfor-
mation of a source model of one type (an Object System Model) into a target model
of a second type (an Information System Model). However, there is good reason to
believe that the approach can support at least one other requirements engineering task:
the from-scratch production of an initial Object System Model. Six of the basic com-
ponents that are necessary to support a basic, non-analogical implementation of such a
task were fully tested through the existing case study:

• The retrieval of model chunks and elicitation stimuli;

• The adaptation of model chunks;

• The use of chunk-based stimuli to produce new model facts;

• The use of fact editing stimuli to adapt existing model facts manually;

• The integration of knowledge produced into a target model.

A basic implementation of a process to construct an OSM from scratch based on
these components might comprise the following steps (following the general process
described by Sutcliffe and Maiden [SM98]):

• Chunk-Based Stimulus: Define domains, but do not provide details at this
point;

• Chunk-Based Stimulus: Define key, structure and agent objects;

• Chunk-Based Stimulus: Define primary states, state transitions and goal state;

• Chunk-Based Inference: Match goal type to each goal state to add additional
information (events, secondary states);

• Fact-Editing Stimulus: Associate goal states with domains.
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We can be confident that this implementation of the “GenerateNewOSM” task
would be effective because it uses features of RORE which were thoroughly tested
during the case study presented in Chapter 7, and is based on fact and model types,
as well as knowledge structures, which are already defined within the long-term mem-
ory for the case study. However, it is desirable that RORE be able to support a wider
range of tasks than the GenerateOSM and GenerateISMSpecification tasks this thesis
has already discussed.

Gomm et al have argued, within the context of social research (although they con-
sider their discussion to be more generally applicable), that it is possible to utilise case
studies in generalising from observed to observed cases [GHF00]. Wieringa [Wie12]
concurs, and suggests that one method for achieving this generalisation is to use ar-
chitectural properties of a case study to determine relevancy of an observed case to an
unobserved case. Gomm et al consider more broadly how researchers might avoid error
in generalising from studied to unstudied cases, emphasising the importance of taking
into account the “relevant heterogeneity” within the population under discussion:

Researchers can [select] cases for study [which are] typical in relevant
respects. Whether this is possible, even in principle, will depend on the
level of relevant heterogeneity in the population, and on the availability of
information about this...[Alternatively, one can] study a small sample of
cases that have been selected to cover the extremes of expected relevant
heterogeneity within the population. It is worth noting that here cases do
not all have to be studied in the same depth: one or two may be investi-
gated in detail, with others examined more superficially to check the likely
generalisability of findings from the main case study [GHF00].

Drawing on this discussion, one can consider whether or not the properties are typ-
ical or atypical that made the formalisation of the OSM-ISM transformation procedure
in Chapter 7 — and its application in Chapter 8 to the Autopilot, File Transfer and Or-
der Management examples — possible using the RORE approach. The key properties
that are needed in order to enable a requirements engineering activity to be formalised
using RORE are:

• That the activity produces, or transforms, models which are represented in a
notation that comprises at base an acyclic graph, comprising at least one type of
node and at least one type of arc. Requirements notations which have previously
been formalised using the Telos formalism (see [MBJK90]);
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• That the activity can be formalised by a sequence of additions or deletions of, or
label changes to, the facts within such a model.

Given this analysis, one might also consider other concrete, reuse-driven require-
ments tasks which share these properties, and which it might therefore be possible to
implement using the RORE approach. One such task is the reuse-driven approach to
constructing goal hierarchies described by Massonet and Van Lamsweerde [MVL97].
KAOS is a goal-oriented approach to requirements engineering which seeks to decom-
pose high-level organisational goals into low-level, operationalisable system goals. To
construct a goal hierarchy, high-level goals are specified and then each goal is reified by
identifying what must be done in order to realise that goal. This is an iterative process
which stops at the point that all goals have been decomposed to the operationalisable
level. Goals are represented as nodes in a goal-hierarchy with arcs between goals rep-
resenting various kinds of dependency [DFvL91, DVLF93].

Implementing this process in RORE would be straightforward in comparison to the
implementation of the GenerateNewOSM and GenerateISMSpecification tasks: the
KAOS modeling language comprises a comparatively small number of fact types -
predominantly goals and their relationships - which can readily be modelled. Indeed,
the refined OSM meta-schema comprised a notion of “goal” which is significantly
more complex than that which is defined in KAOS: whereas KAOS represents goals
as individual labelled nodes in an acyclic graph, the OSM meta-schema represents
goals as aggregate concepts consisting of state transitions over key objects. Thus, this
thesis concludes that there is no significant construct required to represent a GORE
goal hierarchy which cannot be handled by some demonstrably efficacious component
of RORE. Furthermore, being iterative in nature, the process by which a GORE goal
hierarchy is constructed could be implemented using just three actions:

• Chunk-based Stimulus: Specify initial high-level goals;

• Chunk-based Inference: Select, adapt and apply requirements pattern;

• Fact-Editing Stimulus: Reify high-level goal manually by adding a new lower-
level goal.

The goal-hierarchy example does raise one potential problem. RORE determines
whether or not a model is complete by evaluating the state of a source and target model.
Because these checks are expressed as SPARQL-DL ASK queries, certain kinds of
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check are possible depending on whether the information required to perform the check
is contained within either the source, or the target, or an imported model:

• The existence of facts of a specific type;

• The existence of specific individuals;

• The existence of facts with specific property values;

• The existence of relationships between specific facts, or facts satisfying certain
relational criteria.

However, the primary condition which needs to be met by a goal hierarchy in order
to be considered “sufficient” or “complete” is the “operationalisability” of all goals. It
is not immediately clear how this fuzzy concept might be stated explicitly and precisely
in terms of checks of these kinds. This presents a significant challenge to the ability
of RORE fully to implement the KAOS procedure. Nonetheless, this would limit only
the ability of the RORE approach to determine that a goal hierarchy was complete, and
would not significantly impact on the ability of RORE incrementally to construct such
a hierarchy. As such, the thought experiment has been a useful one in that it has helped
to clarify the properties which the task shares in common with those which this thesis
has already established could satisfactorily be implemented as RORE tasks. This thesis
has shown, therefore, that RORE is sufficiently general to support the formalisation of
requirements tasks which satisfy the following criteria:

• The task must either produce or transform a requirements model of one kind,
possibly into a model of another kind;

• The model types over which the task operates must be expressible in terms of a
graph comprising nodes and arcs between those nodes;

• The task must be expressible in terms of a sequence of steps such that each step
consists either of the reuse of a model chunk, or of a production script, or of an
elicitation stimulus;

• The task has a set of well-defined stopping criteria which can be expressed in
terms of the existence of facts of a particular type, and the attributes of and
relationships between those fact.
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It is clear that a number of other requirements tasks do indeed satisfy these criteria:
the Jacksonian decomposition of problem models into problem domains [Jac01b] and
the matching of such domains to problem frames, and the identification and correct of
certain kinds of inconsistencies within a model, are two such examples. This thesis
concludes, therefore, that RORE does indeed exhibit a high degree of Task Generality.

Method Number and Range. Although this research only utilised a single task of
a single method in the case study, this thesis has implicitly addressed in the argument
with respect to Task Generality the question of method generality. RORE defines a
method as being a set of model types and tasks which collectively serve incrementally
to improve the quality of models, and to transform those models into new models of a
different type. Thus far, this thesis has demonstrated or argued the following:

• That RORE supports the expression of at least two model types (Object and
Information System Models);

• That RORE is capable of expressing another significant requirements model type
- KAOS [MVL97];

• That RORE can support a range of requirements tasks which satisfy certain con-
ditions.

Given that the specification of a method requires only that RORE can represent
a range of different model types, as well as tasks over those model types, the above
conclusions already justify the claim that RORE is capable of supporting a range of
requirements engineering methods, and so exhibits Method Generality.

9.3.1.3 Expressivity of the RORE Knowledge Model

In general this thesis found little difficulty in applying the knowledge structures which
Chapter 6 outlined in order to formalise the OSM-ISM transformation requirements
task. Two distinct requirements models - the Object System Model and the Infor-
mation System Model - were successfully formalised using the RORE metamodeling
framework. Furthermore, RORE was broadly adequate to formalise the transformation
task which Chapter 7 outlined. There were, however, limits to this expressivity. In
its original form (that of the Chunk-based Stimulus), the Elicitation Stimulus provided
only the means for users to respond by specifying an entirely new set of facts. How-
ever, this research found in implementing the OSM-ISM transformation procedure that
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rather than requesting users to specify new facts, it was actually necessary to request
users to reify existing sets of facts. The existing structure of the Elicitation Stimulus
was not well-equipped to support this objective. This is because the Elicitation Stim-
ulus was abstracted from the fact acquisition dialogues which underpin the Domain
Theory’s AIR tool. However, the Domain Theory tool is geared towards the earli-
est phases of requirements engineering, rather than supporting the latter phases. The
earliest stages of requirements engineering should emphasise the acquisition of new
information, whereas a dialectical shift can be expected to occur towards information
transformation and away from information acquisition as requirements engineering
progressed. This hypothesis is confirmed by the fact that the OSM-ISM transforma-
tion process depended almost exclusively on production scripts and elicitation stimuli
which transformed existing facts, rather than those stimuli which introduced novel
facts.

The RORE framework also inherits from its underlying technologies a certain lack
of expressive power. In particular the SPARQL-DL query syntax which this research
adopted in order to represent model queries and conditions is limited in at one impor-
tant ways. While these limitations naturally affect any and all query- and condition-
based constructs within the RORE framework, this research found through the case
study that it most significantly impacted in practice on the specification and represen-
tation of analysis rules and rule-based matching conditions. The query syntax does not
support queries over multiple, non-integrated, ontologies. This thesis can illustrate the
significance of this by reference to the limited implementation of the “HasMonitorRe-
ports” analysis rule. A correct implementation of this rule would check that a report
exists in the ISM for each key object in the OSM which belongs to a domain whose
monitor tag is true. This, however, patently involves a check over both the source
and the target model. While this is ostensibly a limitation of the SPARQL-DL query
syntax, it is also a product of limitations in the design assumptions which underpin
RORE. This research had assumed in the design of RORE that conditions would need
to be tested against either the source, or the target model, but never against both con-
currently. This is a problem with multiple possible solutions: either the ability to fire
conditions over both models concurrently should be introduced; or source information
which needs to be referenced when querying the target model should be transferred to
the target model as traceability information in which case the problem is a limitation
of the implementation of the OSM-ISM transformation procedure. However, this the-
sis cannot comment further on precisely which solution would be most appropriate as
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further case studies would be required to clarify the question.

In order to address these limitations this research introduced a number of refine-
ments to the RORE specification, as outlined in Section 9.3.5. The result of these
refinements was that the limitations which prevented key production scripts and elici-
tation stimuli from being implemented fully were resolved, and so a full and effective
implementation of the OSM-ISM transformation procedure was possible. However,
because this research did not attempt to restructure the SPARQL-DL query syntax,
the example refinements did not impact on this particular limitation which, therefore,
remains an issue. While this research did not find reason to believe that this would
significantly limit the generality of the RORE approach, as the knowledge base grows
it may well significantly limit the utility of the approach since it restricts the power
to design effective filters over the reusable structures that are displayed to a user at a
particular point in time.

9.3.2 With Respect to Systematicity

9.3.2.1 Results of the Case Study

The assessment of the systematicity of RORE is based on a quantitative evaluation of
the levels of reuse achieved during the case studies. In order to gather the quantita-
tive data needed to perform this quantitative evaluation, this research first performed a
qualitative evaluation which aimed to classify and count the operations that were per-
formed during the case study. This evaluation focused in particular on the productive
activities of RORE, as the analytical and integration operations are fully automated by
the RORE task assistant prototype. This thesis considered, therefore, that including
these would bias the results to show a more favourable outcome.

We classified operations as either “Manual” or “Reuse-Driven” as indicated in Ta-
ble 9.11:

Operation Class Operation Type
Manual Chunk Adapta-

tion, Elicitation
Reuse Chunk-Based

Inference, Rule-
Based Inference

Table 9.11: Classification of RORE Operations for Evaluation of Systematicity
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Metric Autopilot File Trans-
fer

Order
Manage-
ment

Summary

Total Ops 7 7 8 22
Total Manual 2 2 2 6
Total Reuse 5 5 6 16
% Manual 28.57 28.57 25 27.27
% Reuse 71.43 71.43 75 72.73
Manual Freq PO 0.29 0.29 0.25 0.28
Reuse Freq PO 0.71 0.71 0.75 0.72

Table 9.12: Statistics for the Evaluation of Systematicity of the RORE Process with
Respect to Reuse

This thesis then reviewed all logs produced by the RORE requirements task assis-
tant during the thing, and highlighted each instance of the operation types identified in
Table 9.11 (a simple task since this is highlighted in the logs already). This research
then produced one spreadsheet for each example showing the number of manual op-
erations, the number of reuse operations, and the total number of operations for that
example. This research then calculated statistical values for each example, before ag-
gregating these values to produce a summary for the case study as a whole. This
summary is presented in Table 9.12.

We also counted the number of occurrences of each individual requirements tasks
across all three case studies with the results shown in Table 9.13.

We finally summarised these results, as shown in Table 9.14 in terms of the higher-
level categorisations.

9.3.2.2 Discussion

Section 9.2 defined two metrics against which the systematicity of the RORE approach
could be measured:

• Centrality, estimated by the ratio of reuse to manual operations;

• Repeatability, estimated by the recurrence of requirements tasks.

The statistics presented in Section 9.3.2.1 clearly indicate that RORE satisfies both
criteria. The findings of this evaluation indicate that the RORE approach interweaves
manual and reuse-driven operations via a set of highly repeatable procedures which
depend on reuse to operate. The main findings as follows can be summarised as fol-
lows:
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Task Frequency
Analysis 0.67
Reuse 0.24
Manual 0.09
Total 1

Table 9.14: Statistics for the Evaluation of Systematicity of the RORE Process with
Respect to Reuse

• The average ratio of reuse-manual productive operations (those excluding anal-
ysis) was 72%:28% (approximately 3:1);

• When analysis was additionally taken into account, the ratio across all three cate-
gories of operation was 67%:24%:9% (analysis:reuse:manaul — approximately
6:2:1);

• On average, a given requirements task recurred once for every five operations;

• Predictably, analysis occurred more frequently (0.33 times for each time of anal-
ysis, or 0.67 times for all kinds of analysis collectively);

• Elicitation occurred slightly fewer times than other reuse operations (0.09) times;

• The spread of frequency across all productive operations was much more even
than this thesis had anticipated (0.11 for chunk-based inference, 0.14 for rule-
based inference, 0.09 for elicitation).

Within the requirements engineering literature, the literature survey presented in
this thesis (see Chapter 2) identified no research which has previously attempted to
quantify levels of requirements reuse. However, a recent study by Lucredio, de Almeida
and Fortes [LAF12] across three application domains found that model-driven engi-
neering (MDE) applied to the task of code generation can deliver between 80-90%
reuse, of which 40-50% will be generated by model generators. The authors note
that their own work is consistent with the findings of other authors [LAF12] inves-
tigating similar questions. The figures presented in this chapter indicate that RORE
yields a lower (by approximately 10%) degree of reuse than observed by Lucredio et
al. However, this is partially explicable by a difference in metrics (we use the fre-
quency of reuse operations, whereas Lucredio et al depend on Lines of Code metrics
which are not relevant to the RORE approach). It is also explicable by the design
goals which underpin the RORE approach: Lucredio et al investigated model-driven
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approaches which depended on domain-specific languages to support transformation
[LAF12], whereas RORE has intentionally sought to move away from the domain-
specific paradigm. In order to achieve this generality, however, RORE has traded a
degree of automation by introducing systematic support for user intervention in the
generative process. This naturally reduces the degree of reuse, but does so by design.

By means of comparison, Selby has investigated levels of reuse in library-based
development projects, and observed a 30% rate of reuse. Clearly the 72% level of
reuse yielded by RORE on the case studies this research has tested represents an im-
provement over library based approaches to reuse. This thesis concludes, therefore,
that while the generality of RORE slightly undermines the level of reuse achieved
when compared to other model-driven approaches, RORE is still able to achieve a sig-
nificant improvement over more traditional approaches to reuse. Quantitative studies
of reuse have, to date, been confined to analysing code-level reuse and so, by neces-
sity, the results against which this research has compared the RORE approach focus
on code (rather than requirements) -level reuse. However, this thesis anticipates that
were such statistics available specifically for the requirements engineering literature
that they would be largely consistent with those produced for code-level reuse. This
research anticipates such a similar level of reuse can be achieved by RORE in practice,
as this thesis sees few fundamental distinctions between requirements engineering and
software programming — both being essentially model-driven activities which involve
the creation of new artefacts based on logical reasoning over existing artefacts. There
is one significant exception: that requirements engineering depends more heavily on
interaction with stakeholders than does programming, and this necessarily reduces the
degree of automated reuse that is possible; but this thesis anticipates this factor im-
pacting to a similar degree across all reuse technologies, and thus not significantly
impacting on the comparative merits of different technologies.

9.3.3 With Respect to Utility

9.3.3.1 Time to Formalise Method

This thesis interprets the phrase “formalisation of a method” as referring specifically to
the activity of modeling the different components of a method (fact types, model types,
phase, activities and reusable structures) using the RORE knowledge types. This defi-
nition includes both the initial formulation of the formal specification, and subsequent
debugging on a number of case studies. This research did not formally measure the
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period of time which it took me to formalise the OSM-ISM transformation method
using the RORE approach. Instead, the timings are based on clock readings that were
taken informally while working on this aspect of the case study. However, these tim-
ings should be sufficient to give an indication of the potential ratio of investment to
return in the context of this case study. Certainly the two activities were completed in
a single evening. The timings are as follows:

Activity Estimate of Time Taken
Initial Modeling 4.5-6 hours

Subsequent Debugging 2-3 hours

Table 9.15: Estimate of Timings for Formalisation Activities

It can clearly be seen, even from these rough timings, that the effort required to
formalise a modeling approach using the RORE requirements task assistant is not sub-
stantial so long as the modeling language is already well-specified. The validity of
these timings and any conclusions one might draw from them is naturally limited by
a number of differences between the laboratory conditions under which this research
tested the RORE approach, and the realities of commercial requirements engineering.
In particular, this thesis formalised a single task spanning just two model types. Fur-
thermore, the thesis required the formalisation of a small number of abstractions. This
is partly a result of the generality of the components involved, and consequently the
simplicity of the knowledge bases could be replicated in practice, this thesis suggests.
However, it is also partly due to the comparatively small scale of the case studies versus
a real-world software engineering case study.

In order to determine that RORE can offer similar advantages in real-world practice
as have been observed under the laboratory conditions of this evaluation, a case study
could be conducted by taking the following steps:

1. Work with a team of requirements engineers in practice in order to formalise,
using RORE, the requirements modeling notations that are used within that team;

2. Perform domain analysis over historical artefacts which have been produced by
that team in order to identify abstractions and transformations which can be for-
malised into a RORE long-term memory knowledgebase;

3. Request that the team then use the RORE tool in a small number of future re-
quirements engineering projects.
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The team and experimenter should keep detailed timesheets about the time spent
on each activity within the case study. This would allow the timings for knowledge
engineering activities to be carefully assessed. The case study could also be more
readily applied within teams who already specialise within particular application do-
mains, or adopt a product-line approach, because abstractions for formalisation would
more likely be readily available within such contexts.

However, that the timings which are presented in this evaluation have not been
acquired through a rigorous commercial case study does not undermine their value
in providing an indication of the utility of the RORE approach. The critical factor
in evaluating the extent to which the time taken to formalise a model impacts on the
utility of the RORE approach is the ratio of formalisation time to reductions in time
taken to engineering requirements on each project where the approach is applied. If
the application of the RORE approach were to result in an overall increase in the time
taken to engineer models due to the time initially taken to formalise those modeling
languages, then the RORE approach would be a lame duck solution. If, however,
a significant reduction in development time is realised over several projects then the
initial time taken is mitigated by the running effort reduction.

While this thesis cannot present accurate comparisons of the time taken to trans-
form OSMs into ISMs manually, it is possible to reason from personal experience that
the task would take approximately two hours for an experienced requirements engi-
neer to produce a high quality model which accurately reflected the requirements of
the application domain. By contrast, as the timings discussed by Section 9.3.3.2 show,
the RORE requirements task assistant is capable of producing a high quality model in
significantly less than two hours. The statistics which were discussed in relation to sys-
tematicity also point to a reduction in effort achieved by applying the RORE approach:
70% reuse levels, versus 30% reuse levels with more traditional reuse approaches indi-
cates that the reduction in effort realised by RORE will be significant if, indeed, reuse
does reduce effort as is commonly assumed [Kru92].

If my estimates of the time taken manually to transform an OSM into an ISM are
accurate, then the effort reduction achieved by applying the RORE approach to the
OSM-ISM transformation task would not pay for, or would just break even with, the
capital investment in formalising the transformation procedure described in Chapter
7. However, adopting a reuse approach offers increasing returns: the return is greater
the more projects it is applied to, because effort reduction is cumulative over several
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projects. This is particularly true for RORE, versus domain-specific approaches, be-
cause the RORE approach can be applied to a wider range of projects than can an
individual domain-specific library. Since most real-world organisations would be un-
likely to invest in a technology which would be used on just three projects, as has
been the case in this thesis, one can expect real-world organisations who might invest
in a hypothetical future commercial RORE tool to reap significantly greater rewards,
therefore.

9.3.3.2 Adaptation Time versus Total Time

This thesis also measured the relationship between adaptation time and the total time
taken to generate an ISM for each case study. This is an important metric by which to
judge utility given the strong relationship between utility and effort reduction [Sut02].
Effort is reduced by reuse and by automated procedures, and increased where work
must be done manually. For each case study, therefore, this research carefully mea-
sured the time taken to generate a model from start to finish and the time spent on the
manual adaptation of results. These results are presented in Table 9.16:

Example Adaptation Time (mins.secs) Total Time (mins.secs)
Autopilot 1.13 6.49

File Transfer 2.29 7.43
Order Management 2.34 8.57

Total 6.32 22.49
Adaptation / Total Time: 43.90%

Table 9.16: Estimate of Timings for Formalisation Activities

The results show that more than 40% (43.90%) of the time taken to generate an
ISM from an OSM was spent on adapting reusable components. Two comments must
be made about these results before analysing them further. Firstly, these results are
slightly skewed by the performance of the RORE tool, which Section 9.3.4.1 discusses.
Much of the time spent on adaptation was not spent actually doing work, but instead
was spent waiting for the RORE tool to complete automated processes. This perfor-
mance issue arose from the noted performance limitations of OWL-related technolo-
gies, and disproportionately impacted on manual adaptation. The result of this is that
the actual effort required by a human actor to apply the RORE tool would be slightly
lower than the above timings indicate. Nonetheless, the results are sufficient to draw
some conclusions about the utility of the RORE tool. Indeed, an overestimate of the
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effort required to perform the manual aspects of the RORE procedure can only lead
to an underestimate of the utility of the RORE tool. If the RORE tool actually offers
greater-than-expected utility then any conclusion about the feasibility of applying the
tool in practice will not be affected.

A second observation arises in comparing the relationship between the manual and
total work performed during a RORE session as measured by number of operations (see
Section 9.3.2.1) and as measured by time. This thesis observes that whereas manual
work accounts for slightly less than 10% (9%) of the total number of operations per-
formed during a RORE session, it accounts for slightly more than 40% (43.90%) of the
time taken to generate a model. This indicates that the time spent on each non-manual
(reuse-driven and automatic) operation in RORE is significantly less on average than
the time spent on manual operations, as shown in Table 9.17.

Operation Type Time Taken
(secs)

Number of Op-
erations

Average Time /
Op (secs)

Non-Manual 893 60 14.88
Manual 449 6 74.83

Table 9.17: Timings Per Type of Operation in RORE

The observation that automated and reuse-driven operations are faster and more ef-
ficient than human-implemented operations is to be expected: these are the fundamen-
tal reasons that motivate the application of software to any domain in the first place.
However, it is interesting to observe that the average time for each non-manual opera-
tion (including all kinds of analysis, inference and integration assuming no adaptation)
is significantly higher than one might expect or desire for a computerised operation.
This too is an effect which is caused by a performance issue associated with the OWL
technologies on which the prototype tool was constructed (see Section 9.3.4.1) and
which specifically impacts on the execution of production scripts. Although this re-
search did not acquire timings to support this observation, this thesis concludes that
the time to apply a production script was significantly higher than the time to apply
an analysis rule or a model chunk without adaptation. The reason for this is clear: the
execution of production scripts requires on average many more calls to the OWL API
and Pellet reasoner [SPG+07] than does the execution of a single analysis rule (one
call to retrieve the rule, one to fire the rule) or the application of a model chunk. Since
the OWL architecture on which the RORE prototype was built was found to have im-
portant performance limitations, it is logical that production scripts would take longer
to execute than other reuse operations. This naturally raises the overall average time
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per operation, although reuse operations still took a fifth of the time taken by manual
operations on average.

These results present a challenge for the current version of the RORE prototype
tool - waiting for 14 seconds for a single operation to complete is practically problem-
atic - the conclusion is less clear cut when one considers the bigger picture. Clearly
future versions of RORE, and in particularly any commercial product which may be
developed as a product of this research, would need to address the performance issue.
However, this thesis considers that the absolute time taken to generate each ISM model
(7.6 minutes on average) still represents a significant improvement over a manual al-
ternative to the RORE approach.

9.3.3.3 Usability of Prototype Tool

Component Explanation. This research did not perform a formal usability evalua-
tion of the prototype, but instead report the experiences of this thesis of applying the
prototype tool to the case study. While this naturally biases this evaluation to a certain
extent, this research makes a considerable effort to overcome this bias and to report as
honestly as possible the issues which were encountered when utilising the tool. This
research identifies limitations in four areas with respect to the usability of the proto-
type RORE requirements task assistant. Firstly, this thesis considers an issue which is
raised by Maiden [Mai92] in relation to the design of tools to support reuse: the need
for explanatory mechanisms which help users to understand the purpose, function and
structure of reusable components.

Maiden’s Intelligent Reuse Advisor [Mai92] (IRA, subsequently AIR [SM98]) pro-
vides dialogues which clearly explain in natural language the structure and purpose of
each individual component. These dialogues are supported by a range of intelligent
algorithms for generating explanations [Mai92]. The prototype RORE tool attempts to
provide support to requirements engineers for comprehending the function of reusable
knowledge structures. However, this support took the form of a set of Viewer compo-
nents which allowed requirements engineers to explore the contents of reusable knowl-
edge structures and models. No clear summary is available within the prototype RORE
tool to support this task. This research found that this was not an effective means of
supporting the choice between two potentially relevant components, because it left the
author to reason from scratch about the relevance of a structure to a particular context.
This thesis considers, however, that there are circumstances in which such a tool might
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be preferable to a high-level summary, in particular situations in which the choice be-
tween two components rests on low-level nuances which require an exploration of the
low-level facts which two structures comprise. A tool to summarise a reusable knowl-
edge structure would, therefore, complement the current Viewer-based approach.

Familiarity with Components. Because of this limitation in the power of the pro-
totype tool to explain reusable structures at a high-level this research tended, when
enacting the case studies, to avoid utilising the explanatory tools where necessary. In
particular, throughout the testing phase of the development of RORE the user became
sufficiently familiar with a handful of the reusable structures that they no longer needed
to refer to any form of explanation to make relevant decisions. While, therefore, the
RORE prototype may lack techniques and tools for adequately explaining reusable
structures to users in the first instance, the support which RORE provides for utilising
generalised and flexible reusable knowledge structures means that requirements engi-
neers can use significantly smaller libraries than might otherwise be possible, and so
can familiarise themselves rapidly with a small set of frequently recurring knowledge
structures. This improves usability in the long-term because if users instinctively un-
derstand from past experience which knowledge structures to apply in a given situation
then this is preferable to a situation in which users must learn about a new aspect of a
framework each time they apply it.

Clarity of Notations. Another factor which adversely impacted on the utility of the
RORE approach was the lack of a clear notation for representing reusable knowledge
structures, or indeed the models which were being generated. While the user did de-
velop a technique for generating graphical representations of the models that were
produced during a RORE session, the technique was a prototype for the purposes of
producing graphics for this thesis, rather than a quality long-term solution. Graphical
output is useful because it provides an abstract view of reusable structures and models
which can be more rapidly digested than can detailed textual descriptions (recall the
common observation that “a picture describes a thousand words”). As such, the lack of
a clear graphical representation of models and reusable structures further undermines
the ability of RORE to summarise knowledge structures to requirements engineers.

Rigidity of the Cycle Structure. Aside from the lack of explanatory tools provided
by RORE, another issue which this research identified as affecting the usability of the
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prototype tool is the rigidity of the RORE cycle structure. In specifying the cycle
structure this thesis did not consider fully the possible exceptional cases that may arise
during the course of a RORE session. This thesis identified the possibility that an In-
formation Requirement might be generated which cannot be satisfied by any reusable
knowledge structure in the currently LTM. During the case study, a number of other
such exceptional cases emerged. One concrete example of such a case can be found in
the case of the File Transfer example for which an information requirement was gener-
ated stipulating the need to produce a monitor report, despite the fact that all domains
within the File Transfer example had a false monitor tag. In this case the tool compels
users to proceed with the remainder of the cycle, to satisfy an information requirement
that did not make sense given the context. No facts were ultimately generated, but the
process wasted time which might have been spent more productively. This is partly a
limitation in the specification of the analysis rule concerned which did not check the
monitor tags associated with domains, but it is also indicative of a limitation of the
implementation of the prototype tool. This implementation forces users to follow the
specified procedure precisely and offers them little control over the sequence of events
within the process and so can create uncertainty in some situations. The implemen-
tation can easily be resolved, but the precise extent to and manner in which a RORE
tool should control the sequence of events within a RORE session remains an open
question.

Lack of Rollback Operations. The rigidity of the RORE cycle structure is further
compounded by the lack of any support for rollback operations. This proved problem-
atic in two scenarios. Firstly, during the initial testing phase of the RORE prototype
this research encountered a number of scenarios in which the execution of production
scripts, or the application of a model chunk, failed for one reason or another (typically
due to a bug in the prototype implementation). It would have been useful in this cir-
cumstance to have a means of rolling back the changes which had been made by that
operation thus far so that the bug could be fixed and the cycle recommenced. As it was,
such a feature was not available and thus the example had to be commenced again from
scratch. While this was primarily a problem in the test phase of development, this the-
sis anticipates that similar issues may well occur in a number of real-world scenarios
(for example, where a bug in a production script exists).

A second case in which some form of rollback feature would be desirable is in the
case of user error. There were a number of points when running the case studies during
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which the user made an error, typically applying the wrong model chunk, and was then
compelled by the tool to integrate the resultant facts. User error is a fact of life in
software engineering, and so strategies for coping with this when it occurs must be
provided in order for any tool to be truly usable. As such, the lack of a proper “undo”
function impacted to an extent on the ease with which the user was able to generate the
models for each example.

9.3.4 With Respect to Practicality

9.3.4.1 Performance of the Prototype Implementation

To support the aims of this thesis it is desirable that the RORE prototype be not only
theoretically significant, but an approach which, with some further development, could
be exploited in a practical setting. This evaluation has discussed to a certain extent
the performance of the RORE tool but to support any conclusion that the approach
can be theoretically practical it is desirable to undertake a more rigorous analysis of
the performance of the RORE prototype. A particular concern was in relation to the
performance of some of the underlying technologies: specifically the Pellet reasoner.
Performance issues have been discussed within the OWL community and some bench-
marking work has been done (see, for instance, [Pan05], [GHT06], [LS08]) and this
work has generally shown that Pellet suffers from performance limitations when rea-
soning over certain kinds of axioms, and over large-scale ontologies. No reasoner is
without its limitations, and Pellet was chosen to implement RORE because it is one of
the most comprehensive and well-established reasoners for OWL.

While attempting to test the RORE prototype this research encountered perfor-
mance issues in several areas - not just constrained to Pellet, but also in relation to
other OWL libraries - which significantly impacted on the performance of the RORE
prototype. Initially this research had attempted to execute the RORE prototype on a
machine with an Intel Pentium Core 2 Duo (2.8 GHz) CPU, and 2048 MB of DDR
memory. However, this attempt failed completely. The RORE prototype was unable
successfully to complete a single full example while running on this machine. After
three RORE cycles, both the memory and CPU were operating at full capacity, and
after a further one or two cycles the effort invariably failed completely resulting in a
Java memory exception.

To continue testing the RORE prototype, therefore, this research opted to continue
the experiment on a significantly more powerful machine (Intel Core i5-2400 4 Core
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(3.1 GHz); 8192 MB memory). This research attempted to run the same examples
on this second machine, but the error persisted. Setting the Java maximum heap size
to their maximum possible capacity under a 32 bit architecture transpired to be in-
sufficient, and the out-of-memory error continued to plague the effort. This research
also adopted a strategy for executing the RORE tool whereby the SWRL rule for im-
plementing inheritance (see Section 9.3.5), which was introduced during the testing
phase, was removed from long-term memory. The rule was switched back into LTM
only when it was actually needed. With these changes, this research was able to achieve
acceptable performance (from the user perspective) by running RORE under the most
recent JVM (7.2) and allowing it to utilise up to 6.5 GB of memory.

However, when switching in the SWRL rule on the final cycle of each example (it is
needed to support the retrieval of all facts of type “Resource” regardless of the specific
kind of resource the fact represents) RORE still experienced a significant slow-down.
Figure 9.1 illustrates the problem. It shows the CPU and Memory usage data that
this research gathered as part of a profiling exercise to explore the performance issue
further. The profiling exercise used the Autopilot example to test the RORE prototype.

The figure is labelled to indicate the start of each cycle. What the figure shows is
that memory usage grows rapidly in the first cycle but then remains relatively stable
throughout the remaining cycles of the example. Finally, in the seventh cycle memory
usage roughly doubles from 2 GB (immediately before a round of garbage collection)
to a peak of ¿ 4.5 GB of memory usage and an apparent plateau of 4 GB. In com-
parison to the sixth cycle - which was also a round of elicitation, and which averaged
approximately 2 GB of memory consumption - the only significant change was the
introduction of the SWRL rule. To test whether or not the dramatic effect truly was
the impact of a single SWRL rule this research adopted an alternative implementation
strategy which scrapped the rule and introduced instead a programmatic implementa-
tion of sub-typing and inheritance. The sixth cycle still offered a slight performance
reduction versus previous cycles with this alternative solution, but the performance
was significantly improved.

It is the Pellet reasoner specifically, as opposed to any other part of the OWL ar-
chitecture, which is predominantly to blame for the poor memory performance on the
tests because it is the Pellet reasoner that actually reasons over a RORE model and
LTM in the current version of the prototype. However, it is not the only source of po-
tential memory leaks. This research encountered, throughout the testing phase, bugs in
the RORE prototype which appeared to stem from the Protg Code Generation library
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Figure 9.1: Performance data collected from the profiling exercise
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on which the prototype is built. Specifically, this research discovered when testing the
production script interpreter which is built into RORE that under certain conditions -
the boundaries of which have been narrowed but not yet completely clarified - the Pel-
let reasoner was not picking up modifications made to a model by the code generation
library. Because the source of this issue still remains unclear, no elegant solution has
been possible at this stage. Instead, a number of workarounds have been identified.

These workarounds are effective in the sense that they enable a complete RORE
session to be executed. However, they involve repeatedly committing an ontology,
dropping instances of the OWL API and then reloading the ontology from scratch.
The profiling data revealed that in excess of 5000 invocations of the commit and load
methods over an ontology were made throughout a single RORE session. This clearly
has a substantial impact on the efficiency of any software system (and on the safety
of the hard disk!). However, these hacks were written disproportionately into the code
for executing production scripts and thus impacted only the first three RORE cycles
in each example. They are not sufficient, therefore, to explain the 7th-cycle memory
issue shown in Figure 9.1.

9.3.4.2 Scalability of the Prototype Implementation

In light of these performance issues, and discussions in the literature about the potential
impact of ontology size on reasoner performance, it is necessary to consider the scala-
bility of the RORE prototype in a practical scenario. Scalability is important because
the case study which this thesis presents is not representative in scale of real-world
requirements engineering projects. While the specific examples are in fact drawn pri-
marily from real-world software engineering scenarios, these examples tested just one
kind of requirements engineering task. In practice, a RORE installation would need
to perform well over LTMs comprising the knowledge required to support a range of
requirements engineering tasks. This is where the concern in relation to the scalability
of RORE is most pointed. This research did not, in fact, gather sufficient evidence to
draw firm conclusions about the scalability of RORE in either direction, although the
results presented in this thesis do not show any evidence of reduced performance in
line with growth in model complexity. Instead, two other factors appeared to have a
much more significant impact on performance than did scale.

• Type of axioms in a model/LTM;

• Memory leaks in some part of the prototype code.
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In any event, the structure of RORE is such that should any problem of scale arise in
future iterations of this work, it can readily be managed through a modular approach.
The RORE tool already supports an approach to live-switching of LTMs. As such,
there is no reason why a different LTM could not be defined for each different task that
a requirements engineering might need to perform. This would reduce the scale of each
individual ontology, and this is what matters - if at all - in relation to the performance of
the OWL reasoning architecture. Scalability, therefore, does not present a significant
threat to the RORE approach.

9.3.5 Refinements Made to the RORE Architecture

During and throughout the testing performed over the case studies, and this evalua-
tive procedure, a number of refinements were made to the RORE framework and its
prototype implementation as follows:

• Introducing of Subtyping with Inheritance: In the initial design of the RORE
framework, as presented in Chapter 3, this thesis took the decision not to intro-
duce sub-typing of fact types. However, in formalising the FunctionalResponsi-
bilitiesAssignment production script it became clear that it would be necessary
formally to model Agents, KeyObjects and Structures as subtypes of Objects.
This research therefore modified the immutable layer of the RORE knowledge
model to introduce the “subTypeOf” property of ComplexTypes. This research
also introduced two SWRL rules to the model: the first which enforces sub-
typing (all facts of type, a, which is a subtype of a fact type, b, are also facts
of type b), and a rule which enforces inheritance (if a is a fact type which is a
subtype of the fact type b, and b has the property p, then a also has the property
p);

• Elicitation Stimulus Subtypes: The initial design of the RORE framework
specified just one type of elicitation stimulus: that which required the require-
ments engineer to specify model chunks as responses. This proved inadequate
as a solution when formalising the OSM-ISM transformation procedure because
more common than requiring users to respond with novel information, was the
case in which users were required to select from, or adapt, existing information.
This research therefore introduced two new kinds of elicitation stimulus: a fact
editing stimulus, which selected facts from either the source or target model to be
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adapted; and multiple choice stimuli, which selects facts from either the source
or target model from which a response may be selected;

• ASK/SELECT Queries: The initial concept behind the design of production
scripts was that each script would transform a single set of facts to produce a
single set of output facts. For this reason, ASK/SELECT queries were not in-
cluded in the initial specification of the production expression syntax which were
presented in Section 6.2.3. However, in formalising the OSM-ISM transforma-
tion procedure it became clear that this model limited the expressive power of
production scripts. This research therefore introduced into the production ex-
pression syntax ASK and SELECT queries as new types of value. Each query
may be fired over either the source or the target model;

• Template Placeholders: The initial specification of production expressions pro-
vided no construct for string concatenation. This proved a severe limitation in
implementing production scripts as it meant that only literal values could be ac-
cepted as the names and values of variables, and in queries. However, it was
often desirable (in particular in constructing fact names) to use information from
the input facts to adapt string values to the particular context of the source model.
This research therefore introduced template place-holders which allow the values
of vars to be substituted into a string literal prior to that literal being evaluated.
This allowed, for instance, the names of classes generated by the “GenerateOb-
jectModel” production script to be customised according to the name of objects
in the input source facts, further advancing the generality of the approach.

These refinements strengthen the RORE framework in light of some of the lim-
itations which were uncovered throughout the evaluative process. Accordingly, the
concerns which Section 9.3.1.3 expressed about the expressivity of the RORE knowl-
edge model were largely resolved. RORE supports a greater degree of generality as a
result.

9.4 Comparison with Related Work

This chapter makes a concerted effort objectively to evaluate the RORE framework
against the criteria which this thesis laid out and defined in Section 9.2. However, it
is also necessary in evaluating RORE to consider the extent to which the attributes
that have been highlighted by this evaluation represent an improvement over existing



294 CHAPTER 9. RESEARCH VALIDATION

approaches within the literature. This section therefore seeks to undertake precisely
this task: the comparison of the RORE approach, as this thesis has evaluated it thus
far, against the three main alternative approaches to reuse at the requirements level:

• The Domain Theory;

• Problem Frames/Problem-Oriented Software Engineering;

• Requirements/Requirements Engineering Patterns.

This section is concerned less with the pragmatics of the RORE approach as the
prototype requirements assistant has proven - subject to some future optimisation and
refinement - to be a basically feasible approach to real-world requirements engineering.
Instead, therefore, this section focuses specifically on the questions of generality and
systematicity. The introduction identified these properties of a reuse approach as being
those RORE should be designed to balance.

9.4.1 Comparison with the Domain Theory

9.4.1.1 With Respect to Generality

Method Generality. Perhaps the area in which RORE can most readily be compared
to the Domain Theory is in the area of method generality. Recall that method generality
as defined in Section 9.2 is the extent to which an approach supports or facilitates
its own tailoring or adaptation to support the method of a requirements engineer’s
choosing. Section 9.3.1.2 argued that RORE does indeed support method generality
since by virtue of the fact that its knowledge structures sit at the level of the meta-model
rather than at the level of the model. New requirements model types can be defined
within RORE and the reusable knowledge structures which will be used to transform
instances of those model types can be specified in the same terms as the model types
themselves. This arrangement provides a layer of indirection between the underlying
RORE activities and the specific knowledge representation languages through which
concrete knowledge instances will be expressed and so fully supports the adaptation of
the RORE approach to fit a particular method.

The primary constraint on this is that the method must express knowledge in terms
of an acyclic graph. Within the field of requirements engineering, this constraint is not
a significant restriction, particularly because many requirements notations (including
the Domain Theory [SM98], KAOS [MVL97] and i* [Yu93]) have been formalised
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using the Telos formalism [MBJK90] — a formalism for meta-modeling which repre-
sents the semantics of modeling notations as an acylcic graph. Furthermore, the context
and problem modeling notations described by Jackson [Jac01b] can be conceived of as
acyclic graphs, as this thesis illustrated in Chapter 3. As such, the restriction that meth-
ods which are formalised in RORE should represent knowledge as an acyclic graph is
not a major restriction. However, there are some notations (e.g. natural language and
textual use cases) which cannot be readily represented as graphs, and so the constraint
does impose a small restriction on the method generality of the RORE approach.

By contrast, the Domain Theory strictly specifies a particular meta-schema for ex-
pressing requirements knowledge. This meta-schema evolved from its inception in
Maiden’s thesis [Mai92] to the initial formulation of a “Domain Theory” [SM98].
Sutcliffe has also significantly elaborated on the kinds of knowledge which may be
expressed within the domain theory, introducing the notion of generalised and generic
tasks to support the modeling of conceptual processes [Sut02] and information system
models to model information processes within a domain [SM98]. Furthermore, Papa-
margaritis has extended the domain theory to support application generation, and thus
post-requirements aspects of software development [Pap06]. He refines, but does not
significantly extend, the knowledge schema on which the domain theory is based, and
he does not depart from the basic principle which underpins all incarnations of the Do-
main Theory, namely that the particular schema by which knowledge is to be expressed
can be assumed. Finally, Sutcliffe has proposed knowledge claims as a mode of ex-
tending the domain theory with open-ended knowledge by providing support for the
generalisation and integration of new reusable knowledge [SC99, Sut02]. Inevitably
this enhances the richness of the domain theory’s library for reuse, but it does not sig-
nificantly enhance the method generality of the approach. This is so for two reasons:
firstly, the claims must be expressed in a rigidly defined template structure which con-
strains the kind of knowledge which may be expressed in this way; secondly, claims are
used, according to Sutcliffe [Sut02], to tag domain models with additional knowledge.
While this may increase what is expressed about a domain, it fundamentally does not
allow knowledge to be expressed in different ways, and so does not support method
generality. This thesis concludes, therefore, that RORE represents an improvement on
the Domain Theory with respect to method generality.

Task Generality. RORE also represents an improvement over the Domain Theory
with respect to task generality. Although this thesis only evaluated the RORE approach
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with respect to a single task (the transformation of OSMs into ISMs), Section 9.3.1.2
argued that one can extrapolate from this task to identify other kinds of task which
could also be formalised using the RORE approach. This research identified at least
two other prominent requirements engineering tasks which RORE could support, and
extrapolated from these arguments to a more general class of requirements task which
might be supported by RORE. The domain theory is designed from its inception to
support two distinct requirements tasks [Mai92, MS94, SM98]:

• Requirements Critiquing;

• Requirements Elaboration.

The process of Requirements Elaboration within the Domain Theory amounts to
the process of generating an OSM for an application domain because OSMs are con-
structed by providing an initial set of facts which are then reified by incrementally
refining the match of those to a low-level generic domain model [SM98, Sut02]. The
process by which the Domain Theory supports Requirements Critiquing is inherent in
this process of elaboration: as requirements engineers and domain experts refine an
OSM, they are presented with alternative generic domain models and explanations of
each model. This forces them to think hard about the precise nature of the particular
problem they are attempting to model and thus compels the requirements engineer to
adopt a critical attitude to the requirements they are modeling. Section 9.3.1.2 argued
that RORE could readily be used to implement the OSM generation process which is
also supported by the Domain Theory since RORE comprises many of the same build-
ing blocks from which that process is composed (support for analogical and rule-based
matching, support for reuse of model chunks, support for manual fact specification).
RORE can therefore be seen as a superset of the Domain Theory as specified by Sut-
cliffe and Maiden [SM98] in terms of the tasks it supports.

However, Papamargaritis has extended the Domain Theory to support application
generation [Pap06]. While this work does indeed introduce new tasks into the realms
of the Domain Theory, there are two reasons why this cannot be considered signifi-
cantly to improve the task generality of the Domain Theory, aside from the fact that
generality is explicitly not an aim of Papamargaritis’ work: he intentionally scopes his
solution to support the generation of applications within a single OSM family. Firstly,
Papamargaritis adopts a “great leap forwards”-style approach. As such, the tasks from
which his generative extension is composed are coarse-grained and tighlty-coupled.
As such, while Papamargaritis’ extension represents a significant functional extension,
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it represents a single coarse-grained task from which the decomposition of decoupled
components would require significant work. Secondly, the extension which Papamar-
garitis presents contains no measures which allow users to extend the approach further
than does Papamargaritis himself; that is, no additional tasks can be introduced beyond
those which the extension itself directly comprises. This thesis concludes, therefore,
that while the Domain Theory has been extended over time to support tasks beyond
those for which it was original formulated, this has not been made possible through
built-in extensibility, but instead has required adaptation of the theory, its schema and
its processes themselves. This is in stark contrast to the RORE approach which sup-
ports the integration of new tasks by means of parameterisation in the form of model-
type and task type specifications.

Domain Generality. A comparison of the Domain Theory with the RORE approach
in respect of domain generality is a comparatively tricky task because it depends on
what grounds the comparison is made. For instance, one approach would be count the
range of domains which can be represented by the restructured version of the Domain
Theory presented in Chapter 7, and compare this to the range of domains represented
by Sutcliffe and Maiden’s OSM library [SM98]. The results in this case come out as
follows:

• RORE = 7 Goal Types x 4 Domain Types x 3 Agent Types = (7*4*3) = 84
abstract contexts;

• Domain Theory (as in [Sut02], Appendix A) = 28 abstract domain models
spanning 3 levels of abstraction.

From this perspective the RORE approach clearly trumps the domain theory by a
ratio of 3:1. However, the refined domain theory as this research applied it during this
evaluation is not a fundamental part of the RORE approach but is, rather, one partic-
ular configuration of the RORE approach with a particular set of reusable knowledge
structures. It would be perfectly possible (albeit pragmatically nonsensical) to config-
ure the RORE tool with a set of reusable knowledge structures that were significantly
less general than those provided by the Domain Theory. Similarly, while the tasks

which the Domain Theory supports cannot easily be extended, the knowledge struc-
tures which it provides can be since abstract domain models in the Domain Theory
are described as data in Prolog [Mai92]. As such, one could easily enough adapt the
Domain Theory’s knowledge base, at least to include abstract domain models to make
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up the difference between the refined domain theory and the formulation by Sutcliffe
and Maiden [SM98].

However, this thesis has already argued that the RORE approach represents a su-
perset of the Domain Theory in the sense that it is generalised from it. To demonstrate
that this is indeed true, as opposed to, for instance, RORE being an equivalent set to the
Domain Theory, this thesis must demonstrate both that there exist no domains which
can be addressed by the Domain Theory but which cannot be addressed by RORE, and
secondly that there are domains which RORE can cover which the Domain Theory
cannot. This thesis has already argued that each of the tasks which is supported by the
Domain Theory can be implemented in RORE, and has also argued that those domains
which are supported by the Domain Theory can also be supported by the restructured
Domain Theory. That being the case, this thesis concludes that in the latest incarnation
of the OSM library (as given in [Sut02]), there exist no domains which cannot also be
supported by the restructured domain theory. The work provided by Papamargaritis
does not extend the domain generality but instead extends task generality along the
project timeline.

It is possible, however, to identify a number of domains which cannot readily be
supported by the Domain Theory because of its commitment to a pre-assumed meta-
schema for expressing requirements knowledge, and its expressed goal of supporting
“transactional” problems specifically. One such domain is the lexical parsing domain.
The Domain Theory represents problems in terms of a single kind of binary relation-
ship between key objects and structure objects, as well as in terms of state transitions
over these static structures. One could find a means of expressing some aspects of a
lexical parser using the Domain Theory representation and library. For instance:

• The reading of a program which is to be parsed by the parser could be repre-
sented as an Object Sensing problem, in which the parser “senses” a file con-
taining that program;

• The tokenisation of the program could be represented as an Object Decomposi-
tion problem, where the program is the whole object and the individual tokens
within that program are the part objects which the whole comprises;

• The semantic interpretation of each token could be represented as an Allocation
problem, where each token is the key object and different semantic constructs
within the language being parsed are represented as structure objects;
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• The construction of an abstract syntax tree to represent the program could be
represented as an Object Composition problem in which the Abstract Syntax
tree is the whole key object and the individual tokens are the part key objects.

However, the cut of the world which is offered by the Domain Theory abstrac-
tions, and the attempt to represent the parsing process as a sequence of transitions over
containment relationships between key and structure objects, does not offer either an
efficient — or, necessarily, intuitive — representation of the specification for a parser.
Furthermore, there are critical parts of the parsing process which the metaschema of
the Domain Theory cannot easily express: lexical and semantic checking of a program
could not easily be specified using this representation because the Domain Theory
supports conditions which are expressed in terms of relationships between key and
structure objects, or in terms of the chronology of events.

By contrast, the greater level of abstraction provided by the RORE meta-modeling
framework can more readily be adapted to support the modeling of lexical parsing do-
mains, in part because the EBNF specification of a language could be specified as a
RORE Model Type in its own right (each construct in the EBNF specification would
become a Fact Type within the RORE Model Type, with Property Types represent-
ing the relationships between constructs). Thus RORE can support representations
which are purpose-built for dealing with lexical parsing domains and so can provide a
clear and concise representation of requirements within such domains. This thesis con-
cludes, therefore, that there are domains which can be supported by RORE but which
cannot be supported by the domain theory, and that the converse is true. As such the
RORE approach really does offer a greater degree of domain generality than do the
essential components of the Domain Theory.

9.4.1.2 With Respect to Systematicity

This thesis interprets systematicity in terms of two basic questions:

• Is reuse supported by a repeatable system for selecting and applying reusable
structures?

• Is reuse central to an approach’s support for a requirements engineering task?

It should be noted that this definition considers only whether an approach is sys-
tematic with respect to those tasks it supports. It does not, therefore, duplicate the
“task generality test”.
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When these two questions are applied to compare RORE against the Domain The-
ory, this thesis finds that the two approaches are broadly similar in terms of system-
aticity. On the first question, this thesis finds that both RORE and the Domain Theory
do indeed provide repeatable procedures to support each reuse procedure: matching,
adaptation and integration. This is to be expected, given that the basic RORE processes
and mechanisms have essentially been abstracted from the Domain Theory. Both the
Domain Theory and RORE provide both rule-based and analogical matching proce-
dures which support the retrieval of context-relevant components. Both the Domain
Theory and RORE support adaptation through user dialogues which allow specific
facts to be manipulated. Finally, both RORE and the Domain Theory support integra-
tion based on matches between abstract facts and target facts.

Similarly, on the second question no significant difference may be found between
the two approaches. Bearing in mind that the Domain Theory is designed to support
two requirements tasks - elaboration and critiquing [Mai92, SM98, Sut02] - it does
so predominantly through reuse. Every procedure within the Domain Theory’s im-
plementation - the Advisor for Intelligent Reuse (AIR) [Sut02] - is geared towards
supporting or guided by reuse. The approach consists of four broad phases: Fact Cap-
ture and Matching; Explanation; Model Selection and Explanation; Critiquing. Fact
Capture exists only to support Matching; Matching is the process by which an abstract
Domain Model is retrieved; Explanation exists to assist a user in understanding the
structure and function of an abstraction; Model Selection is the process by which a
user manually makes the final choice as to which abstraction is most appropriate; and
Critiquing forces the user to reconcile any inconsistencies but does so by determining
whether or not a concrete model neatly fits an abstract model. Although the RORE
procedure is a little different in structure, it is no less reuse-oriented. Indeed, every
requirements task in RORE is supported by a reusable knowledge structure, whereas
every lower-level task is directly designed to support these reuse-driven tasks. This
thesis concludes, therefore, that both RORE and the Domain Theory represent approx-
imately equal degrees of systematicity.

9.4.2 Comparison with Problem Frames/POSE

9.4.2.1 With Respect to Generality

Method Generality. Unlike RORE and the Domain Theory, POSE does not stipulate
any particular schema or language through which problems, their requirements or their
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solutions should be expressed. Indeed, as Hall, Rapanotti and Jackson state:

POSE is a formal system for working with non-formal and formal de-
scriptions. Moreover, formality may sometimes be appropriate when strict
stakeholders such as regulatory bodies governing the development of the
most safety-critical of software are involved. However, as we know from
the real world, only when it is focused is formality appropriate.

Transformations in POSE describe relationships that hold between three sets of
conditions: a premise, a conclusion, and a justification. Each transformation is an ab-
stract pattern which describes the attributes which must be expressed by an artefact in
order for the conditions of the transformation to be satisfied [HRJ08]. Furthermore,
while Hall and Rapanotti have developed a tool - POELog - to support the POSE ap-
proach, this is an implementation, and not a fundamental part, of the POSE approach.
As such, POSE makes no inherent commitments as to the form in which an artefact
should be expressed.

By contrast, the RORE approach does constrain the range of forms through which
can be expressed the knowledge over which it operates. Recall that the knowledge
which is to be manipulated by RORE must be expressible in graph form: that is, as
a set of nodes which are interconnected by a set of arcs over those nodes. There are,
therefore, methods which could not readily be formalised in RORE which POSE can
handle readily. In particular, while in theory it may be possible to formalise natural
language in graph form (nodes representing letters; properties representing relations,
for example), in practice natural language has never successfully and fully been for-
malised. POSE, however, does not depend on a formalised expression of the language
through which knowledge is expressed and so can handle methods depending on nat-
ural language quite readily. Specifically, POSE may lend itself neatly to early-phase
requirements engineering where requirements are typically informal and poorly de-
fined.

Domain Generality. One way of viewing POSE is as an instance of a more gen-
eral framework, Problem-Oriented Engineering (POE), which supports engineering
and design in the general case [HR09]. POE, and POSE by extension, is itself rooted
in Jackson’s Problem-Frames Approach (PFA, described in [Jac01b]), and accordingly
draws on the basic structure which Jackson outlines for describing problems, their
solutions, and their requirements [HRJ08]. Although PFA outlines five generic prob-
lem classes (the “Problem Frames” or “PFs”), Jackson explicitly states that these are
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simply the frames that he has observed in his own experience and thus that it may
be possible to identify additional frames [Jac01b]. In any event, the method which
Jackson advocates for problem decomposition, solving and solution recomposition is
neither implicitly or explicitly dependent on any specific PF. PFs are important within
PFA because they provide, in effect, a stopping condition for problem decomposition:
problem decomposition continues until sub-problems can be mapped onto a known PF
[Jac05]. It is not, however, a necessary condition that these PFs be the five PFs which
Jackson himself describes. As such, PFA can readily be extended in the event that a
particular sub-problem is identified which cannot be mapped onto a currently-known
PF by specifying the new PF and the relevant frame concerns. This will require, as
Sutcliffe notes, a process of abstraction and design of the PF [Sut02].

The generality of POSE is naturally spoken for by its relationship to the more gen-
eral POE framework: that the basic framework which POSE instantiates is claimed to
be applicable to a range of other engineering disciplines attests (in principle) to the
generality of the approach. This generality is achieved by two related strategies. The
central procedural component of POSE - the transformation - is described by a ternary
relationship between three sets of conditions: the premise; the conclusion; and the
justification. Firstly, each is a set of conditions which holds over either two sets of
artefacts, or two states of a single set of artefacts. These conditions are abstract in the
extreme in that they are expressed simply in terms of a small set of symbols and the
relationships between them, each representing general constructs such as “Domain”,
“Problem”, “Solution” or “Requirement” (see, for instance, the “Domain Description
Interpretation” transformation in [HRJ08]). The consequence of this is that, as Section
9.4.2.1 discussed, a transformation can be applied to any artefact for which a reasoner
exists (human or otherwise) that can infer the transformation conditions from the spe-
cific knowledge expressed within the artefact. Secondly, the POSE method has been
defined in two ways: in a general sense, as discussed in [HRJ08], such that transfor-
mations are incrementally applied by matching problem descriptions to transformation
justifications until a solution to each sub-problem has been elaborated; or by the POE
process pattern, which is not specified in terms of any specific transformation, but
rather must be composed from collections of transformations as discussed in [HR08].
Given these two properties of POSE, it is extremely difficult to identify any applica-
tion domain to which the POSE approach could not, at least in principle, be applied
assuming a manual application of the approach.

RORE itself shares with both PFA and POSE these two critical properties:
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• The ability to extend the tool to previously unsupported domains by introducing
new knowledge structures;

• Indirection between the method and the specific knowledge about how the method
should be enacted.

As such, RORE should in principle exhibit an approximately comparative degree
of generality. However, there is a good reason why this is not the case: whereas POSE
does not constrain the language through which problem descriptions are expressed
[HRJ08], RORE does Section 9.4.2.1 discussed. There is at least one example of a
domain type which RORE could not easily model, but which POSE would not struggle
with: the natural language processing domain (NLP). Section 9.4.2.1 argued that the
graph-based representation on which RORE depends is inefficient at best for express-
ing the rules and constraints which underpin NLP. By constrast, POSE makes no such
assumption about representation, and indeed the PFA’s ontological foundation expres-
sely includes the notion of a lexical domain. While not all such domains necessarily
assume natural language (formal languages are also instances of a lexicon), they are
certainly included in the range of lexical domains. This thesis, therefore, that RORE is
also less domain general than POSE.

Task Generality. Consideration of the task generality of RORE as compared with
that of POSE depends significantly on how precisely this thesis defines the concept
itself. “Task Generality” may be defined in at least two directions: vertically, that is
in the dimension running from requirements through to design; or horizontally, within
the requirements phase itself. POSE explicitly provides support for post-requirements
software engineering (solution elaboration, for instance, is a task which is generally
held to be situated with a “design” or “architecture” phase, as distinct from require-
ments engineering: indeed, the STRAW workshops in ’01 and ’03 investigated tech-
niques for moving from the requirements phase to the architecture phase; and Hall et
al. have investigated the application of PFs to this end [HJL+02]). RORE, by contrast,
is intentionally focused within the requirements engineering phase. Although it may
well be generalisable to subsequent phases, and this is one potential avenue for future
research, this thesis has neither demonstrated this to be so, nor has the RORE frame-
work been designed with this goal in mind. For now, therefore, the null hypothesis is
that POSE is more task general along the vertical dimension than is RORE.

However, there is a crucial difference between the two frameworks which en-
sures that, within requirements engineering RORE is actually capable of supporting
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a broader range of tasks than is POSE. RORE supports two basic classes of task - anal-
ysis and action. The key distinguishing feature between the two classes is whether or
not the task changes the state of the target model: analysis does not, whereas actions
do. The function of analysis is evaluative; the function of actions is productive. The
fundamental structure which is used to represent procedural knowledge in POSE, how-
ever, is the transformation [HRJ08]. Transformations comprise both a precondition and
a postcondition and, as such, are structured fundamentally to represent state changes
over an artefact or set of artefacts. While transformations could be used, therefore,
to represent non-transformative inferences (conclusions about the state of an artefact
which do not actually change that state), there is no precedence in the literature on
POSE for such an interpretation of a POSE sequent, and such an interpretation would
represent an important departure from the stated POSE method. Certain POSE trans-
formations imply an analytical element: consider the “Domain Interpretation” schema,
for instance, which according to Hall et al [HRJ08] re-expresses a transformation “in
some way to make it more suitable for problem solving”. However, this analytical
element is not explicitly modelled within the POSE approach, and as such cannot be
considered explicitly to be supported by the approach. This thesis concludes, therefore,
that RORE is more task general than POSE.

9.4.2.2 With Respect to Systematicity

RORE may be said to be more systematic than POSE with respect to reuse in terms of
both centrality and repeatability. In POSE requirements engineering, and subsequently
software specification, is driven by reuse in the sense that each POSE transformation
instantiates an abstract transformation schema [HRJ08] which is specialised for a par-
ticular problem specification. These transformations are then mapped onto a concrete
problem description by substituting the terms in that description for terms in the con-
clusion of the abstract transformation. The transformation is completed by restructur-
ing the original state of the problem description to satisfy the structure describe by the
premise of the transformation. While the preceding stages are entirely reuse-oriented,
however, this final stage is not, in the sense that POSE offers little methodological
guidance on precisely how that transformation should be realised. When compared
with the production scripts in RORE, which provide step-by-step guidance linking
the precondition to the postcondition, POSE transformations offer very little concrete
guidance: this is not, in fact, their purpose which is, rather, to provide justification for
a design solution. This thesis argues, therefore, that reuse plays a more central role in
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the RORE framework than it does in the POSE framework which leaves significantly
more reasoning up to the discretion of the software engineer than does RORE. For this
same reason, this thesis also argues that RORE lacks repeatability: manual reasoning
is rarely precisely repeatable.

There is one scenario in which the claim that POSE leaves the hard work up to a
software engineer is not so true: the case in which the engineer is applying the pro-
cedure without support of an automated tool such as POELog [HR08]. As Hall et al.
note, it may be desirable - particularly where an organisation frequently produces sys-
tems of a similar kind - to provide an automated implementation of POSE [HR08],
and POELog is designed to support this case [HR08]. POELog is a Prolog encoding
of POE which provides predicates (step, problem, rationale, concern, domain) through
which POELog “applications” can be defined. Each such application comprises con-
crete instantiations of a POE transformation, specified in terms of the POELog pred-
icates, which collectively form a program for producing a POELog development tree
from a null (unsolved) problem. The application can then be run repeatedly to gen-
erate development trees from the same POELog specification. POELog applications
can thus be seen as a form of product line engineering [CN01] in which a generator
is built to support the rapid generation of artefacts within a particular application do-
main. When utilised in this scenario, POSE does indeed support a similar degree of
systematicity to RORE because each step in the realisation of a development tree by
POELog is achieved by reusing knowledge which is encoded in the POELog applica-
tion. Nonetheless, that the degree of systematicity which POSE offers is dependent on
the particular implementation of POSE which a developer chooses is indicative of the
fact that any extensive systematicity which POSE offers beyond a well-defined proce-
dure for selecting, retrieving and applying transformations in the general case must be
accidental, and not essential, to the POSE approach.

9.4.3 Comparison with Requirements Patterns

9.4.3.1 With Respect to Generality

When compared with respect to generality, RORE - and indeed any other systematic
framework - is unable to compete with pattern-based requirements in general engineer-
ing due to the sheer lack of constraints on the specification of patterns. While some au-
thors have proposed pattern templates in the requirements literature [SHC+10, SL11],
these simply stipulate the components which must be present within a requirements
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pattern and do not constrain how knowledge can be expressed or the domains to which
it may apply. Chapter 2 surveyed requirements patterns which conveyed a vast array
of different kinds of requirements-level knowledge:

• Content reuse for elicitation [Fin88, MVL97, CDA93, RM93, RPR98, KSN10];

• Non-functional requirements realisation [Yu11];

• Support for identifying security requirements [SFO03];

• Support for requirements elaboration [Mai92, DVL96];

• Patterns for enforcing specific NFRs or architectures [KC02, LG06];

• Patterns providing knowledge about the requirements process itself [HL04];

• Patterns addressing organisational aspects of requirements engineering [KGM03].

I also surveyed requirements patterns which were domain-independent as well as
concern- or domain-specific, and in the latter case which covered domains as diverse
as:

• Multi-agent applications ;

• Non-functional concerns and their realisation [Yu11];

• Security requirements [SFO03], robustness requirements [SF10];

• Requirements interactions [DPM05];

• Requirements for COTS Systems [MBFQ08];

• Call-for-Tender Systems [RMBFQ09a];

• Service-oriented information exchange requirements [MBLN06].

It is clear, therefore, that there exists a broad range of patterns from which re-
quirements engineers can acquire reusable knowledge and guidance. Given this fact,
pattern-based engineering, therefore, can achieve a significantly greater degree of gen-
erality in total than can RORE because the pattern paradigm imposes significantly
fewer constraints on the reusable structures that it supports, and on the process by
which those structures are reused. New patterns may always be prepared to support
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novel tasks, and in practice requirements engineers can adopt any pattern they like be-
cause pattern-based engineering offers no agreed-upon system for selecting or applying
patterns to a given scenario. By contrast, no task can be achieved in RORE unless the
reusable knowledge structures are available in long-term memory to support that task
and so RORE enforces systematic reuse. Furthermore, reusable knowledge structures
must be specified within the RORE formalism which may not be ideally suitable for
supporting the kinds of tasks for which some requirements pattern libraries exist.

9.4.3.2 With Respect to Systematicity

The comparison between pattern-based engineering and RORE can be considered from
one of two angles. If one were to take the position of a purist, then all patterns would be
organised into an Alexandrian-style pattern language [Ale77] such that patterns were
inter-related according to dependencies between them such as “problem-solution”, “al-
ternative”, “requires”, “replaces”, “equivalent” and “occurs-with” relationships. In-
deed, a number of such pattern languages have been proposed in the requirements
literature [Yu11, SFO03, RRJ03, MBLN06, Zha11]. Utilising patterns as part of a
broader pattern language is naturally the most systematic form in which patterns can be
utilised. The language organises patterns into a reuse-driven framework which guides
the engineer through a process of problem solving, one pattern at a time. This satis-
fies the goal of centrality - the problem-solving process is driven by the application
of patterns to transform a problem description - and the goal of repeatability as, if the
pattern language is well-designed, then any user should be able to follow the process
with relative ease. One of the most comprehensive pattern languages that has been
proposed in the software engineering literature - the Pattern-Oriented Software Archi-
tecture series [BHS07] - comes not from the requirements engineering literature, but
from the literature on software architecture; however, it illustrates the point nicely.

In practice, however, it is likely that most requirements engineers, where they reuse
knowledge at all, do so opportunistically rather than as part of a coherent and system-
atic pattern language. That this is the likely scenario is indicated by the widespread
acknowledgement of the pattern concept in the requirements literature (see [SM98,
Jac01b, RPR98, MVL97, KSN10, KC02, DPM05, RMBFQ09a], for instance) but the
relatively low range of pattern languages proposed. It is also increasingly likely the
more patterns that are proposed in the literature, as Agerbo and Cornils have argued
[AC98]. In this opportunistic scenario, the use of requirements patterns has little to
offer in the way of systematicity: the approach is unsupported by effective and general
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tools, and requirements engineers select and reuse patterns with which they are well
acquainted, rather than choosing those which best fit the circumstances.

It is difficult to call, therefore, the extent to which RORE compares favourably
with requirements patterns approaches because the state of art is defined by a very
broad church of pattern-based approaches, as well as disparate patterns, and pattern
languages organised to different levels of formality. However, given the likely state of
practice, RORE represents a probable improvement on most contemporary and practi-
cal approaches to pattern-based requirements engineering.

9.5 Extending the Evaluation of RORE

The evaluation of RORE which has been presented in this thesis is limited in the fol-
lowing ways:

• The evaluation has considered the application of RORE to transfer just two types
of model (the OSM and ISM);

• The evaluation has considered just one type of transformation;

• The evaluation has considered the application of RORE within just three small-
scale examples;

• The evaluation was a self-study in which the author applied the tool himself, and
did not include other requirements engineers.

The evaluation as it is presented in this thesis has been sufficient to validate that the
RORE approach can indeed provide a powerful, reuse-driven approach to the transfor-
mation and production of requirements artefacts within the assumptions discussed in
Section 3.2. However, the restricted scope of the evaluation means that certain ques-
tions about the extent to which RORE might be applicable, and in particular in com-
mercial practice, cannot be readily answered at this stage. Further evaluation would
seek to answer the following questions:

1. What other requirements models can RORE be applied in order to produce
and/or transform?

2. In particular, could RORE be applied to provide tool support for the POSE ap-
proach (as a major alternative to RORE, e.g., by encoding the POE Process Pat-
tern within RORE)?
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3. What requirements engineering activities (aside from the transformation of OSMs
into ISMs, and more generally the production of software specifications from re-
quirements models) can, and cannot, be supported by the RORE approach?

4. Are there any application domains which RORE fundamentally cannot support?

5. What problems and limitations arise when the RORE prototype tool is appplied
in the context of commercial practice?

6. How “usable” is the tool when utilised by other requirements engineers (i.e.,
aside from this author)?

The evaluation presented in this thesis has begun to propose answers to some of
these questions. For instance, in Section 9.3.1.2 this evaluation argued that RORE
could be applied to support the refinement of KAOS goal models by reuse of require-
ments fragments, and Section 9.4.1.1 argued that RORE could be applied to generate
the specifications for lexical parsers. These suggestions have been proposed in line
with the guidance of Gomm et al [GHF00] — that one can generalise from observed to
unobserved cases based where the salient properties of the observed case are typical of
the unobserved cases to which the generalisation is made. However, the arguments and
comparisons made in this evaluation have been superficial, and so further confirmation
of the proposed answers in this thesis would be desirable.

Furthermore, other questions remain unanswered — even superficially — by this
evaluation. This thesis therefore recommends that the evaluation could be extended,
quickly and efficiently, in the following ways as part of any further work:

• To answer Question 6 above, conduct a usability study with requirements engi-
neers using the OSM-ISM transformation task — which has already been for-
malised using RORE as part of this research — as the basis for the study;

• To address Question 1 above, show that RORE can be applied to formalise the
KAOS model type and the reuse-driven Goal Refinement method described by
Massonet and Van Lamsweerde [MVL97]. This would be efficient because the
KAOS language, and the goal refinement patterns, have each been formalised
using Telos [MBJK90] and so the existing formalisations need only be adapted
to RORE;
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• To address Questions 1 and 3 above, extend the RORE-formalisation of Jack-
son’s Problem Frames approach to include Context, Problem and Solution dia-
grams and explore the extent to which RORE can be used to support the trans-
formation and refinement of models across all three stages of Jackson’s method;

• To answer Question 5 above, provide the RORE tool (and some basic training) to
requirements engineers for application on real-world, small-scale requirements
engineering projects. Collect and evaluate the logs which the RORE tool pro-
duces as a result of these case studies to determine how effectively the RORE
approach supported industrial practice.

9.6 Summary

This chapter has validated the RORE approach by discussing the results of the demon-
stration of RORE that was presented in Chapters 7 and 8. A set of evaluation criteria
were presented in order to evaluate RORE in an objective fashion. These evaluation
criteria were generality, systematicity, utility and practicality. For each criterion, a def-
inition was given and specific metrics were identified against which RORE would be
validated. These criteria were then assessed against data which was gathered through
the demonstration of RORE in Chapters 7 and 8. This evaluation suggests that RORE
offers an acceptable level of generality and without significantly affecting utility. How-
ever, the evaluation also highlighted some practical issues relating to the usability and
spatio-temporal performance of the prototype Requirements Task Assistant.

In Section 9.4 the results of this evaluation were used to compare the RORE ap-
proach to three other requirements reuse approaches: The Domain Theory, POSE and
requirements patterns as a general approach. This discussion highlighted that RORE
generally satisfies the main aims of this thesis by offering an improvement over exist-
ing approaches with respect to the balance between generality and utility. While RORE
did not necessarily perform better against any one other approach on all metrics, where
RORE performed less well on some generality metrics than other approaches, RORE
was found to perform better on utility metrics. In particular, this discussion found
that RORE offers domain and task generality approaching, but not quite equalling,
that offered by POSE while offering significantly better utility than POSE. Further-
more, RORE was found to offer utility rivalling that of the Domain Theory while of-
fering significantly better task and method generality. The discussion concluded that
no systematic approach to requirements reuse could beat the generality offered by the
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opportunistic reuse of patterns, but that RORE offers significant improvements over
opportunistic pattern reuse with respect to utility. This thesis concludes, therefore, that
RORE has successfully achieved an improved trade-off between generality and utility
when compared with existing requirements reuse approaches.



Chapter 10

Conclusions

10.1 Achievements

10.1.1 Improved Requirements-Level Reuse wrt. Generality and
Utility

The most significant achievement of this thesis is the proposal of a novel approach to
requirements-level reuse which offers an incremental improvement over existing ap-
proaches with respect to the fundamental trade-off that exists between three conflicting
properties — generality, systematicity and utility — while ensuring that a practically
feasible prototype tool can be produced. Chapter 9 evaluated this approach and pointed
to two major conclusions:

• When compared to the existing approaches to requirements-level reuse which of-
fer the greatest generality, RORE is slightly less general but offers a significantly
greater degree of utility;

• When compared to the existing approaches to requiremenets-level reuse which
offer the greatest utility and systematicity, RORE retains a comparable level of
utility while offerring a favourable degree of generality;

• Despite some practical limitations of the current version of the prototype tool, it
is feasible that a practically viable version of the tool could be developed, as the
limitations are accidental and not essential.

The central achievement of this thesis has, therefore, been to offer an approach to
requirements-level reuse which improves on contemporary approaches by offering a
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blend of generality, utility and systematicity which ensures that:

• Systematic reuse is supported across a wide range of application domains;

• Detailed guidance is given for engineering-by-reuse using the approach;

• Reducing, significantly, the effort required to produce requirements artefacts ver-
sus the production, without reuse, of those artefacts;

• A high degree of practicability is feasible with respect to the memory and tem-
poral performance of the prototype tool.

The approach represents an important contribution to the requirements reuse lit-
erature. As Chapter 1 discussed, an effective approach to requirements-level reuse
would be highly beneficial both to requirements engineering and to the reuse literature
in general. Generality is desirable because it allows requirements engineers to utilise
a single framework to support a wide range of tasks on a range of different projects
and therefore avoids the need for requirements engineers to familiarise themselves
with a large number of frameworks: a time-consuming task. This research is partic-
ularly timely at present because there has been an upturn of interest in requirements
reuse research in recent years (as indicated by the emergence of reuse-oriented work-
shops at the Requirements Engineering conference, such as the Requirements Patterns
(RePa) workshop, and as illustrated by the emphasis on the topic in key survey papers
[NE00, CA07]).

10.1.2 Reusable Design Heuristics and Rationale

The design of RORE is based on five design heuristics. These are presented in Sec-
tion 3.3.4. Chief among these heuristics is the injunction to support both procedu-
ral and declarative reuse as mutually complementary approaches. This thesis has not
rigorously evaluated all of these design heuristics individually, although they can be
afforded a degree of credibility by virtue of the success of the RORE approach as a
whole in realising its design goals. The thesis has, however, provided strong evidence
(in Chapter 9) to support the notion that procedural reuse is inherently more general
than declarative reuse, and so appears to be an important contributing factor in the
properties of the RORE approach.

Although these heuristics are embodied in this thesis by the RORE approach specif-
ically, they also represent a novel contribution in their own right. This is because they
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can be treated as guidance or principles to support design-for-reuse generally, and so
can be reused by other researchers in the requirements reuse community to develop
their own approaches to generalised requirements reuse; approaches which may fur-
ther improve on the gains which have been made by RORE.

10.1.3 Prototype Tool Support for Generalised Requirements-Level
Reuse

Chapter 4 argued that in order to be effective in practice the RORE approach would
need to be supported by effective software tools. Maiden has also previously argued
that reuse should be supported by intelligent software tools [Mai92]. Chapter 4 there-
fore proposes a prototype tool to support the RORE approach. This thesis has identified
performance and usability limitations which would inhibit the practicality of the ap-
proach in the context of real-world requirements engineering. Nonetheless, Chapter
9 argues that the prototype tool offers a respectable degree of utility in addition to
the generality benefits which the RORE approach offers. With some further develop-
ment, therefore, this prototype tool is one candidate for a commercial tool to support
reuse-driven requirements engineering.

10.1.4 Extensions to the Domain Theory

Finally, this thesis makes modest, but nonetheless interesting, contributions to the lit-
erature on the Domain Theory. The case study presented in Chapter 7 introduces a
refined version of the Domain Theory with a view to achieving a greater degree of
generality than does the version presented by Sutcliffe and Maiden [SM98]. This re-
fined version introduces both a generalised meta-schema for expressing Object System
Models, and a novel schema for expressing Information System Models. This repre-
sents a contribution to the literature not only because of the apparent improvement
with respect to the generality of the OSM library, but also because the Domain The-
ory currently lacks a clear notation for expressing ISMs. Furthermore, the case study
introduces a novel process for transforming OSMs into ISMs by reuse. This repre-
sents a contribution in itself because whereas Papamargaritis’ approach to application
generation is constrained to a single OSM family, the transformation presented in this
thesis is domain general, but is only capable of generating software specifications. The
approach thus represents an alternative, more incremental approach to requirements
progression.
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10.2 Lessons Learnt

Through the research presented in this thesis, and through the evaluation of that re-
search in Chapter 9, the following general lessons have been learnt.

• Addressing the trade-off between generality and utility is a non-trivial problem,
and no single solution can provide both extreme generality and extreme utility.
In order to provide reuse solutions which improve on those that are available
at present, therefore, it is desirable to develop tools which integrate different
solutions into a coherent framework (such as a refined instantiation of POSE)
so as to take advantage of the particular benefits which each of those solutions
provides;

• Providing support for procedural reuse within systematic requirements reuse
frameworks - as a complement, not an alternative, to declarative reuse - can
significantly increase the generality of the requirements reuse approach, without
significantly undermining the utility of that approach.

• The evaluation in Chapter 9 identifies objective criteria for each of the major
properties against which RORE was evaluated. These criteria could be used as
the basis for an evaluative framework to support the assessment of other require-
ments reuse approaches;

• The three generic requirements engineering tasks presented in this thesis - Anal-
ysis, Inference and Elicitation - and their specialisations have been shown to
be sufficient process patterns to guide the production and refinement of require-
ments models. They provide a template, therefore, on which other requirements-
reuse approaches and methods can be based;

• This thesis has introduced, and provided evidence to support, the idea that Clancey’s
heuristic classification provides an effective pattern for implementing tools to
support requirements-level reuse because it concisely captures the three major
activities which underpin a reuse-driven approach to requirements model con-
struction and refinement;

• Retrieval mechanisms are a critically important part of the reuse equation. An
effective retrieval mechanism can have a significant impact on both generality
and utility, so retrieval mechanisms should be carefully evaluated before being
integrated into reuse tools;
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• This thesis appears to have demonstrated a limitation in the Pellet OWL reasoner
which appears to support existing work within the web ontology space that indi-
cates that while Pellet performs well over small ontologies and for certain kinds
of query, the SWRL reasoner in Pellet is not yet practical in all scenarios. This
thesis has not, however, sought to delineate the precise boundaries of this limi-
tation.

10.3 Future Work

Future work on the RORE approach would aim to:

1. Publish Research which disseminate knowledge of the RORE approach and of
the general lessons learnt in this thesis;

2. Conduct Real-World Case Studies in order to further validate the arguments
made in this thesis as to the generality, utility and practicality of the RORE
approach;

3. Conduct Usability Test with Requirements Engineers to further validate the
arguments made in this thesis about the utility of the RORE approach;

4. Extend the Validation with Additional Model Types in order to further test the
limitations of RORE with respect to the kinds of model which the approach can
generate and transform, and to add evidence to further support the conclusion
of this thesis that RORE is general across different requirements engineering
methodologies. In particular, whereas this thesis has generalised the Domain
Theory to support a broader range of requirements engineering tasks and do-
mains, future work would investigate the possibility of applying RORE to for-
malise the POSE Process Pattern;

5. Investigate Support for Stakeholder Validation of requirements models and
the inferences over those models which are produced by RORE.
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[LLG02] Oscar López, Miguel A Laguna, and Francisco J Garcı́a. Metamodel-
ing for requirements reuse. Anais do WER, 2002.

[LM03] D. Liu and H. Mei. Mapping requirements to software architecture
by feature-orientation. In STRAW03 Second International SofTware

Requirements to Architectures Workshop, page 69. Citeseer, 2003.

[LMV97] W. Lam, J.A. McDermid, and AJ Vickers. Ten steps towards system-
atic requirements reuse. Requirements Engineering, 2(2):102–113,
1997.



BIBLIOGRAPHY 329

[LNI+03] L. Lin, B. Nuseibeh, D. Ince, M. Jackson, and J. Moffett. Introducing
abuse frames for analysing security requirements. In Proceedings.

11th IEEE International on Requirements Engineering Conference,

2003. IEEE Computer Society, 2003.

[LS08] Harris T Lin and Evren Sirin. Pellinta performance lint tool for pel-
let. In Proc. of the OWL Experiences and Directions Workshop at the

ISWC, volume 8, 2008.

[LW05] K.K. Lau and Z. Wang. A taxonomy of software component mod-
els. In Software Engineering and Advanced Applications, 2005. 31st

EUROMICRO Conference on, pages 88–95. IEEE, 2005.

[Mai92] N. Maiden. Analogical specification reuse during requirements anal-

ysis. PhD thesis, London: Department of Business Computing, City
University, School of Informatics, 1992.

[Man10] D. Mannering. A POSE process with Alloy and Perfect Developer.
In Proceedings of the 1st international workshop on Applications and

advances of problem orientation, 2010.

[MBFQ08] O. Mendez-Bonilla, X. Franch, and C. Quer. Requirements patterns
for COTS systems. In Composition-Based Software Systems, 2008.

ICCBSS 2008. Seventh International Conference on, pages 232–234.
IEEE, 2008.

[MBJK90] J. Mylopoulos, A. Borgida, M. Jarke, and M. Koubarakis. Telos: Rep-
resenting knowledge about information systems. ACM Transactions

on Information Systems (TOIS), 8(4):325–362, 1990.

[MBLN06] Ayman Mahfouz, Leonor Barroca, Robin Laney, and Bashar Nu-
seibeh. Patterns for service-oriented information exchange require-
ments. In Proceedings of the 2006 conference on Pattern languages

of programs, page 22. ACM, 2006.
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Appendix A

Immutable Layer: Formalisation

<? xml v e r s i o n =” 1 . 0 ” ?>

<!DOCTYPE Onto logy [
<!ENTITY xsd ” h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema# ” >

<!ENTITY xml ” h t t p : / /www. w3 . org /XML/ 1 9 9 8 / namespace ” >

<!ENTITY r d f s ” h t t p : / /www. w3 . org / 2 0 0 0 / 0 1 / r d f−schema # ” >

<!ENTITY r d f ” h t t p : / /www. w3 . org /1999/02 /22− r d f−syn t ax−ns # ” >

]>

<Onto logy xmlns=” h t t p : / /www. w3 . org / 2 0 0 2 / 0 7 / owl# ”
x m l : b a s e =” h t t p : / / j a m e s n a i s h . w o r d p r e s s . com / ROREKnowledgeModel .

owl ”
x m l n s : r d f s =” h t t p : / /www. w3 . org / 2 0 0 0 / 0 1 / r d f−schema # ”
x m l n s : x s d =” h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema# ”
x m l n s : r d f =” h t t p : / /www. w3 . org /1999/02 /22− r d f−syn t ax−ns # ”
xmlns :xml =” h t t p : / /www. w3 . org /XML/ 1 9 9 8 / namespace ”
o n t o l o g y I R I =” h t t p : / / j a m e s n a i s h . w o r d p r e s s . com / ROREKnowledgeModel

. owl ”>
<P r e f i x name=” ” IRI =” h t t p : / /www. w3 . org / 2 0 0 2 / 0 7 / owl# ” />
<P r e f i x name=” owl ” IRI =” h t t p : / /www. w3 . org / 2 0 0 2 / 0 7 / owl# ” />
<P r e f i x name=” r d f ” IRI =” h t t p : / /www. w3 . org /1999/02 /22− r d f−syn t ax−

ns # ” />
<P r e f i x name=” xsd ” IRI =” h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema# ” />
<P r e f i x name=” r d f s ” IRI =” h t t p : / /www. w3 . org / 2 0 0 0 / 0 1 / r d f−schema # ” /

>

<D e c l a r a t i o n>
<C l a s s IRI =” # A c t i v i t y ” />

< / D e c l a r a t i o n>
<D e c l a r a t i o n>
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<C l a s s IRI =” # A d a p t a t i o n S c r i p t ” />
< / D e c l a r a t i o n>
<D e c l a r a t i o n>

<C l a s s IRI =” # A n a l y s i s R u l e ” />
< / D e c l a r a t i o n>
<D e c l a r a t i o n>

<C l a s s IRI =” # B e h a v i o u r a l U n i t ” />
< / D e c l a r a t i o n>
<D e c l a r a t i o n>

<C l a s s IRI =” # B o o l e a n F a c t ” />
< / D e c l a r a t i o n>
<D e c l a r a t i o n>

<C l a s s IRI =” # BooleanType ” />
< / D e c l a r a t i o n>
<D e c l a r a t i o n>

<C l a s s IRI =” # C h u n k B a s e d E l i c i t a t i o n S t i m u l u s ” />
< / D e c l a r a t i o n>
<D e c l a r a t i o n>

<C l a s s IRI =” # ChunkCondi t ion ” />
< / D e c l a r a t i o n>
<D e c l a r a t i o n>

<C l a s s IRI =” # ChunkFac tTypeAggrega t ion ” />
< / D e c l a r a t i o n>
<D e c l a r a t i o n>

<C l a s s IRI =” # ComplexFact ” />
< / D e c l a r a t i o n>
<D e c l a r a t i o n>

<C l a s s IRI =” #ComplexType ” />
< / D e c l a r a t i o n>
<D e c l a r a t i o n>

<C l a s s IRI =” # E l i c i t a t i o n S t i m u l u s ” />
< / D e c l a r a t i o n>
<D e c l a r a t i o n>

<C l a s s IRI =” # F a c t ” />
< / D e c l a r a t i o n>
<D e c l a r a t i o n>

<C l a s s IRI =” # F a c t A g g r e g a t i o n ” />
< / D e c l a r a t i o n>
<D e c l a r a t i o n>

<C l a s s IRI =” # F a c t E d i t i n g E l i c i t a t i o n S t i m u l u s ” />
< / D e c l a r a t i o n>
<D e c l a r a t i o n>
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<C l a s s IRI =” # Fac tType ” />
< / D e c l a r a t i o n>
<D e c l a r a t i o n>

<C l a s s IRI =” # F a c t T y p e A g g r e g a t i o n ” />
< / D e c l a r a t i o n>
<D e c l a r a t i o n>

<C l a s s IRI =” # I n d e x D e s c r i p t i o n ” />
< / D e c l a r a t i o n>
<D e c l a r a t i o n>

<C l a s s IRI =” # I n f o r m a t i o n R e q u i r e m e n t ” />
< / D e c l a r a t i o n>
<D e c l a r a t i o n>

<C l a s s IRI =” # M a t c h i n g C o n d i t i o n ” />
< / D e c l a r a t i o n>
<D e c l a r a t i o n>

<C l a s s IRI =” #Model ” />
< / D e c l a r a t i o n>
<D e c l a r a t i o n>

<C l a s s IRI =” #ModelChunk ” />
< / D e c l a r a t i o n>
<D e c l a r a t i o n>

<C l a s s IRI =” #ModelChunkType ” />
< / D e c l a r a t i o n>
<D e c l a r a t i o n>

<C l a s s IRI =” #ModelType ” />
< / D e c l a r a t i o n>
<D e c l a r a t i o n>

<C l a s s IRI =” # M o d e l l i n g C o n t e x t ” />
< / D e c l a r a t i o n>
<D e c l a r a t i o n>

<C l a s s IRI =” # M u l t i p l e C h o i c e E l i c i t a t i o n S t i m u l u s ” />
< / D e c l a r a t i o n>
<D e c l a r a t i o n>

<C l a s s IRI =” # Numer icFac t ” />
< / D e c l a r a t i o n>
<D e c l a r a t i o n>

<C l a s s IRI =” # NumericType ” />
< / D e c l a r a t i o n>
<D e c l a r a t i o n>

<C l a s s IRI =” # Phase ” />
< / D e c l a r a t i o n>
<D e c l a r a t i o n>
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<C l a s s IRI =” # P r o d u c t i o n R u l e ” />
< / D e c l a r a t i o n>
<D e c l a r a t i o n>

<C l a s s IRI =” # P r o d u c t i o n S c r i p t ” />
< / D e c l a r a t i o n>
<D e c l a r a t i o n>

<C l a s s IRI =” # P r o p e r t y ” />
< / D e c l a r a t i o n>
<D e c l a r a t i o n>

<C l a s s IRI =” # P r o p e r t y T y p e ” />
< / D e c l a r a t i o n>
<D e c l a r a t i o n>

<C l a s s IRI =” #RORERule” />
< / D e c l a r a t i o n>
<D e c l a r a t i o n>

<C l a s s IRI =” # R e u s a b l e S t r u c t u r e ” />
< / D e c l a r a t i o n>
<D e c l a r a t i o n>

<C l a s s IRI =” # R u l e C o n d i t i o n ” />
< / D e c l a r a t i o n>
<D e c l a r a t i o n>

<C l a s s IRI =” # S i m p l e F a c t ” />
< / D e c l a r a t i o n>
<D e c l a r a t i o n>

<C l a s s IRI =” # SimpleType ” />
< / D e c l a r a t i o n>
<D e c l a r a t i o n>

<C l a s s IRI =” # S t r i n g F a c t ” />
< / D e c l a r a t i o n>
<D e c l a r a t i o n>

<C l a s s IRI =” # S t r i n g T y p e ” />
< / D e c l a r a t i o n>
<D e c l a r a t i o n>

<O b j e c t P r o p e r t y IRI =” # adaptedBy ” />
< / D e c l a r a t i o n>
<D e c l a r a t i o n>

<O b j e c t P r o p e r t y IRI =” # a g g r e g a t e s C h u n k F a c t s ” />
< / D e c l a r a t i o n>
<D e c l a r a t i o n>

<O b j e c t P r o p e r t y IRI =” # a g g r e g a t e s F a c t T y p e s ” />
< / D e c l a r a t i o n>
<D e c l a r a t i o n>
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<O b j e c t P r o p e r t y IRI =” # a g g r e g a t e s F a c t s ” />
< / D e c l a r a t i o n>
<D e c l a r a t i o n>

<O b j e c t P r o p e r t y IRI =” # be longsToPhase ” />
< / D e c l a r a t i o n>
<D e c l a r a t i o n>

<O b j e c t P r o p e r t y IRI =” # e n f o r c e s G o a l F a c t T y p e ” />
< / D e c l a r a t i o n>
<D e c l a r a t i o n>

<O b j e c t P r o p e r t y IRI =” # h a s A c t i v i t y C o n s t r a i n t ” />
< / D e c l a r a t i o n>
<D e c l a r a t i o n>

<O b j e c t P r o p e r t y IRI =” # hasChunkFac tTypeAggrega t ion ” />
< / D e c l a r a t i o n>
<D e c l a r a t i o n>

<O b j e c t P r o p e r t y IRI =” # hasCond i t i onChunk ” />
< / D e c l a r a t i o n>
<D e c l a r a t i o n>

<O b j e c t P r o p e r t y IRI =” # h a s C o n d i t i o n R u l e ” />
< / D e c l a r a t i o n>
<D e c l a r a t i o n>

<O b j e c t P r o p e r t y IRI =” # h a s C u r r e n t A c t i v i t y ” />
< / D e c l a r a t i o n>
<D e c l a r a t i o n>

<O b j e c t P r o p e r t y IRI =” # h a s C u r r e n t I n f o r m a t i o n R e q u i r e m e n t ” />
< / D e c l a r a t i o n>
<D e c l a r a t i o n>

<O b j e c t P r o p e r t y IRI =” # h a s C u r r e n t P h a s e ” />
< / D e c l a r a t i o n>
<D e c l a r a t i o n>

<O b j e c t P r o p e r t y IRI =” # h a s C u r r e n t S o u r c e M o d e l ” />
< / D e c l a r a t i o n>
<D e c l a r a t i o n>

<O b j e c t P r o p e r t y IRI =” # h a s C u r r e n t T a r g e t M o d e l ” />
< / D e c l a r a t i o n>
<D e c l a r a t i o n>

<O b j e c t P r o p e r t y IRI =” # h a s F a c t A g g r e g a t i o n ” />
< / D e c l a r a t i o n>
<D e c l a r a t i o n>

<O b j e c t P r o p e r t y IRI =” # h a s F a c t T y p e A g g r e g a t i o n ” />
< / D e c l a r a t i o n>
<D e c l a r a t i o n>
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<O b j e c t P r o p e r t y IRI =” # h a s F i r s t A d a p t a t i o n R u l e ” />
< / D e c l a r a t i o n>
<D e c l a r a t i o n>

<O b j e c t P r o p e r t y IRI =” # h a s F i r s t P r o d u c t i o n R u l e ” />
< / D e c l a r a t i o n>
<D e c l a r a t i o n>

<O b j e c t P r o p e r t y IRI =” # h a s N e x t A c t i v i t y ” />
< / D e c l a r a t i o n>
<D e c l a r a t i o n>

<O b j e c t P r o p e r t y IRI =” # hasNex tPhase ” />
< / D e c l a r a t i o n>
<D e c l a r a t i o n>

<O b j e c t P r o p e r t y IRI =” # h a s N e x t P r o d u c t i o n R u l e ” />
< / D e c l a r a t i o n>
<D e c l a r a t i o n>

<O b j e c t P r o p e r t y IRI =” # h a s P h a s e C o n s t r a i n t ” />
< / D e c l a r a t i o n>
<D e c l a r a t i o n>

<O b j e c t P r o p e r t y IRI =” # h a s P o s t c o n d i t i o n C o n s t r a i n t ” />
< / D e c l a r a t i o n>
<D e c l a r a t i o n>

<O b j e c t P r o p e r t y IRI =” # h a s P r e c o n d i t i o n C o n s t r a i n t ” />
< / D e c l a r a t i o n>
<D e c l a r a t i o n>

<O b j e c t P r o p e r t y IRI =” # h a s P r o p e r t y ” />
< / D e c l a r a t i o n>
<D e c l a r a t i o n>

<O b j e c t P r o p e r t y IRI =” # h a s P r o p e r t y O f T y p e ” />
< / D e c l a r a t i o n>
<D e c l a r a t i o n>

<O b j e c t P r o p e r t y IRI =” # h a s P r o p e r t y V a l u e ” />
< / D e c l a r a t i o n>
<D e c l a r a t i o n>

<O b j e c t P r o p e r t y IRI =” # h a s P r o p e r t y V a l u e T y p e ” />
< / D e c l a r a t i o n>
<D e c l a r a t i o n>

<O b j e c t P r o p e r t y IRI =” # has Re spo nse Op t ion ” />
< / D e c l a r a t i o n>
<D e c l a r a t i o n>

<O b j e c t P r o p e r t y IRI =” # h a s R e s p o n s e S t r u c t u r e ” />
< / D e c l a r a t i o n>
<D e c l a r a t i o n>
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<O b j e c t P r o p e r t y IRI =” # h a s S o u r c e F a c t T y p e C o n s t r a i n t ” />
< / D e c l a r a t i o n>
<D e c l a r a t i o n>

<O b j e c t P r o p e r t y IRI =” # h a s T a r g e t F a c t T y p e C o n s t r a i n t ” />
< / D e c l a r a t i o n>
<D e c l a r a t i o n>

<O b j e c t P r o p e r t y IRI =” # h a s T r i g g e r C o n d i t i o n C o n s t r a i n t ” />
< / D e c l a r a t i o n>
<D e c l a r a t i o n>

<O b j e c t P r o p e r t y IRI =” # indexedBy ” />
< / D e c l a r a t i o n>
<D e c l a r a t i o n>

<O b j e c t P r o p e r t y IRI =” # i n s t a n t i a t e s C h u n k T y p e ” />
< / D e c l a r a t i o n>
<D e c l a r a t i o n>

<O b j e c t P r o p e r t y IRI =” # i n s t a n t i a t e s F a c t T y p e ” />
< / D e c l a r a t i o n>
<D e c l a r a t i o n>

<O b j e c t P r o p e r t y IRI =” # i n s t a n t i a t e s F a c t T y p e A g g r e g a t i o n ” />
< / D e c l a r a t i o n>
<D e c l a r a t i o n>

<O b j e c t P r o p e r t y IRI =” # i n s t a n t i a t e s M o d e l T y p e ” />
< / D e c l a r a t i o n>
<D e c l a r a t i o n>

<O b j e c t P r o p e r t y IRI =” # i n s t a n t i a t e s P r o p e r t y T y p e ” />
< / D e c l a r a t i o n>
<D e c l a r a t i o n>

<O b j e c t P r o p e r t y IRI =” # i sSubse tOfMode lType ” />
< / D e c l a r a t i o n>
<D e c l a r a t i o n>

<O b j e c t P r o p e r t y IRI =” # producesModelOfType ” />
< / D e c l a r a t i o n>
<D e c l a r a t i o n>

<O b j e c t P r o p e r t y IRI =” # r e q u i r e s G o a l F a c t T y p e ” />
< / D e c l a r a t i o n>
<D e c l a r a t i o n>

<O b j e c t P r o p e r t y IRI =” # subTypeOf ” />
< / D e c l a r a t i o n>
<D e c l a r a t i o n>

<D a t a P r o p e r t y IRI =” # c h e c k s C o n t e x t E l e m e n t ” />
< / D e c l a r a t i o n>
<D e c l a r a t i o n>
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<D a t a P r o p e r t y IRI =” # hasAc t iv i t yNam e ” />
< / D e c l a r a t i o n>
<D e c l a r a t i o n>

<D a t a P r o p e r t y IRI =” # hasAggregat ionName ” />
< / D e c l a r a t i o n>
<D e c l a r a t i o n>

<D a t a P r o p e r t y IRI =” # h a s A n t e c e d e n t ” />
< / D e c l a r a t i o n>
<D e c l a r a t i o n>

<D a t a P r o p e r t y IRI =” # hasBoo leanVa lue ” />
< / D e c l a r a t i o n>
<D e c l a r a t i o n>

<D a t a P r o p e r t y IRI =” # h a s C a r d i n a l i t y ” />
< / D e c l a r a t i o n>
<D e c l a r a t i o n>

<D a t a P r o p e r t y IRI =” # hasConsequen t ” />
< / D e c l a r a t i o n>
<D e c l a r a t i o n>

<D a t a P r o p e r t y IRI =” # hasCyc leGoa l ” />
< / D e c l a r a t i o n>
<D e c l a r a t i o n>

<D a t a P r o p e r t y IRI =” # h a s C y c l e P o s t c o n d i t i o n ” />
< / D e c l a r a t i o n>
<D e c l a r a t i o n>

<D a t a P r o p e r t y IRI =” # h a s E l i c i t a t i o n S t i m u l u s ” />
< / D e c l a r a t i o n>
<D e c l a r a t i o n>

<D a t a P r o p e r t y IRI =” # h a s F a c t Q u e r y ” />
< / D e c l a r a t i o n>
<D e c l a r a t i o n>

<D a t a P r o p e r t y IRI =” # hasFactTypeName ” />
< / D e c l a r a t i o n>
<D e c l a r a t i o n>

<D a t a P r o p e r t y IRI =” # h a s I n p u t F a c t Q u e r y ” />
< / D e c l a r a t i o n>
<D e c l a r a t i o n>

<D a t a P r o p e r t y IRI =” #hasModelTypeName ” />
< / D e c l a r a t i o n>
<D e c l a r a t i o n>

<D a t a P r o p e r t y IRI =” # hasNumer icValue ” />
< / D e c l a r a t i o n>
<D e c l a r a t i o n>
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<D a t a P r o p e r t y IRI =” # hasPhaseName ” />
< / D e c l a r a t i o n>
<D e c l a r a t i o n>

<D a t a P r o p e r t y IRI =” # hasProper tyName ” />
< / D e c l a r a t i o n>
<D e c l a r a t i o n>

<D a t a P r o p e r t y IRI =” # hasResponseOp t ionsQuery ” />
< / D e c l a r a t i o n>
<D e c l a r a t i o n>

<D a t a P r o p e r t y IRI =” # hasS imp leVa lue ” />
< / D e c l a r a t i o n>
<D e c l a r a t i o n>

<D a t a P r o p e r t y IRI =” # h a s S t r i n g V a l u e ” />
< / D e c l a r a t i o n>
<D e c l a r a t i o n>

<D a t a t y p e IRI =” # C o n t e x t E l e m e n t ” />
< / D e c l a r a t i o n>
<SubClassOf>

<C l a s s IRI =” # A c t i v i t y ” />
<C l a s s IRI =” # B e h a v i o u r a l U n i t ” />

< / SubClassOf>
<SubClassOf>

<C l a s s IRI =” # A n a l y s i s R u l e ” />
<C l a s s IRI =” #RORERule” />

< / SubClassOf>
<SubClassOf>

<C l a s s IRI =” # A n a l y s i s R u l e ” />
<C l a s s IRI =” # R e u s a b l e S t r u c t u r e ” />

< / SubClassOf>
<SubClassOf>

<C l a s s IRI =” # B o o l e a n F a c t ” />
<C l a s s IRI =” # S i m p l e F a c t ” />

< / SubClassOf>
<SubClassOf>

<C l a s s IRI =” # BooleanType ” />
<C l a s s IRI =” # SimpleType ” />

< / SubClassOf>
<SubClassOf>

<C l a s s IRI =” # C h u n k B a s e d E l i c i t a t i o n S t i m u l u s ” />
<C l a s s IRI =” # E l i c i t a t i o n S t i m u l u s ” />

< / SubClassOf>
<SubClassOf>
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<C l a s s IRI =” # ChunkCondi t ion ” />
<C l a s s IRI =” # M a t c h i n g C o n d i t i o n ” />

< / SubClassOf>
<SubClassOf>

<C l a s s IRI =” # ChunkFac tTypeAggrega t ion ” />
<C l a s s IRI =” # F a c t T y p e A g g r e g a t i o n ” />

< / SubClassOf>
<SubClassOf>

<C l a s s IRI =” # ComplexFact ” />
<C l a s s IRI =” # F a c t ” />

< / SubClassOf>
<SubClassOf>

<C l a s s IRI =” #ComplexType ” />
<C l a s s IRI =” # Fac tType ” />

< / SubClassOf>
<SubClassOf>

<C l a s s IRI =” # E l i c i t a t i o n S t i m u l u s ” />
<C l a s s IRI =” # R e u s a b l e S t r u c t u r e ” />

< / SubClassOf>
<SubClassOf>

<C l a s s IRI =” # F a c t A g g r e g a t i o n ” />
<C l a s s a b b r e v i a t e d I R I =” owl :Th ing ” />

< / SubClassOf>
<SubClassOf>

<C l a s s IRI =” # F a c t E d i t i n g E l i c i t a t i o n S t i m u l u s ” />
<C l a s s IRI =” # E l i c i t a t i o n S t i m u l u s ” />

< / SubClassOf>
<SubClassOf>

<C l a s s IRI =” #ModelChunk ” />
<C l a s s IRI =” # R e u s a b l e S t r u c t u r e ” />

< / SubClassOf>
<SubClassOf>

<C l a s s IRI =” # M u l t i p l e C h o i c e E l i c i t a t i o n S t i m u l u s ” />
<C l a s s IRI =” # E l i c i t a t i o n S t i m u l u s ” />

< / SubClassOf>
<SubClassOf>

<C l a s s IRI =” # Numer icFac t ” />
<C l a s s IRI =” # S i m p l e F a c t ” />

< / SubClassOf>
<SubClassOf>

<C l a s s IRI =” # NumericType ” />
<C l a s s IRI =” # SimpleType ” />
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< / SubClassOf>
<SubClassOf>

<C l a s s IRI =” # Phase ” />
<C l a s s IRI =” # B e h a v i o u r a l U n i t ” />

< / SubClassOf>
<SubClassOf>

<C l a s s IRI =” # P r o d u c t i o n R u l e ” />
<C l a s s IRI =” #RORERule” />

< / SubClassOf>
<SubClassOf>

<C l a s s IRI =” # P r o d u c t i o n S c r i p t ” />
<C l a s s IRI =” # R e u s a b l e S t r u c t u r e ” />

< / SubClassOf>
<SubClassOf>

<C l a s s IRI =” # P r o p e r t y T y p e ” />
<C l a s s a b b r e v i a t e d I R I =” owl :Th ing ” />

< / SubClassOf>
<SubClassOf>

<C l a s s IRI =” # R u l e C o n d i t i o n ” />
<C l a s s IRI =” # M a t c h i n g C o n d i t i o n ” />

< / SubClassOf>
<SubClassOf>

<C l a s s IRI =” # S i m p l e F a c t ” />
<C l a s s IRI =” # F a c t ” />

< / SubClassOf>
<SubClassOf>

<C l a s s IRI =” # SimpleType ” />
<C l a s s IRI =” # Fac tType ” />

< / SubClassOf>
<SubClassOf>

<C l a s s IRI =” # S t r i n g F a c t ” />
<C l a s s IRI =” # S i m p l e F a c t ” />

< / SubClassOf>
<SubClassOf>

<C l a s s IRI =” # S t r i n g T y p e ” />
<C l a s s IRI =” # SimpleType ” />

< / SubClassOf>
<S u b O b j e c t P r o p e r t y O f>

<O b j e c t P r o p e r t y IRI =” # a g g r e g a t e s F a c t T y p e s ” />
<O b j e c t P r o p e r t y a b b r e v i a t e d I R I =” o w l : t o p O b j e c t P r o p e r t y ” />

< / S u b O b j e c t P r o p e r t y O f>
<S u b O b j e c t P r o p e r t y O f>
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<O b j e c t P r o p e r t y IRI =” # a g g r e g a t e s F a c t s ” />
<O b j e c t P r o p e r t y a b b r e v i a t e d I R I =” o w l : t o p O b j e c t P r o p e r t y ” />

< / S u b O b j e c t P r o p e r t y O f>
<S u b O b j e c t P r o p e r t y O f>

<O b j e c t P r o p e r t y IRI =” # h a s C u r r e n t P h a s e ” />
<O b j e c t P r o p e r t y a b b r e v i a t e d I R I =” o w l : t o p O b j e c t P r o p e r t y ” />

< / S u b O b j e c t P r o p e r t y O f>
<S u b O b j e c t P r o p e r t y O f>

<O b j e c t P r o p e r t y IRI =” # h a s F a c t A g g r e g a t i o n ” />
<O b j e c t P r o p e r t y a b b r e v i a t e d I R I =” o w l : t o p O b j e c t P r o p e r t y ” />

< / S u b O b j e c t P r o p e r t y O f>
<S u b O b j e c t P r o p e r t y O f>

<O b j e c t P r o p e r t y IRI =” # h a s F i r s t A d a p t a t i o n R u l e ” />
<O b j e c t P r o p e r t y a b b r e v i a t e d I R I =” o w l : t o p O b j e c t P r o p e r t y ” />

< / S u b O b j e c t P r o p e r t y O f>
<S u b O b j e c t P r o p e r t y O f>

<O b j e c t P r o p e r t y IRI =” # i n s t a n t i a t e s F a c t T y p e ” />
<O b j e c t P r o p e r t y a b b r e v i a t e d I R I =” o w l : t o p O b j e c t P r o p e r t y ” />

< / S u b O b j e c t P r o p e r t y O f>
<S u b O b j e c t P r o p e r t y O f>

<O b j e c t P r o p e r t y IRI =” # i n s t a n t i a t e s F a c t T y p e A g g r e g a t i o n ” />
<O b j e c t P r o p e r t y a b b r e v i a t e d I R I =” o w l : t o p O b j e c t P r o p e r t y ” />

< / S u b O b j e c t P r o p e r t y O f>
<S u b O b j e c t P r o p e r t y O f>

<O b j e c t P r o p e r t y IRI =” # i n s t a n t i a t e s P r o p e r t y T y p e ” />
<O b j e c t P r o p e r t y a b b r e v i a t e d I R I =” o w l : t o p O b j e c t P r o p e r t y ” />

< / S u b O b j e c t P r o p e r t y O f>
<T r a n s i t i v e O b j e c t P r o p e r t y>

<O b j e c t P r o p e r t y IRI =” # subTypeOf ” />
< / T r a n s i t i v e O b j e c t P r o p e r t y>
<O b j e c t P r o p e r t y D o m a i n>

<O b j e c t P r o p e r t y IRI =” # adaptedBy ” />
<O b j e c t I n t e r s e c t i o n O f>

<C l a s s IRI =” # R e u s a b l e S t r u c t u r e ” />
<O b j e c t I n t e r s e c t i o n O f>

<ObjectComplementOf>
<C l a s s IRI =” # A n a l y s i s R u l e ” />

< / ObjectComplementOf>
<ObjectComplementOf>

<C l a s s IRI =” # P r o d u c t i o n S c r i p t ” />
< / ObjectComplementOf>

< / O b j e c t I n t e r s e c t i o n O f>
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< / O b j e c t I n t e r s e c t i o n O f>
< / O b j e c t P r o p e r t y D o m a i n>
<O b j e c t P r o p e r t y D o m a i n>

<O b j e c t P r o p e r t y IRI =” # a g g r e g a t e s C h u n k F a c t s ” />
<C l a s s IRI =” #ModelChunk ” />

< / O b j e c t P r o p e r t y D o m a i n>
<O b j e c t P r o p e r t y D o m a i n>

<O b j e c t P r o p e r t y IRI =” # a g g r e g a t e s F a c t T y p e s ” />
<C l a s s IRI =” # F a c t T y p e A g g r e g a t i o n ” />

< / O b j e c t P r o p e r t y D o m a i n>
<O b j e c t P r o p e r t y D o m a i n>

<O b j e c t P r o p e r t y IRI =” # a g g r e g a t e s F a c t s ” />
<C l a s s IRI =” # F a c t A g g r e g a t i o n ” />

< / O b j e c t P r o p e r t y D o m a i n>
<O b j e c t P r o p e r t y D o m a i n>

<O b j e c t P r o p e r t y IRI =” # be longsToPhase ” />
<C l a s s IRI =” # A c t i v i t y ” />

< / O b j e c t P r o p e r t y D o m a i n>
<O b j e c t P r o p e r t y D o m a i n>

<O b j e c t P r o p e r t y IRI =” # e n f o r c e s G o a l F a c t T y p e ” />
<C l a s s IRI =” # A n a l y s i s R u l e ” />

< / O b j e c t P r o p e r t y D o m a i n>
<O b j e c t P r o p e r t y D o m a i n>

<O b j e c t P r o p e r t y IRI =” # h a s A c t i v i t y C o n s t r a i n t ” />
<C l a s s IRI =” # I n d e x D e s c r i p t i o n ” />

< / O b j e c t P r o p e r t y D o m a i n>
<O b j e c t P r o p e r t y D o m a i n>

<O b j e c t P r o p e r t y IRI =” # hasChunkFac tTypeAggrega t ion ” />
<C l a s s IRI =” #ModelChunkType ” />

< / O b j e c t P r o p e r t y D o m a i n>
<O b j e c t P r o p e r t y D o m a i n>

<O b j e c t P r o p e r t y IRI =” # hasCond i t i onChunk ” />
<C l a s s IRI =” # ChunkCondi t ion ” />

< / O b j e c t P r o p e r t y D o m a i n>
<O b j e c t P r o p e r t y D o m a i n>

<O b j e c t P r o p e r t y IRI =” # h a s C o n d i t i o n R u l e ” />
<C l a s s IRI =” # R u l e C o n d i t i o n ” />

< / O b j e c t P r o p e r t y D o m a i n>
<O b j e c t P r o p e r t y D o m a i n>

<O b j e c t P r o p e r t y IRI =” # h a s C u r r e n t A c t i v i t y ” />
<C l a s s IRI =” # M o d e l l i n g C o n t e x t ” />

< / O b j e c t P r o p e r t y D o m a i n>
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<O b j e c t P r o p e r t y D o m a i n>
<O b j e c t P r o p e r t y IRI =” # h a s C u r r e n t I n f o r m a t i o n R e q u i r e m e n t ” />
<C l a s s IRI =” # M o d e l l i n g C o n t e x t ” />

< / O b j e c t P r o p e r t y D o m a i n>
<O b j e c t P r o p e r t y D o m a i n>

<O b j e c t P r o p e r t y IRI =” # h a s C u r r e n t P h a s e ” />
<C l a s s IRI =” # M o d e l l i n g C o n t e x t ” />

< / O b j e c t P r o p e r t y D o m a i n>
<O b j e c t P r o p e r t y D o m a i n>

<O b j e c t P r o p e r t y IRI =” # h a s C u r r e n t S o u r c e M o d e l ” />
<C l a s s IRI =” # M o d e l l i n g C o n t e x t ” />

< / O b j e c t P r o p e r t y D o m a i n>
<O b j e c t P r o p e r t y D o m a i n>

<O b j e c t P r o p e r t y IRI =” # h a s C u r r e n t T a r g e t M o d e l ” />
<C l a s s IRI =” # M o d e l l i n g C o n t e x t ” />

< / O b j e c t P r o p e r t y D o m a i n>
<O b j e c t P r o p e r t y D o m a i n>

<O b j e c t P r o p e r t y IRI =” # h a s F a c t A g g r e g a t i o n ” />
<C l a s s IRI =” #Model ” />

< / O b j e c t P r o p e r t y D o m a i n>
<O b j e c t P r o p e r t y D o m a i n>

<O b j e c t P r o p e r t y IRI =” # h a s F a c t T y p e A g g r e g a t i o n ” />
<C l a s s IRI =” #ModelType ” />

< / O b j e c t P r o p e r t y D o m a i n>
<O b j e c t P r o p e r t y D o m a i n>

<O b j e c t P r o p e r t y IRI =” # h a s F i r s t A d a p t a t i o n R u l e ” />
<C l a s s IRI =” # A d a p t a t i o n S c r i p t ” />

< / O b j e c t P r o p e r t y D o m a i n>
<O b j e c t P r o p e r t y D o m a i n>

<O b j e c t P r o p e r t y IRI =” # h a s F i r s t P r o d u c t i o n R u l e ” />
<C l a s s IRI =” # P r o d u c t i o n S c r i p t ” />

< / O b j e c t P r o p e r t y D o m a i n>
<O b j e c t P r o p e r t y D o m a i n>

<O b j e c t P r o p e r t y IRI =” # h a s N e x t A c t i v i t y ” />
<C l a s s IRI =” # A c t i v i t y ” />

< / O b j e c t P r o p e r t y D o m a i n>
<O b j e c t P r o p e r t y D o m a i n>

<O b j e c t P r o p e r t y IRI =” # hasNex tPhase ” />
<C l a s s IRI =” # Phase ” />

< / O b j e c t P r o p e r t y D o m a i n>
<O b j e c t P r o p e r t y D o m a i n>

<O b j e c t P r o p e r t y IRI =” # h a s N e x t P r o d u c t i o n R u l e ” />
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<C l a s s IRI =” # P r o d u c t i o n R u l e ” />
< / O b j e c t P r o p e r t y D o m a i n>
<O b j e c t P r o p e r t y D o m a i n>

<O b j e c t P r o p e r t y IRI =” # h a s P h a s e C o n s t r a i n t ” />
<C l a s s IRI =” # I n d e x D e s c r i p t i o n ” />

< / O b j e c t P r o p e r t y D o m a i n>
<O b j e c t P r o p e r t y D o m a i n>

<O b j e c t P r o p e r t y IRI =” # h a s P o s t c o n d i t i o n C o n s t r a i n t ” />
<C l a s s IRI =” # I n d e x D e s c r i p t i o n ” />

< / O b j e c t P r o p e r t y D o m a i n>
<O b j e c t P r o p e r t y D o m a i n>

<O b j e c t P r o p e r t y IRI =” # h a s P r e c o n d i t i o n C o n s t r a i n t ” />
<C l a s s IRI =” # I n d e x D e s c r i p t i o n ” />

< / O b j e c t P r o p e r t y D o m a i n>
<O b j e c t P r o p e r t y D o m a i n>

<O b j e c t P r o p e r t y IRI =” # h a s P r o p e r t y ” />
<C l a s s IRI =” # ComplexFact ” />

< / O b j e c t P r o p e r t y D o m a i n>
<O b j e c t P r o p e r t y D o m a i n>

<O b j e c t P r o p e r t y IRI =” # h a s P r o p e r t y O f T y p e ” />
<C l a s s IRI =” #ComplexType ” />

< / O b j e c t P r o p e r t y D o m a i n>
<O b j e c t P r o p e r t y D o m a i n>

<O b j e c t P r o p e r t y IRI =” # h a s P r o p e r t y V a l u e ” />
<C l a s s IRI =” # P r o p e r t y ” />

< / O b j e c t P r o p e r t y D o m a i n>
<O b j e c t P r o p e r t y D o m a i n>

<O b j e c t P r o p e r t y IRI =” # h a s P r o p e r t y V a l u e T y p e ” />
<C l a s s IRI =” # P r o p e r t y T y p e ” />

< / O b j e c t P r o p e r t y D o m a i n>
<O b j e c t P r o p e r t y D o m a i n>

<O b j e c t P r o p e r t y IRI =” # ha sRe spo nse Op t ion ” />
<C l a s s IRI =” # M u l t i p l e C h o i c e E l i c i t a t i o n S t i m u l u s ” />

< / O b j e c t P r o p e r t y D o m a i n>
<O b j e c t P r o p e r t y D o m a i n>

<O b j e c t P r o p e r t y IRI =” # h a s R e s p o n s e S t r u c t u r e ” />
<C l a s s IRI =” # C h u n k B a s e d E l i c i t a t i o n S t i m u l u s ” />

< / O b j e c t P r o p e r t y D o m a i n>
<O b j e c t P r o p e r t y D o m a i n>

<O b j e c t P r o p e r t y IRI =” # h a s S o u r c e F a c t T y p e C o n s t r a i n t ” />
<C l a s s IRI =” # I n d e x D e s c r i p t i o n ” />

< / O b j e c t P r o p e r t y D o m a i n>
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<O b j e c t P r o p e r t y D o m a i n>
<O b j e c t P r o p e r t y IRI =” # h a s T a r g e t F a c t T y p e C o n s t r a i n t ” />
<C l a s s IRI =” # I n d e x D e s c r i p t i o n ” />

< / O b j e c t P r o p e r t y D o m a i n>
<O b j e c t P r o p e r t y D o m a i n>

<O b j e c t P r o p e r t y IRI =” # h a s T r i g g e r C o n d i t i o n C o n s t r a i n t ” />
<C l a s s IRI =” # I n d e x D e s c r i p t i o n ” />

< / O b j e c t P r o p e r t y D o m a i n>
<O b j e c t P r o p e r t y D o m a i n>

<O b j e c t P r o p e r t y IRI =” # indexedBy ” />
<C l a s s IRI =” # R e u s a b l e S t r u c t u r e ” />

< / O b j e c t P r o p e r t y D o m a i n>
<O b j e c t P r o p e r t y D o m a i n>

<O b j e c t P r o p e r t y IRI =” # i n s t a n t i a t e s C h u n k T y p e ” />
<C l a s s IRI =” #ModelChunk ” />

< / O b j e c t P r o p e r t y D o m a i n>
<O b j e c t P r o p e r t y D o m a i n>

<O b j e c t P r o p e r t y IRI =” # i n s t a n t i a t e s F a c t T y p e ” />
<C l a s s IRI =” # F a c t ” />

< / O b j e c t P r o p e r t y D o m a i n>
<O b j e c t P r o p e r t y D o m a i n>

<O b j e c t P r o p e r t y IRI =” # i n s t a n t i a t e s F a c t T y p e A g g r e g a t i o n ” />
<C l a s s IRI =” # F a c t A g g r e g a t i o n ” />

< / O b j e c t P r o p e r t y D o m a i n>
<O b j e c t P r o p e r t y D o m a i n>

<O b j e c t P r o p e r t y IRI =” # i n s t a n t i a t e s M o d e l T y p e ” />
<C l a s s IRI =” #Model ” />

< / O b j e c t P r o p e r t y D o m a i n>
<O b j e c t P r o p e r t y D o m a i n>

<O b j e c t P r o p e r t y IRI =” # i n s t a n t i a t e s P r o p e r t y T y p e ” />
<C l a s s IRI =” # P r o p e r t y ” />

< / O b j e c t P r o p e r t y D o m a i n>
<O b j e c t P r o p e r t y D o m a i n>

<O b j e c t P r o p e r t y IRI =” # i sSubse tOfMode lType ” />
<C l a s s IRI =” #ModelChunkType ” />

< / O b j e c t P r o p e r t y D o m a i n>
<O b j e c t P r o p e r t y D o m a i n>

<O b j e c t P r o p e r t y IRI =” # producesModelOfType ” />
<C l a s s IRI =” # A c t i v i t y ” />

< / O b j e c t P r o p e r t y D o m a i n>
<O b j e c t P r o p e r t y D o m a i n>

<O b j e c t P r o p e r t y IRI =” # r e q u i r e s G o a l F a c t T y p e ” />
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<C l a s s IRI =” # I n f o r m a t i o n R e q u i r e m e n t ” />
< / O b j e c t P r o p e r t y D o m a i n>
<O b j e c t P r o p e r t y D o m a i n>

<O b j e c t P r o p e r t y IRI =” # subTypeOf ” />
<C l a s s IRI =” # Fac tType ” />

< / O b j e c t P r o p e r t y D o m a i n>
<O b j e c t P r o p e r t y R a n g e>

<O b j e c t P r o p e r t y IRI =” # a g g r e g a t e s C h u n k F a c t s ” />
<C l a s s IRI =” # F a c t ” />

< / O b j e c t P r o p e r t y R a n g e>
<O b j e c t P r o p e r t y R a n g e>

<O b j e c t P r o p e r t y IRI =” # a g g r e g a t e s F a c t T y p e s ” />
<C l a s s IRI =” # Fac tType ” />

< / O b j e c t P r o p e r t y R a n g e>
<O b j e c t P r o p e r t y R a n g e>

<O b j e c t P r o p e r t y IRI =” # a g g r e g a t e s F a c t s ” />
<C l a s s IRI =” # F a c t ” />

< / O b j e c t P r o p e r t y R a n g e>
<O b j e c t P r o p e r t y R a n g e>

<O b j e c t P r o p e r t y IRI =” # be longsToPhase ” />
<C l a s s IRI =” # Phase ” />

< / O b j e c t P r o p e r t y R a n g e>
<O b j e c t P r o p e r t y R a n g e>

<O b j e c t P r o p e r t y IRI =” # e n f o r c e s G o a l F a c t T y p e ” />
<C l a s s IRI =” # Fac tType ” />

< / O b j e c t P r o p e r t y R a n g e>
<O b j e c t P r o p e r t y R a n g e>

<O b j e c t P r o p e r t y IRI =” # h a s A c t i v i t y C o n s t r a i n t ” />
<C l a s s IRI =” # A c t i v i t y ” />

< / O b j e c t P r o p e r t y R a n g e>
<O b j e c t P r o p e r t y R a n g e>

<O b j e c t P r o p e r t y IRI =” # hasChunkFac tTypeAggrega t ion ” />
<C l a s s IRI =” # ChunkFac tTypeAggrega t ion ” />

< / O b j e c t P r o p e r t y R a n g e>
<O b j e c t P r o p e r t y R a n g e>

<O b j e c t P r o p e r t y IRI =” # hasCond i t i onChunk ” />
<C l a s s IRI =” #ModelChunk ” />

< / O b j e c t P r o p e r t y R a n g e>
<O b j e c t P r o p e r t y R a n g e>

<O b j e c t P r o p e r t y IRI =” # h a s C o n d i t i o n R u l e ” />
<C l a s s IRI =” # A n a l y s i s R u l e ” />

< / O b j e c t P r o p e r t y R a n g e>
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<O b j e c t P r o p e r t y R a n g e>
<O b j e c t P r o p e r t y IRI =” # h a s C u r r e n t A c t i v i t y ” />
<C l a s s IRI =” # A c t i v i t y ” />

< / O b j e c t P r o p e r t y R a n g e>
<O b j e c t P r o p e r t y R a n g e>

<O b j e c t P r o p e r t y IRI =” # h a s C u r r e n t I n f o r m a t i o n R e q u i r e m e n t ” />
<C l a s s IRI =” # I n f o r m a t i o n R e q u i r e m e n t ” />

< / O b j e c t P r o p e r t y R a n g e>
<O b j e c t P r o p e r t y R a n g e>

<O b j e c t P r o p e r t y IRI =” # h a s C u r r e n t P h a s e ” />
<C l a s s IRI =” # Phase ” />

< / O b j e c t P r o p e r t y R a n g e>
<O b j e c t P r o p e r t y R a n g e>

<O b j e c t P r o p e r t y IRI =” # h a s C u r r e n t S o u r c e M o d e l ” />
<C l a s s IRI =” #Model ” />

< / O b j e c t P r o p e r t y R a n g e>
<O b j e c t P r o p e r t y R a n g e>

<O b j e c t P r o p e r t y IRI =” # h a s C u r r e n t T a r g e t M o d e l ” />
<C l a s s IRI =” #Model ” />

< / O b j e c t P r o p e r t y R a n g e>
<O b j e c t P r o p e r t y R a n g e>

<O b j e c t P r o p e r t y IRI =” # h a s F a c t A g g r e g a t i o n ” />
<C l a s s IRI =” # F a c t A g g r e g a t i o n ” />

< / O b j e c t P r o p e r t y R a n g e>
<O b j e c t P r o p e r t y R a n g e>

<O b j e c t P r o p e r t y IRI =” # h a s F a c t T y p e A g g r e g a t i o n ” />
<C l a s s IRI =” # F a c t T y p e A g g r e g a t i o n ” />

< / O b j e c t P r o p e r t y R a n g e>
<O b j e c t P r o p e r t y R a n g e>

<O b j e c t P r o p e r t y IRI =” # h a s F i r s t A d a p t a t i o n R u l e ” />
<C l a s s IRI =” # P r o d u c t i o n R u l e ” />

< / O b j e c t P r o p e r t y R a n g e>
<O b j e c t P r o p e r t y R a n g e>

<O b j e c t P r o p e r t y IRI =” # h a s F i r s t P r o d u c t i o n R u l e ” />
<C l a s s IRI =” # P r o d u c t i o n R u l e ” />

< / O b j e c t P r o p e r t y R a n g e>
<O b j e c t P r o p e r t y R a n g e>

<O b j e c t P r o p e r t y IRI =” # h a s N e x t A c t i v i t y ” />
<C l a s s IRI =” # A c t i v i t y ” />

< / O b j e c t P r o p e r t y R a n g e>
<O b j e c t P r o p e r t y R a n g e>

<O b j e c t P r o p e r t y IRI =” # hasNex tPhase ” />
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<C l a s s IRI =” # Phase ” />
< / O b j e c t P r o p e r t y R a n g e>
<O b j e c t P r o p e r t y R a n g e>

<O b j e c t P r o p e r t y IRI =” # h a s N e x t P r o d u c t i o n R u l e ” />
<C l a s s IRI =” # P r o d u c t i o n R u l e ” />

< / O b j e c t P r o p e r t y R a n g e>
<O b j e c t P r o p e r t y R a n g e>

<O b j e c t P r o p e r t y IRI =” # h a s P h a s e C o n s t r a i n t ” />
<C l a s s IRI =” # Phase ” />

< / O b j e c t P r o p e r t y R a n g e>
<O b j e c t P r o p e r t y R a n g e>

<O b j e c t P r o p e r t y IRI =” # h a s P o s t c o n d i t i o n C o n s t r a i n t ” />
<C l a s s IRI =” # M a t c h i n g C o n d i t i o n ” />

< / O b j e c t P r o p e r t y R a n g e>
<O b j e c t P r o p e r t y R a n g e>

<O b j e c t P r o p e r t y IRI =” # h a s P r e c o n d i t i o n C o n s t r a i n t ” />
<C l a s s IRI =” # M a t c h i n g C o n d i t i o n ” />

< / O b j e c t P r o p e r t y R a n g e>
<O b j e c t P r o p e r t y R a n g e>

<O b j e c t P r o p e r t y IRI =” # h a s P r o p e r t y ” />
<C l a s s IRI =” # P r o p e r t y ” />

< / O b j e c t P r o p e r t y R a n g e>
<O b j e c t P r o p e r t y R a n g e>

<O b j e c t P r o p e r t y IRI =” # h a s P r o p e r t y O f T y p e ” />
<C l a s s IRI =” # P r o p e r t y T y p e ” />

< / O b j e c t P r o p e r t y R a n g e>
<O b j e c t P r o p e r t y R a n g e>

<O b j e c t P r o p e r t y IRI =” # h a s P r o p e r t y V a l u e ” />
<C l a s s IRI =” # F a c t ” />

< / O b j e c t P r o p e r t y R a n g e>
<O b j e c t P r o p e r t y R a n g e>

<O b j e c t P r o p e r t y IRI =” # h a s P r o p e r t y V a l u e T y p e ” />
<C l a s s IRI =” # Fac tType ” />

< / O b j e c t P r o p e r t y R a n g e>
<O b j e c t P r o p e r t y R a n g e>

<O b j e c t P r o p e r t y IRI =” # ha sRe spo nse Op t ion ” />
<C l a s s IRI =” #ModelChunk ” />

< / O b j e c t P r o p e r t y R a n g e>
<O b j e c t P r o p e r t y R a n g e>

<O b j e c t P r o p e r t y IRI =” # h a s R e s p o n s e S t r u c t u r e ” />
<C l a s s IRI =” #ModelChunkType ” />

< / O b j e c t P r o p e r t y R a n g e>
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<O b j e c t P r o p e r t y R a n g e>
<O b j e c t P r o p e r t y IRI =” # h a s S o u r c e F a c t T y p e C o n s t r a i n t ” />
<C l a s s IRI =” # Fac tType ” />

< / O b j e c t P r o p e r t y R a n g e>
<O b j e c t P r o p e r t y R a n g e>

<O b j e c t P r o p e r t y IRI =” # h a s T a r g e t F a c t T y p e C o n s t r a i n t ” />
<C l a s s IRI =” # Fac tType ” />

< / O b j e c t P r o p e r t y R a n g e>
<O b j e c t P r o p e r t y R a n g e>

<O b j e c t P r o p e r t y IRI =” # h a s T r i g g e r C o n d i t i o n C o n s t r a i n t ” />
<C l a s s IRI =” # M a t c h i n g C o n d i t i o n ” />

< / O b j e c t P r o p e r t y R a n g e>
<O b j e c t P r o p e r t y R a n g e>

<O b j e c t P r o p e r t y IRI =” # indexedBy ” />
<C l a s s IRI =” # I n d e x D e s c r i p t i o n ” />

< / O b j e c t P r o p e r t y R a n g e>
<O b j e c t P r o p e r t y R a n g e>

<O b j e c t P r o p e r t y IRI =” # i n s t a n t i a t e s C h u n k T y p e ” />
<C l a s s IRI =” #ModelChunkType ” />

< / O b j e c t P r o p e r t y R a n g e>
<O b j e c t P r o p e r t y R a n g e>

<O b j e c t P r o p e r t y IRI =” # i n s t a n t i a t e s F a c t T y p e ” />
<C l a s s IRI =” # Fac tType ” />

< / O b j e c t P r o p e r t y R a n g e>
<O b j e c t P r o p e r t y R a n g e>

<O b j e c t P r o p e r t y IRI =” # i n s t a n t i a t e s F a c t T y p e A g g r e g a t i o n ” />
<C l a s s IRI =” # F a c t T y p e A g g r e g a t i o n ” />

< / O b j e c t P r o p e r t y R a n g e>
<O b j e c t P r o p e r t y R a n g e>

<O b j e c t P r o p e r t y IRI =” # i n s t a n t i a t e s M o d e l T y p e ” />
<C l a s s IRI =” #ModelType ” />

< / O b j e c t P r o p e r t y R a n g e>
<O b j e c t P r o p e r t y R a n g e>

<O b j e c t P r o p e r t y IRI =” # i n s t a n t i a t e s P r o p e r t y T y p e ” />
<C l a s s IRI =” # P r o p e r t y T y p e ” />

< / O b j e c t P r o p e r t y R a n g e>
<O b j e c t P r o p e r t y R a n g e>

<O b j e c t P r o p e r t y IRI =” # i sSubse tOfMode lType ” />
<C l a s s IRI =” #ModelType ” />

< / O b j e c t P r o p e r t y R a n g e>
<O b j e c t P r o p e r t y R a n g e>

<O b j e c t P r o p e r t y IRI =” # producesModelOfType ” />
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<C l a s s IRI =” #ModelType ” />
< / O b j e c t P r o p e r t y R a n g e>
<O b j e c t P r o p e r t y R a n g e>

<O b j e c t P r o p e r t y IRI =” # r e q u i r e s G o a l F a c t T y p e ” />
<C l a s s IRI =” # Fac tType ” />

< / O b j e c t P r o p e r t y R a n g e>
<O b j e c t P r o p e r t y R a n g e>

<O b j e c t P r o p e r t y IRI =” # subTypeOf ” />
<C l a s s IRI =” # Fac tType ” />

< / O b j e c t P r o p e r t y R a n g e>
<Su bD a ta P r ope r t yOf>

<D a t a P r o p e r t y IRI =” # h a s A n t e c e d e n t ” />
<D a t a P r o p e r t y a b b r e v i a t e d I R I =” o w l : t o p D a t a P r o p e r t y ” />

< / S ub Da t aP rop e r tyO f>
<Su bD a ta P r ope r t yOf>

<D a t a P r o p e r t y IRI =” # hasBoo leanVa lue ” />
<D a t a P r o p e r t y IRI =” # hasS imp leVa lue ” />

< / S ub Da t aP rop e r tyO f>
<Su bD a ta P r ope r t yOf>

<D a t a P r o p e r t y IRI =” # h a s I n p u t F a c t Q u e r y ” />
<D a t a P r o p e r t y a b b r e v i a t e d I R I =” o w l : t o p D a t a P r o p e r t y ” />

< / S ub Da t aP rop e r tyO f>
<Su bD a ta P r ope r t yOf>

<D a t a P r o p e r t y IRI =” # hasNumer icValue ” />
<D a t a P r o p e r t y IRI =” # hasS imp leVa lue ” />

< / S ub Da t aP rop e r tyO f>
<Su bD a ta P r ope r t yOf>

<D a t a P r o p e r t y IRI =” # hasS imp leVa lue ” />
<D a t a P r o p e r t y a b b r e v i a t e d I R I =” o w l : t o p D a t a P r o p e r t y ” />

< / S ub Da t aP rop e r tyO f>
<Su bD a ta P r ope r t yOf>

<D a t a P r o p e r t y IRI =” # h a s S t r i n g V a l u e ” />
<D a t a P r o p e r t y IRI =” # hasS imp leVa lue ” />

< / S ub Da t aP rop e r tyO f>
<DataProper tyDomain>

<D a t a P r o p e r t y IRI =” # c h e c k s C o n t e x t E l e m e n t ” />
<C l a s s IRI =” # M a t c h i n g C o n d i t i o n ” />

< / Da taProper tyDomain>
<DataProper tyDomain>

<D a t a P r o p e r t y IRI =” # hasAc t iv i t yNam e ” />
<C l a s s IRI =” # A c t i v i t y ” />

< / Da taProper tyDomain>
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<DataProper tyDomain>
<D a t a P r o p e r t y IRI =” # hasAggregat ionName ” />
<C l a s s IRI =” # F a c t T y p e A g g r e g a t i o n ” />

< / Da taProper tyDomain>
<DataProper tyDomain>

<D a t a P r o p e r t y IRI =” # h a s A n t e c e d e n t ” />
<C l a s s IRI =” #RORERule” />

< / Da taProper tyDomain>
<DataProper tyDomain>

<D a t a P r o p e r t y IRI =” # hasBoo leanVa lue ” />
<C l a s s IRI =” # B o o l e a n F a c t ” />

< / Da taProper tyDomain>
<DataProper tyDomain>

<D a t a P r o p e r t y IRI =” # h a s C a r d i n a l i t y ” />
<C l a s s IRI =” # ChunkFac tTypeAggrega t ion ” />

< / Da taProper tyDomain>
<DataProper tyDomain>

<D a t a P r o p e r t y IRI =” # hasConsequen t ” />
<C l a s s IRI =” #RORERule” />

< / Da taProper tyDomain>
<DataProper tyDomain>

<D a t a P r o p e r t y IRI =” # hasCyc leGoa l ” />
<C l a s s IRI =” # I n f o r m a t i o n R e q u i r e m e n t ” />

< / Da taProper tyDomain>
<DataProper tyDomain>

<D a t a P r o p e r t y IRI =” # h a s C y c l e P o s t c o n d i t i o n ” />
<C l a s s IRI =” # I n f o r m a t i o n R e q u i r e m e n t ” />

< / Da taProper tyDomain>
<DataProper tyDomain>

<D a t a P r o p e r t y IRI =” # h a s E l i c i t a t i o n S t i m u l u s ” />
<C l a s s IRI =” # E l i c i t a t i o n S t i m u l u s ” />

< / Da taProper tyDomain>
<DataProper tyDomain>

<D a t a P r o p e r t y IRI =” # h a s F a c t Q u e r y ” />
<C l a s s IRI =” # F a c t E d i t i n g E l i c i t a t i o n S t i m u l u s ” />

< / Da taProper tyDomain>
<DataProper tyDomain>

<D a t a P r o p e r t y IRI =” # hasFactTypeName ” />
<C l a s s IRI =” # Fac tType ” />

< / Da taProper tyDomain>
<DataProper tyDomain>

<D a t a P r o p e r t y IRI =” # h a s I n p u t F a c t Q u e r y ” />
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<C l a s s IRI =” # P r o d u c t i o n S c r i p t ” />
< / Da taProper tyDomain>
<DataProper tyDomain>

<D a t a P r o p e r t y IRI =” #hasModelTypeName ” />
<C l a s s IRI =” #ModelType ” />

< / Da taProper tyDomain>
<DataProper tyDomain>

<D a t a P r o p e r t y IRI =” # hasNumer icValue ” />
<C l a s s IRI =” # Numer icFac t ” />

< / Da taProper tyDomain>
<DataProper tyDomain>

<D a t a P r o p e r t y IRI =” # hasPhaseName ” />
<C l a s s IRI =” # Phase ” />

< / Da taProper tyDomain>
<DataProper tyDomain>

<D a t a P r o p e r t y IRI =” # hasProper tyName ” />
<C l a s s IRI =” # P r o p e r t y T y p e ” />

< / Da taProper tyDomain>
<DataProper tyDomain>

<D a t a P r o p e r t y IRI =” # hasResponseOp t ionsQuery ” />
<C l a s s IRI =” # M u l t i p l e C h o i c e E l i c i t a t i o n S t i m u l u s ” />

< / Da taProper tyDomain>
<DataProper tyDomain>

<D a t a P r o p e r t y IRI =” # hasS imp leVa lue ” />
<C l a s s IRI =” # SimpleType ” />

< / Da taProper tyDomain>
<DataProper tyDomain>

<D a t a P r o p e r t y IRI =” # h a s S t r i n g V a l u e ” />
<C l a s s IRI =” # S t r i n g F a c t ” />

< / Da taProper tyDomain>
<D a t a P r o p e r t y R a n g e>

<D a t a P r o p e r t y IRI =” # c h e c k s C o n t e x t E l e m e n t ” />
<D a t a t y p e IRI =” # C o n t e x t E l e m e n t ” />

< / D a t a P r o p e r t y R a n g e>
<D a t a P r o p e r t y R a n g e>

<D a t a P r o p e r t y IRI =” # hasAc t iv i t yNam e ” />
<D a t a t y p e a b b r e v i a t e d I R I =” x s d : s t r i n g ” />

< / D a t a P r o p e r t y R a n g e>
<D a t a P r o p e r t y R a n g e>

<D a t a P r o p e r t y IRI =” # hasAggregat ionName ” />
<D a t a t y p e a b b r e v i a t e d I R I =” x s d : s t r i n g ” />

< / D a t a P r o p e r t y R a n g e>
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<D a t a P r o p e r t y R a n g e>
<D a t a P r o p e r t y IRI =” # h a s A n t e c e d e n t ” />
<D a t a t y p e a b b r e v i a t e d I R I =” x s d : s t r i n g ” />

< / D a t a P r o p e r t y R a n g e>
<D a t a P r o p e r t y R a n g e>

<D a t a P r o p e r t y IRI =” # hasBoo leanVa lue ” />
<D a t a t y p e a b b r e v i a t e d I R I =” x s d : b o o l e a n ” />

< / D a t a P r o p e r t y R a n g e>
<D a t a P r o p e r t y R a n g e>

<D a t a P r o p e r t y IRI =” # h a s C a r d i n a l i t y ” />
<D a t a t y p e a b b r e v i a t e d I R I =” x s d : i n t ” />

< / D a t a P r o p e r t y R a n g e>
<D a t a P r o p e r t y R a n g e>

<D a t a P r o p e r t y IRI =” # hasConsequen t ” />
<D a t a t y p e a b b r e v i a t e d I R I =” x s d : s t r i n g ” />

< / D a t a P r o p e r t y R a n g e>
<D a t a P r o p e r t y R a n g e>

<D a t a P r o p e r t y IRI =” # hasCyc leGoa l ” />
<D a t a t y p e a b b r e v i a t e d I R I =” x s d : s t r i n g ” />

< / D a t a P r o p e r t y R a n g e>
<D a t a P r o p e r t y R a n g e>

<D a t a P r o p e r t y IRI =” # h a s C y c l e P o s t c o n d i t i o n ” />
<D a t a t y p e a b b r e v i a t e d I R I =” x s d : s t r i n g ” />

< / D a t a P r o p e r t y R a n g e>
<D a t a P r o p e r t y R a n g e>

<D a t a P r o p e r t y IRI =” # h a s E l i c i t a t i o n S t i m u l u s ” />
<D a t a t y p e a b b r e v i a t e d I R I =” x s d : s t r i n g ” />

< / D a t a P r o p e r t y R a n g e>
<D a t a P r o p e r t y R a n g e>

<D a t a P r o p e r t y IRI =” # h a s F a c t Q u e r y ” />
<D a t a t y p e a b b r e v i a t e d I R I =” x s d : s t r i n g ” />

< / D a t a P r o p e r t y R a n g e>
<D a t a P r o p e r t y R a n g e>

<D a t a P r o p e r t y IRI =” # hasFactTypeName ” />
<D a t a t y p e a b b r e v i a t e d I R I =” x s d : s t r i n g ” />

< / D a t a P r o p e r t y R a n g e>
<D a t a P r o p e r t y R a n g e>

<D a t a P r o p e r t y IRI =” # h a s I n p u t F a c t Q u e r y ” />
<D a t a t y p e a b b r e v i a t e d I R I =” x s d : s t r i n g ” />

< / D a t a P r o p e r t y R a n g e>
<D a t a P r o p e r t y R a n g e>

<D a t a P r o p e r t y IRI =” #hasModelTypeName ” />
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<D a t a t y p e a b b r e v i a t e d I R I =” x s d : s t r i n g ” />
< / D a t a P r o p e r t y R a n g e>
<D a t a P r o p e r t y R a n g e>

<D a t a P r o p e r t y IRI =” # hasNumer icValue ” />
<D a t a t y p e a b b r e v i a t e d I R I =” x s d : i n t e g e r ” />

< / D a t a P r o p e r t y R a n g e>
<D a t a P r o p e r t y R a n g e>

<D a t a P r o p e r t y IRI =” # hasPhaseName ” />
<D a t a t y p e a b b r e v i a t e d I R I =” x s d : s t r i n g ” />

< / D a t a P r o p e r t y R a n g e>
<D a t a P r o p e r t y R a n g e>

<D a t a P r o p e r t y IRI =” # hasProper tyName ” />
<D a t a t y p e a b b r e v i a t e d I R I =” x s d : s t r i n g ” />

< / D a t a P r o p e r t y R a n g e>
<D a t a P r o p e r t y R a n g e>

<D a t a P r o p e r t y IRI =” # hasResponseOp t ionsQuery ” />
<D a t a t y p e a b b r e v i a t e d I R I =” x s d : s t r i n g ” />

< / D a t a P r o p e r t y R a n g e>
<D a t a P r o p e r t y R a n g e>

<D a t a P r o p e r t y IRI =” # h a s S t r i n g V a l u e ” />
<D a t a t y p e a b b r e v i a t e d I R I =” x s d : s t r i n g ” />

< / D a t a P r o p e r t y R a n g e>
<D a t a t y p e D e f i n i t i o n>

<D a t a t y p e IRI =” # C o n t e x t E l e m e n t ” />
<DataOneOf>

<L i t e r a l d a t a t y p e I R I =”&r d f ; P l a i n L i t e r a l ”>SourceModel< /
L i t e r a l>

<L i t e r a l d a t a t y p e I R I =”&r d f ; P l a i n L i t e r a l ”>Targe tMode l< /
L i t e r a l>

< / DataOneOf>
< / D a t a t y p e D e f i n i t i o n>

< / Onto logy>

<!−− Genera ted by t h e OWL API ( v e r s i o n 3 . 3 . 1 9 5 7 ) h t t p : / / ow l ap i .
s o u r c e f o r g e . n e t −−>
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<? xml v e r s i o n =” 1 . 0 ” ?>
<!DOCTYPE rdf :RDF [

<!ENTITY owl ” h t t p : / /www. w3 . org / 2 0 0 2 / 0 7 / owl# ” >

<!ENTITY s w r l ” h t t p : / /www. w3 . org / 2 0 0 3 / 1 1 / s w r l # ” >

<!ENTITY s w r l b ” h t t p : / /www. w3 . org / 2 0 0 3 / 1 1 / s w r l b # ” >

<!ENTITY xsd ” h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema# ” >

<!ENTITY r d f s ” h t t p : / /www. w3 . org / 2 0 0 0 / 0 1 / r d f−schema # ” >

<!ENTITY r d f ” h t t p : / /www. w3 . org /1999/02 /22− r d f−syn t ax−ns # ” >

<!ENTITY LongTermMemory ” h t t p : / / j a m e s n a i s h . w o r d p r e s s . com /
LongTermMemory / ” >

<!ENTITY ROREKnowledgeModel ” h t t p : / / j a m e s n a i s h . w o r d p r e s s . com /
ROREKnowledgeModel . owl# ” >

]>
<rdf :RDF xmlns=”&LongTermMemory ; phd . owl# ”

x m l : b a s e =”&LongTermMemory ; phd . owl ”
x m l n s : r d f s =” h t t p : / /www. w3 . org / 2 0 0 0 / 0 1 / r d f−schema # ”
x m l n s : s w r l =” h t t p : / /www. w3 . org / 2 0 0 3 / 1 1 / s w r l # ”
xmlns:ROREKnowledgeModel=” h t t p : / / j a m e s n a i s h . w o r d p r e s s . com /

ROREKnowledgeModel . owl# ”
xmlns :owl =” h t t p : / /www. w3 . org / 2 0 0 2 / 0 7 / owl# ”
x m l n s : x s d =” h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema# ”
x m l n s : s w r l b =” h t t p : / /www. w3 . org / 2 0 0 3 / 1 1 / s w r l b # ”
x m l n s : r d f =” h t t p : / /www. w3 . org /1999/02 /22− r d f−syn t ax−ns # ”
xmlns:LongTermMemory=” h t t p : / / j a m e s n a i s h . w o r d p r e s s . com /

LongTermMemory / ”>
<o w l : O n t o l o g y r d f : a b o u t =”&LongTermMemory ; phd . owl ”>

365
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<o w l : i m p o r t s r d f : r e s o u r c e =” h t t p : / / j a m e s n a i s h . w o r d p r e s s . com /
ROREKnowledgeModel . owl ” />

< / o w l : O n t o l o g y>

<!−−

/ /
/ / D a t a t y p e s
/ /
/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /

−−>

<!−−
/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /

/ /
/ / O b j e c t P r o p e r t i e s
/ /
/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /

−−>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / ROREKnowledgeModel . owl #
a g g r e g a t e s C h u n k F a c t s −−>

<o w l : O b j e c t P r o p e r t y r d f : a b o u t =”&ROREKnowledgeModel ;
a g g r e g a t e s C h u n k F a c t s ” />

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / ROREKnowledgeModel . owl #
a g g r e g a t e s F a c t T y p e s −−>

<o w l : O b j e c t P r o p e r t y r d f : a b o u t =”&ROREKnowledgeModel ;
a g g r e g a t e s F a c t T y p e s ” />

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / ROREKnowledgeModel . owl #
be longsToPhase −−>

<o w l : O b j e c t P r o p e r t y r d f : a b o u t =”&ROREKnowledgeModel ;
be longsToPhase ” />

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / ROREKnowledgeModel . owl #
e n f o r c e s G o a l F a c t T y p e −−>

<o w l : O b j e c t P r o p e r t y r d f : a b o u t =”&ROREKnowledgeModel ;
e n f o r c e s G o a l F a c t T y p e ” />
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<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / ROREKnowledgeModel . owl #
h a s A c t i v i t y C o n s t r a i n t −−>

<o w l : O b j e c t P r o p e r t y r d f : a b o u t =”&ROREKnowledgeModel ;
h a s A c t i v i t y C o n s t r a i n t ” />

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / ROREKnowledgeModel . owl #
hasChunkFac tTypeAggrega t ion −−>

<o w l : O b j e c t P r o p e r t y r d f : a b o u t =”&ROREKnowledgeModel ;
ha sChunkFac tTypeAggrega t ion ” />

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / ROREKnowledgeModel . owl #
h a s C o n d i t i o n R u l e −−>

<o w l : O b j e c t P r o p e r t y r d f : a b o u t =”&ROREKnowledgeModel ;
h a s C o n d i t i o n R u l e ” />

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / ROREKnowledgeModel . owl #
h a s F a c t T y p e A g g r e g a t i o n −−>

<o w l : O b j e c t P r o p e r t y r d f : a b o u t =”&ROREKnowledgeModel ;
h a s F a c t T y p e A g g r e g a t i o n ” />

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / ROREKnowledgeModel . owl #
h a s F i r s t P r o d u c t i o n R u l e −−>

<o w l : O b j e c t P r o p e r t y r d f : a b o u t =”&ROREKnowledgeModel ;
h a s F i r s t P r o d u c t i o n R u l e ” />

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / ROREKnowledgeModel . owl #
h a s N e x t P r o d u c t i o n R u l e −−>

<o w l : O b j e c t P r o p e r t y r d f : a b o u t =”&ROREKnowledgeModel ;
h a s N e x t P r o d u c t i o n R u l e ” />

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / ROREKnowledgeModel . owl #
h a s P h a s e C o n s t r a i n t −−>

<o w l : O b j e c t P r o p e r t y r d f : a b o u t =”&ROREKnowledgeModel ;
h a s P h a s e C o n s t r a i n t ” />

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / ROREKnowledgeModel . owl #
h a s P r e c o n d i t i o n C o n s t r a i n t −−>

<o w l : O b j e c t P r o p e r t y r d f : a b o u t =”&ROREKnowledgeModel ;
h a s P r e c o n d i t i o n C o n s t r a i n t ” />
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<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / ROREKnowledgeModel . owl #
h a s P r o p e r t y −−>

<o w l : O b j e c t P r o p e r t y r d f : a b o u t =”&ROREKnowledgeModel ; h a s P r o p e r t y ” /
>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / ROREKnowledgeModel . owl #
h a s P r o p e r t y O f T y p e −−>

<o w l : O b j e c t P r o p e r t y r d f : a b o u t =”&ROREKnowledgeModel ;
h a s P r o p e r t y O f T y p e ” />

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / ROREKnowledgeModel . owl #
h a s P r o p e r t y V a l u e −−>

<o w l : O b j e c t P r o p e r t y r d f : a b o u t =”&ROREKnowledgeModel ;
h a s P r o p e r t y V a l u e ” />

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / ROREKnowledgeModel . owl #
h a s P r o p e r t y V a l u e T y p e −−>

<o w l : O b j e c t P r o p e r t y r d f : a b o u t =”&ROREKnowledgeModel ;
h a s P r o p e r t y V a l u e T y p e ” />

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / ROREKnowledgeModel . owl #
h a s S o u r c e F a c t T y p e C o n s t r a i n t −−>

<o w l : O b j e c t P r o p e r t y r d f : a b o u t =”&ROREKnowledgeModel ;
h a s S o u r c e F a c t T y p e C o n s t r a i n t ” />

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / ROREKnowledgeModel . owl #
h a s T a r g e t F a c t T y p e C o n s t r a i n t −−>

<o w l : O b j e c t P r o p e r t y r d f : a b o u t =”&ROREKnowledgeModel ;
h a s T a r g e t F a c t T y p e C o n s t r a i n t ” />

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / ROREKnowledgeModel . owl #
indexedBy −−>

<o w l : O b j e c t P r o p e r t y r d f : a b o u t =”&ROREKnowledgeModel ; indexedBy ” />

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / ROREKnowledgeModel . owl #
i n s t a n t i a t e s C h u n k T y p e −−>

<o w l : O b j e c t P r o p e r t y r d f : a b o u t =”&ROREKnowledgeModel ;
i n s t a n t i a t e s C h u n k T y p e ” />

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / ROREKnowledgeModel . owl #
i n s t a n t i a t e s F a c t T y p e −−>
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<o w l : O b j e c t P r o p e r t y r d f : a b o u t =”&ROREKnowledgeModel ;
i n s t a n t i a t e s F a c t T y p e ” />

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / ROREKnowledgeModel . owl #
i n s t a n t i a t e s P r o p e r t y T y p e −−>

<o w l : O b j e c t P r o p e r t y r d f : a b o u t =”&ROREKnowledgeModel ;
i n s t a n t i a t e s P r o p e r t y T y p e ” />

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / ROREKnowledgeModel . owl #
producesModelOfType −−>

<o w l : O b j e c t P r o p e r t y r d f : a b o u t =”&ROREKnowledgeModel ;
producesModelOfType ” />

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / ROREKnowledgeModel . owl #
subTypeOf −−>

<o w l : O b j e c t P r o p e r t y r d f : a b o u t =”&ROREKnowledgeModel ; subTypeOf ” />

<!−−
/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /

/ /
/ / Data p r o p e r t i e s
/ /
/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /

−−>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / ROREKnowledgeModel . owl #
h a s A n t e c e d e n t −−>

<o w l : D a t a t y p e P r o p e r t y r d f : a b o u t =”&ROREKnowledgeModel ;
h a s A n t e c e d e n t ” />

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / ROREKnowledgeModel . owl #
h a s C a r d i n a l i t y −−>

<o w l : D a t a t y p e P r o p e r t y r d f : a b o u t =”&ROREKnowledgeModel ;
h a s C a r d i n a l i t y ” />

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / ROREKnowledgeModel . owl #
hasConsequen t −−>

<o w l : D a t a t y p e P r o p e r t y r d f : a b o u t =”&ROREKnowledgeModel ;
ha sConsequen t ” />
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<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / ROREKnowledgeModel . owl #
h a s E l i c i t a t i o n S t i m u l u s −−>

<o w l : D a t a t y p e P r o p e r t y r d f : a b o u t =”&ROREKnowledgeModel ;
h a s E l i c i t a t i o n S t i m u l u s ” />

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / ROREKnowledgeModel . owl #
hasFac tQuery −−>

<o w l : D a t a t y p e P r o p e r t y r d f : a b o u t =”&ROREKnowledgeModel ;
h a s F a c t Q u e r y ” />

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / ROREKnowledgeModel . owl #
h a s I n p u t F a c t Q u e r y −−>

<o w l : D a t a t y p e P r o p e r t y r d f : a b o u t =”&ROREKnowledgeModel ;
h a s I n p u t F a c t Q u e r y ” />

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / ROREKnowledgeModel . owl #
h a s S t r i n g V a l u e −−>

<o w l : D a t a t y p e P r o p e r t y r d f : a b o u t =”&ROREKnowledgeModel ;
h a s S t r i n g V a l u e ” />

<!−−
/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /

/ /
/ / C l a s s e s
/ /
/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /

−−>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / ROREKnowledgeModel . owl #
A c t i v i t y −−>

<o w l : C l a s s r d f : a b o u t =”&ROREKnowledgeModel ; A c t i v i t y ” />

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / ROREKnowledgeModel . owl #
A n a l y s i s R u l e −−>

<o w l : C l a s s r d f : a b o u t =”&ROREKnowledgeModel ; A n a l y s i s R u l e ” />

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / ROREKnowledgeModel . owl #
BooleanType −−>

<o w l : C l a s s r d f : a b o u t =”&ROREKnowledgeModel ; BooleanType ” />
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<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / ROREKnowledgeModel . owl #
ChunkFac tTypeAggrega t ion −−>

<o w l : C l a s s r d f : a b o u t =”&ROREKnowledgeModel ;
ChunkFac tTypeAggrega t ion ” />

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / ROREKnowledgeModel . owl #
ComplexFact −−>

<o w l : C l a s s r d f : a b o u t =”&ROREKnowledgeModel ; ComplexFact ” />

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / ROREKnowledgeModel . owl #
ComplexType −−>

<o w l : C l a s s r d f : a b o u t =”&ROREKnowledgeModel ; ComplexType ” />

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / ROREKnowledgeModel . owl #
F a c t E d i t i n g E l i c i t a t i o n S t i m u l u s −−>

<o w l : C l a s s r d f : a b o u t =”&ROREKnowledgeModel ;
F a c t E d i t i n g E l i c i t a t i o n S t i m u l u s ” />

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / ROREKnowledgeModel . owl #
F a c t T y p e A g g r e g a t i o n −−>

<o w l : C l a s s r d f : a b o u t =”&ROREKnowledgeModel ; F a c t T y p e A g g r e g a t i o n ” />

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / ROREKnowledgeModel . owl #
I n d e x D e s c r i p t i o n −−>

<o w l : C l a s s r d f : a b o u t =”&ROREKnowledgeModel ; I n d e x D e s c r i p t i o n ” />

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / ROREKnowledgeModel . owl #
ModelChunk −−>

<o w l : C l a s s r d f : a b o u t =”&ROREKnowledgeModel ; ModelChunk ” />

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / ROREKnowledgeModel . owl #
ModelChunkType −−>

<o w l : C l a s s r d f : a b o u t =”&ROREKnowledgeModel ; ModelChunkType ” />

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / ROREKnowledgeModel . owl #
ModelType −−>

<o w l : C l a s s r d f : a b o u t =”&ROREKnowledgeModel ; ModelType ” />

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / ROREKnowledgeModel . owl #
NumericType −−>

<o w l : C l a s s r d f : a b o u t =”&ROREKnowledgeModel ; NumericType ” />



372 APPENDIX B. THE FORMALISED LTM EXAMPLE

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / ROREKnowledgeModel . owl #
Phase −−>

<o w l : C l a s s r d f : a b o u t =”&ROREKnowledgeModel ; Phase ” />

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / ROREKnowledgeModel . owl #
P r o d u c t i o n R u l e −−>

<o w l : C l a s s r d f : a b o u t =”&ROREKnowledgeModel ; P r o d u c t i o n R u l e ” />

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / ROREKnowledgeModel . owl #
P r o d u c t i o n S c r i p t −−>

<o w l : C l a s s r d f : a b o u t =”&ROREKnowledgeModel ; P r o d u c t i o n S c r i p t ” />

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / ROREKnowledgeModel . owl #
P r o p e r t y −−>

<o w l : C l a s s r d f : a b o u t =”&ROREKnowledgeModel ; P r o p e r t y ” />

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / ROREKnowledgeModel . owl #
P r o p e r t y T y p e −−>

<o w l : C l a s s r d f : a b o u t =”&ROREKnowledgeModel ; P r o p e r t y T y p e ” />

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / ROREKnowledgeModel . owl #
R u l e C o n d i t i o n −−>

<o w l : C l a s s r d f : a b o u t =”&ROREKnowledgeModel ; R u l e C o n d i t i o n ” />

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / ROREKnowledgeModel . owl #
S t r i n g F a c t −−>

<o w l : C l a s s r d f : a b o u t =”&ROREKnowledgeModel ; S t r i n g F a c t ” />

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / ROREKnowledgeModel . owl #
S t r i n g T y p e −−>

<o w l : C l a s s r d f : a b o u t =”&ROREKnowledgeModel ; S t r i n g T y p e ” />

<!−−
/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /

/ /
/ / I n d i v i d u a l s
/ /
/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /

−−>
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<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
AddMoni to rRepor tRu le −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
AddMoni to rRepor tRule ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; P r o d u c t i o n R u l e ” /

>

<ROREKnowledgeModel:hasAntecedent r d f : d a t a t y p e =”&xsd ; s t r i n g ”
>PREFIX im: & l t ; h t t p : / / j a m e s n a i s h . w o r d p r e s s . com /
ROREKnowledgeModel . owl#&g t ;

PREFIX l t m : & l t ; h t t p : / / j a m e s n a i s h . w o r d p r e s s . com / LongTermMemory / phd .
owl#&g t ;

SELECT ? o WHERE { I n d i v i d u a l ( ? o ) , Type ( ? o , im:ComplexFac t ) ,
P r o p e r t y V a l u e ( ? o , i m : i n s t a n t i a t e s F a c t T y p e , l t m : K e y O b j e c t ) }< /
ROREKnowledgeModel:hasAntecedent>

<ROREKnowledgeModel:hasConsequent r d f : d a t a t y p e =”&xsd ; s t r i n g ”
>R e p o r t s & l t ; (VAR {Repor t s , L IST :Repor t } ; VAR {
C L i s t R e p o r t , R ep o r t } ; VAR {CReport , R ep o r t } ; VAR {
CKeyObject , KeyObject } ; VAR {CProper ty , ISMProper ty } ) & l t
; ( [ CKeyObject & l t ;− RESULTSET∗ : ASSIGN {C L i s t R e p o r t ,
CREATE {$ CKeyObject . name$ L i s t R e p o r t , R ep o r t }} ; ASSIGN {
C L i s t R e p o r t . h a s F i e l d , CREATE{ has $ CKeyObject . name$s ,
S t r i n g }} ; ASSIGN {Repor t s , C L i s t R e p o r t } ; ASSIGN {CReport ,
CREATE {$ CKeyObject . name$ Repor t , R ep o r t }} ; ASSIGN {

CReport . h a s F i e l d , CREATE {$ CKeyObject . name$Name , S t r i n g
}} ; [ C P r o p e r t y &l t ;− CKeyObject . ALL:h asP rope r ty ∗ : ASSIGN
{CReport . h a s F i e l d , CREATE {$ CKeyObject . name$$ C P r o p e r t y .
name $ , S t r i n g } } ] ; ASSIGN {Repor t s , CReport } ] )< /
ROREKnowledgeModel:hasConsequent>

< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
A d d M o n i t o r R e p o r t S c r i p t −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
A d d M o n i t o r R e p o r t S c r i p t ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; P r o d u c t i o n S c r i p t

” />
<ROREKnowledgeModel :hasInputFactQuery r d f : d a t a t y p e =”&xsd ;

s t r i n g ”>PREFIX im: & l t ; h t t p : / / j a m e s n a i s h . w o r d p r e s s . com /
ROREKnowledgeModel . owl#&g t ;

PREFIX l t m : & l t ; h t t p : / / j a m e s n a i s h . w o r d p r e s s . com / LongTermMemory / phd .
owl#&g t ;
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SELECT ? d WHERE { I n d i v i d u a l ( ? d ) , Type ( ? d , im:ComplexFac t ) ,
P r o p e r t y V a l u e ( ? d , i m : i n s t a n t i a t e s F a c t T y p e , l tm:Domain ) ,
P r o p e r t y V a l u e ( ? d , i m : h a s P r o p e r t y , ?m) , Type ( ?m, i m : P r o p e r t y ) ,
P r o p e r t y V a l u e ( ?m, i m : h a s P r o p e r t y V a l u e , ? v ) , Type ( ? v ,
i m : B o o l e a n F a c t ) , P r o p e r t y V a l u e ( ? v , im:hasBoo leanVa lue , &quo t ; t r u e
&quo t ; ) }< / ROREKnowledgeModel :hasInputFactQuery>

<ROREKnowledgeMode l :hasF i r s tP roduc t ionRule r d f : r e s o u r c e =”&
LongTermMemory ; phd . owl# AddMoni to rRepor tRule ” />

<ROREKnowledgeModel:indexedBy r d f : r e s o u r c e =”&LongTermMemory ;
phd . owl# NoMoni to rRepor t s ” />

< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
Agent −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl# Agent ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; ComplexType ” />
<ROREKnowledgeModel:subTypeOf r d f : r e s o u r c e =”&LongTermMemory ;

phd . owl# O b j e c t ” />
<ROREKnowledgeModel:hasPropertyOfType r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# hasAgentType ” />
<ROREKnowledgeModel:hasPropertyOfType r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# h a s S e c o n d a r y S t a t e ” />
< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
A g e n t O b j e c t R e s p o n s i b i l i t y A s s i g n m e n t S c r i p t −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
A g e n t O b j e c t R e s p o n s i b i l i t y A s s i g n m e n t S c r i p t ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; P r o d u c t i o n R u l e ” /

>

<ROREKnowledgeModel:hasConsequent r d f : d a t a t y p e =”&xsd ; s t r i n g ”
>AgentISMObjects & l t ;

(VAR {CDomain , Domain } ; VAR {KeyOSMObject , KeyObject } ; VAR {
AgentOSMObject , Agent } ; VAR {AgentISMObjects , LIST:Agent } ; VAR {
AgentISMObject , ISMObject } ; VAR {COpera t ion , O p e r a t i o n } ) & l t ;

( [ CDomain & l t ;− RESULTSET∗ :
ASSIGN {KeyOSMObject , CDomain .

hasDomainGoal . h a s G o a l S t a t e .
r e a l i s e d B y . t r a n s f o r m s S t a t e O f } ;

ASSIGN {AgentOSMObject , CDomain .
hasDomainGoal . h a s G o a l S t a t e .
r e a l i s e d B y . enac tedBy } ;
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ASSIGN {AgentISMObject , SELECT {
t a r g e t , &quo t ; SELECT ? o WHERE {
I n d i v i d u a l ( ? o ) , SameAs ( ? o , tm: $
AgentOSMObject . name$ C l a s s ) }&quo t
; } } ;

IF {{CDomain . hasDomainGoal . hasName
== &quo t ; A l l o c a t i o n&quo t ; −&g t ;

ASSIGN {COpera t ion ,
CREATE { a l l o c a t e $
KeyOSMObject . name
$ O b j e c t s ,
O p e r a t i o n }} ;

ASSIGN {
AgentISMObject .
h a s O p e r a t i o n ,
COpera t ion }} ,

{CDomain . hasDomainGoal .
hasName == &quo t ; C o n t r o l&
quo t ; −&g t ;

ASSIGN {COpera t ion ,
CREATE {command$
KeyOSMObject . name
$ O b j e c t s ,
O p e r a t i o n }} ;

ASSIGN {
AgentISMObject .
h a s O p e r a t i o n ,
COpera t ion }} ,

{CDomain . hasDomainGoal .
hasName == &quo t ;
Compos i t ion&quo t ; −&g t ;

ASSIGN {COpera t ion ,
CREATE {compose $
KeyOSMObject . name
$ Components ,
O p e r a t i o n }} ;

ASSIGN {
AgentISMObject .
h a s O p e r a t i o n ,
COpera t ion }} ,
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{CDomain . hasDomainGoal .
hasName == &quo t ;
Decompos i t ion&quo t ; −&g t ;

ASSIGN {COpera t ion ,
CREATE {decompose
$KeyOSMObject .
name$ Components ,
O p e r a t i o n }} ;

ASSIGN {
AgentISMObject .
h a s O p e r a t i o n ,
COpera t ion }} ,

{CDomain . hasDomainGoal .
hasName == &quo t ;
M a n i p u l a t i o n&quo t ; −&g t ;

ASSIGN {COpera t ion ,
CREATE {
m a n i p u l a t e $
KeyOSMObject . name
$ O b j e c t s ,
O p e r a t i o n }} ;

ASSIGN {
AgentISMObject .
h a s O p e r a t i o n ,
COpera t ion }} ,

{CDomain . hasDomainGoal .
hasName == &quo t ; S e n s i n g&
quo t ; −&g t ;

ASSIGN {COpera t ion ,
CREATE { s e n s e $
KeyOSMObject . name
$ O b j e c t s ,
O p e r a t i o n }} ;

ASSIGN {
AgentISMObject .
h a s O p e r a t i o n ,
COpera t ion }} ,

{CDomain . hasDomainGoal .
hasName == &quo t ; T r a n s f e r
&quo t ; −&g t ;
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ASSIGN {COpera t ion ,
CREATE { t r a n s f e r $
KeyOSMObject . name
$ O b j e c t s ,
O p e r a t i o n }} ;

ASSIGN {
AgentISMObject .
h a s O p e r a t i o n ,
COpera t ion }}} ;

ASSIGN {AgentISMObjects ,
AgentISMObject } ] )< /
ROREKnowledgeModel:hasConsequent>

<ROREKnowledgeModel:hasAntecedent r d f : d a t a t y p e =”&xsd ; s t r i n g ”
>PREFIX l t m : & l t ; h t t p : / / j a m e s n a i s h . w o r d p r e s s . com /
LongTermMemory / phd . owl#&g t ; PREFIX im: & l t ; h t t p : / /
j a m e s n a i s h . w o r d p r e s s . com / ROREKnowledgeModel . owl#&g t ;
SELECT ? x WHERE { Type ( ? x , i m : F a c t ) , P r o p e r t y V a l u e ( ? x ,
i m : i n s t a n t i a t e s F a c t T y p e , l tm:Domain ) }< /
ROREKnowledgeModel:hasAntecedent>

< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
AgentType −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
AgentType ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; ComplexType ” />

< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
A l g o r i t h m O b j e c t s −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
A l g o r i t h m O b j e c t s ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ;

ChunkFac tTypeAggrega t ion ” />
<ROREKnowledgeModel :hasCard ina l i ty r d f : d a t a t y p e =”&xsd ;

i n t e g e r ”>0< / ROREKnowledgeModel :hasCard ina l i ty>
<ROREKnowledgeModel :aggregatesFactTypes r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# ISMObject ” />
< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
A l g o r i t h m O p e r a t i o n s −−>
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<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
A l g o r i t h m O p e r a t i o n s ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ;

ChunkFac tTypeAggrega t ion ” />
<ROREKnowledgeModel :hasCard ina l i ty r d f : d a t a t y p e =”&xsd ;

i n t e g e r ”>0< / ROREKnowledgeModel :hasCard ina l i ty>
<ROREKnowledgeModel :aggregatesFactTypes r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# O p e r a t i o n ” />
< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
A l g o r i t h m R e s o u r c e s −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
A l g o r i t h m R e s o u r c e s ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ;

ChunkFac tTypeAggrega t ion ” />
<ROREKnowledgeModel :hasCard ina l i ty r d f : d a t a t y p e =”&xsd ;

i n t e g e r ”>0< / ROREKnowledgeModel :hasCard ina l i ty>
<ROREKnowledgeModel :aggregatesFactTypes r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# Resource ” />
< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
A l l o c a t e A l l O b j e c t s A l g o r i t h m −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
A l l o c a t e A l l O b j e c t s A l g o r i t h m ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; S t r i n g F a c t ” />
<ROREKnowledgeModel :hasStr ingValue r d f : d a t a t y p e =”&xsd ; s t r i n g

”>D a t a S t o r e R e s o u r c e r u l e S o u r c e = C o n t e x t .
c u r r e n t A l l o c a t i o n R u l e S o u r c e ; C o l l e c t i o n& l t ; A l l o c a t i o n R u l e
&g t ; r u l e s = r u l e S o u r c e . a l l R u l e s ( ) ; f o r e a c h ( O b j e c t o :
A l l K e y O b j e c t C l a s s e s ) { o . a l l o c a t e O b j e c t ( t h i s .
a l l o c a t i o n R u l e s ) ; }< / ROREKnowledgeModel :hasStr ingValue>

<ROREKnowledgeMode l : i n s t an t i a t e sFac tType r d f : r e s o u r c e =”&
LongTermMemory ; phd . owl# S t r i n g ” />

< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
A l l o c a t e A l l O b j e c t s B y C l a s s i f i c a t i o n A l g o r i t h m −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
A l l o c a t e A l l O b j e c t s B y C l a s s i f i c a t i o n A l g o r i t h m ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; S t r i n g F a c t ” />
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<ROREKnowledgeModel :hasStr ingValue r d f : d a t a t y p e =”&xsd ; s t r i n g
”>D a t a S t o r e R e s o u r c e r u l e S o u r c e = C o n t e x t .
c u r r e n t A l l o c a t i o n R u l e S o u r c e ; C o l l e c t i o n& l t ; A l l o c a t i o n R u l e
&g t ; r u l e s = r u l e S o u r c e . a l l R u l e s ( ) ; f o r e a c h ( O b j e c t o :
A l l K e y O b j e c t C l a s s e s ) { o . a l l o c a t e O b j e c t ( t h i s .
a l l o c a t i o n R u l e s ) ; }< / ROREKnowledgeModel :hasStr ingValue>

<ROREKnowledgeMode l : i n s t an t i a t e sFac tType r d f : r e s o u r c e =”&
LongTermMemory ; phd . owl# S t r i n g ” />

< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
A l l o c a t e O b j e c t B y C l a s s i f i c a t i o n A l g o r i t h m −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
A l l o c a t e O b j e c t B y C l a s s i f i c a t i o n A l g o r i t h m ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; S t r i n g F a c t ” />
<ROREKnowledgeModel :hasStr ingValue r d f : d a t a t y p e =”&xsd ; s t r i n g

”>f o r e a c h ( A l l o c a t i o n R u l e r : a l l o c a t i o n R u l e s ) { i f ( r
. s a t i s f i e d B y ( t h i s ) ) { t h i s . a l l o c a t e d L o c a t i o n
= r . t a r g e t S t r u c t u r e ; } }< /
ROREKnowledgeModel :hasStr ingValue>

<ROREKnowledgeMode l : i n s t an t i a t e sFac tType r d f : r e s o u r c e =”&
LongTermMemory ; phd . owl# S t r i n g ” />

< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
A l l o c a t i o n R u l e −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
A l l o c a t i o n R u l e ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; ComplexFact ” />
<ROREKnowledgeModel:hasProperty r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl#
A l l o c a t i o n R u l e h a s O p e r a t i o n s a t i s f i e d B y ” />

<ROREKnowledgeMode l : i n s t an t i a t e sFac tType r d f : r e s o u r c e =”&
LongTermMemory ; phd . owl# ISMObject ” />

< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
A l l o c a t i o n R u l e h a s O p e r a t i o n s a t i s f i e d B y −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
A l l o c a t i o n R u l e h a s O p e r a t i o n s a t i s f i e d B y ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; P r o p e r t y ” />
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<R O R E K n o w l e d g e M o d e l : i n s t a n t i a t e s P r o p e r t y T y p e r d f : r e s o u r c e =”&
LongTermMemory ; phd . owl# h a s O p e r a t i o n ” />

<ROREKnowledgeModel :hasProper tyValue r d f : r e s o u r c e =”&
LongTermMemory ; phd . owl# s a t i s f i e d B y ” />

< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
Boolean −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl# Boolean ”
>

< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; BooleanType ” />
< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
C l a s s i f i c a t i o n A l g o r i t h m −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
C l a s s i f i c a t i o n A l g o r i t h m ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; ModelChunk ” />
<ROREKnowledgeModel :aggregatesChunkFacts r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# A l l o c a t i o n R u l e ” />
<ROREKnowledgeModel :aggregatesChunkFacts r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# C l a s s i f i c a t i o n R u l e S o u r c e ” />
<ROREKnowledgeModel : ins tan t ia tesChunkType r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# G e n e r i c A l g o r i t h m ” />
<ROREKnowledgeModel :aggregatesChunkFacts r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# a l l o c a t e A l l O b j e c t s ” />
<ROREKnowledgeModel :aggregatesChunkFacts r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# a l l o c a t e O b j e c t ” />
< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
C l a s s i f i c a t i o n R u l e S o u r c e −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
C l a s s i f i c a t i o n R u l e S o u r c e ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; ComplexFact ” />
<ROREKnowledgeMode l : i n s t an t i a t e sFac tType r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# Resource ” />
< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
C o m p l e t e R e m o t e T r a n s f e r A l g o r i t h m −−>
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<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
C o m p l e t e R e m o t e T r a n s f e r A l g o r i t h m ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; ModelChunk ” />
<ROREKnowledgeModel : ins tan t ia tesChunkType r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# G e n e r i c A l g o r i t h m ” />
<ROREKnowledgeModel :aggregatesChunkFacts r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# R e m o t e D a t a T r a n s f e r P r o t o c o l ” />
<ROREKnowledgeModel :aggregatesChunkFacts r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# t r a n s f e r A l l C o m p l e t e O b j e c t s ” />
<ROREKnowledgeModel :aggregatesChunkFacts r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# t r a n s f e r C o m p l e t e O b j e c t ” />
< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
C o n t r o l I n t e r f a c e −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
C o n t r o l I n t e r f a c e ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; ComplexFact ” />
<ROREKnowledgeMode l : i n s t an t i a t e sFac tType r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# Resource ” />
< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
D a t a S a m p l e S e n s i n g A l g o r i t h m −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
Da taS ampleSen s ingAlgo r i t hm ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; ModelChunk ” />
<ROREKnowledgeModel : ins tan t ia tesChunkType r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# G e n e r i c A l g o r i t h m ” />
<ROREKnowledgeModel :aggregatesChunkFacts r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# S e n s o r I n t e r f a c e ” />
<ROREKnowledgeModel :aggregatesChunkFacts r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# s e n s e A l l P r o p e r t i e s ” />
<ROREKnowledgeModel :aggregatesChunkFacts r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# s e n s e P r o p e r t y ” />
< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
D a t a S i n k s S p e c i f i e d R u l e −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
D a t a S i n k s S p e c i f i e d R u l e ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; A n a l y s i s R u l e ” />
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<ROREKnowledgeModel:hasAntecedent r d f : d a t a t y p e =”&xsd ; s t r i n g ”
>PREFIX im: & l t ; h t t p : / / j a m e s n a i s h . w o r d p r e s s . com /
ROREKnowledgeModel . owl#&g t ; PREFIX l t m : & l t ; h t t p : / /
j a m e s n a i s h . w o r d p r e s s . com / LongTermMemory / phd . owl#&g t ; ASK
{ I n d i v i d u a l ( ? p ) , Type ( ? p , i m : P r o p e r t y ) , P r o p e r t y V a l u e ( ?
ismprop , i m : i n s t a n t i a t e s F a c t T y p e , l t m : I S M P r o p e r t y ) ,
P r o p e r t y V a l u e ( ? r e s o u r c e , i m : i n s t a n t i a t e s F a c t T y p e ,
l t m : R e s o u r c e ) , P r o p e r t y V a l u e ( ? ismprop , i m : h a s P r o p e r t y , ? p
) , P r o p e r t y V a l u e ( ? p , i m : h a s P r o p e r t y V a l u e , ? r e s o u r c e ) ,
P r o p e r t y V a l u e ( ? p , i m : i n s t a n t i a t e s P r o p e r t y T y p e ,
l t m : h a s D a t a S i n k ) }< / ROREKnowledgeModel:hasAntecedent>

<ROREKnowledgeModel:hasConsequent r d f : d a t a t y p e =”&xsd ; s t r i n g ”
> t r u e< / ROREKnowledgeModel:hasConsequent>

<ROREKnowledgeModel :enforcesGoalFactType r d f : r e s o u r c e =”&
LongTermMemory ; phd . owl# Resource ” />

< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
D a t a S o u r c e A n d S i n k S t i m u l u s −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
Da taSourceAndS inkS t imu lus ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ;

F a c t E d i t i n g E l i c i t a t i o n S t i m u l u s ” />
<R O R E K n o w l e d g e M o d e l : h a s E l i c i t a t i o n S t i m u l u s r d f : d a t a t y p e =”&

xsd ; s t r i n g ”>P l e a s e e n s u r e t h a t t h e d a t a s o u r c e s and d a t a
s i n k s f o r each p r o p e r t y i n t h e O b j e c t Model a r e
a d e q u a t e l y s p e c i f i e d .< /
R O R E K n o w l e d g e M o d e l : h a s E l i c i t a t i o n S t i m u l u s>

<ROREKnowledgeModel:hasFactQuery r d f : d a t a t y p e =”&xsd ; s t r i n g ”>
T a r g e t [ PREFIX im: &l t ; h t t p : / / j a m e s n a i s h . w o r d p r e s s . com /
ROREKnowledgeModel . owl#&g t ;

PREFIX l t m : & l t ; h t t p : / / j a m e s n a i s h . w o r d p r e s s . com / LongTermMemory / phd .
owl#&g t ;

SELECT ? r
WHERE { Type ( ? r , i m : F a c t ) , P r o p e r t y V a l u e ( ? r ,

i m : i n s t a n t i a t e s F a c t T y p e , l tm : ISMObjec t ) } ]< /
ROREKnowledgeModel:hasFactQuery>

<ROREKnowledgeModel:indexedBy r d f : r e s o u r c e =”&LongTermMemory ;
phd . owl# NoDataSourceOrSinkIndex ” />

< / o w l : N a m e d I n d i v i d u a l>
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<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
D a t a S o u r c e s S p e c i f i e d R u l e −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
D a t a S o u r c e s S p e c i f i e d R u l e ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; A n a l y s i s R u l e ” />
<ROREKnowledgeModel:hasAntecedent r d f : d a t a t y p e =”&xsd ; s t r i n g ”

>PREFIX im: & l t ; h t t p : / / j a m e s n a i s h . w o r d p r e s s . com /
ROREKnowledgeModel . owl#&g t ; PREFIX l t m : & l t ; h t t p : / /
j a m e s n a i s h . w o r d p r e s s . com / LongTermMemory / phd . owl#&g t ; ASK
{ I n d i v i d u a l ( ? p ) , Type ( ? p , i m : P r o p e r t y ) , P r o p e r t y V a l u e ( ?
ismprop , i m : i n s t a n t i a t e s F a c t T y p e , l t m : I S M P r o p e r t y ) ,
P r o p e r t y V a l u e ( ? r e s o u r c e , i m : i n s t a n t i a t e s F a c t T y p e ,
l t m : R e s o u r c e ) , P r o p e r t y V a l u e ( ? ismprop , i m : h a s P r o p e r t y , ? p
) , P r o p e r t y V a l u e ( ? p , i m : h a s P r o p e r t y V a l u e , ? r e s o u r c e ) ,
P r o p e r t y V a l u e ( ? p , i m : i n s t a n t i a t e s P r o p e r t y T y p e ,
l t m : h a s D a t a S o u r c e ) }< / ROREKnowledgeModel:hasAntecedent>

<ROREKnowledgeModel:hasConsequent r d f : d a t a t y p e =”&xsd ; s t r i n g ”
> t r u e< / ROREKnowledgeModel:hasConsequent>

<ROREKnowledgeModel :enforcesGoalFactType r d f : r e s o u r c e =”&
LongTermMemory ; phd . owl# Resource ” />

< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
D a t a S t o r e −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
D a t a S t o r e ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; ComplexType ” />
<ROREKnowledgeModel:subTypeOf r d f : r e s o u r c e =”&LongTermMemory ;

phd . owl# Resource ” />
< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
Database −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl# D a t a b a s e
”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; ComplexType ” />
<ROREKnowledgeModel:subTypeOf r d f : r e s o u r c e =”&LongTermMemory ;

phd . owl# D a t a b a s e ” />
<ROREKnowledgeModel:hasPropertyOfType r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# h a s T a b l e ” />
< / o w l : N a m e d I n d i v i d u a l>
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<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
D a t a b a s e A t t r i b u t e −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
D a t a b a s e A t t r i b u t e ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; ComplexType ” />
<ROREKnowledgeModel:hasPropertyOfType r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# hasValueType ” />
< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
DatabaseTab le −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
D a t a b a s e T a b l e ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; ComplexType ” />
<ROREKnowledgeModel:hasPropertyOfType r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# h a s A t t r i b u t e ” />
< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
Di spa t chNo t i f i edSamp leCommandAlgor i t hm −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
Dispa tchNot i f i edSampleCommandAlgor i thm ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; S t r i n g F a c t ” />
<ROREKnowledgeModel :hasStr ingValue r d f : d a t a t y p e =”&xsd ; s t r i n g

”>commandObject ( Command c , O b j e c t o , I n t e r f a c e s e n s o r ) {
s e n s o r . dispatchCommand ( c , o ) ; } < /

ROREKnowledgeModel :hasStr ingValue>
<ROREKnowledgeMode l : i n s t an t i a t e sFac tType r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# S t r i n g ” />
< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
Domain −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#Domain ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; ComplexType ” />
<ROREKnowledgeModel:hasPropertyOfType r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# hasAgentType ” />
<ROREKnowledgeModel:hasPropertyOfType r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# hasDomainGoal ” />
<ROREKnowledgeModel:hasPropertyOfType r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# hasDomainType ” />
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<ROREKnowledgeModel:hasPropertyOfType r d f : r e s o u r c e =”&
LongTermMemory ; phd . owl# i s M o n i t o r e d ” />

< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
DomainAl ias −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
DomainAlias ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ;

ChunkFac tTypeAggrega t ion ” />
<ROREKnowledgeModel :hasCard ina l i ty r d f : d a t a t y p e =”&xsd ;

i n t e g e r ”>3< / ROREKnowledgeModel :hasCard ina l i ty>
<ROREKnowledgeModel :aggregatesFactTypes r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl#Domain ” />
< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
DomainChunk −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
DomainChunk ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; ModelChunkType ” /

>

<ROREKnowledgeModel:hasChunkFactTypeAggregat ion r d f : r e s o u r c e
=”&LongTermMemory ; phd . owl# DomainAlias ” />

< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
DomainGoal −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
DomainGoal ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; ComplexType ” />
<ROREKnowledgeModel:hasPropertyOfType r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# h a s G o a l S t a t e ” />
<ROREKnowledgeModel:hasPropertyOfType r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl#hasName ” />
< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
DomainType −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
DomainType ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; ComplexType ” />



386 APPENDIX B. THE FORMALISED LTM EXAMPLE

<ROREKnowledgeModel:hasPropertyOfType r d f : r e s o u r c e =”&
LongTermMemory ; phd . owl# h a s G e n e r i c P r o p e r t y ” />

<ROREKnowledgeModel:hasPropertyOfType r d f : r e s o u r c e =”&
LongTermMemory ; phd . owl#hasName ” />

< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
Even t −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl# Event ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; ComplexType ” />
<ROREKnowledgeModel:hasPropertyOfType r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# d e t e c t e d B y ” />
<ROREKnowledgeModel:hasPropertyOfType r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# d i s p a t c h e d B y ” />
< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl # F i l e
−−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl# F i l e ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; ComplexType ” />
<ROREKnowledgeModel:subTypeOf r d f : r e s o u r c e =”&LongTermMemory ;

phd . owl# D a t a S t o r e ” />
<ROREKnowledgeModel:hasPropertyOfType r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# h a s S t r u c t u r e ” />
< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #Form
−−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#Form”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; ComplexType ” />
<ROREKnowledgeModel:subTypeOf r d f : r e s o u r c e =”&LongTermMemory ;

phd . owl# U s e r I n t e r f a c e ” />
<ROREKnowledgeModel:hasPropertyOfType r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# m o d e l s O b j e c t ” />
< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
F u n c t i o n a l R e s o u r c e C o n f i g u r a t i o n S t i m u l u s −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
F u n c t i o n a l R e s o u r c e C o n f i g u r a t i o n S t i m u l u s ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ;

F a c t E d i t i n g E l i c i t a t i o n S t i m u l u s ” />
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<ROREKnowledgeModel:hasFactQuery r d f : d a t a t y p e =”&xsd ; s t r i n g ”>
T a r g e t [ PREFIX im: &l t ; h t t p : / / j a m e s n a i s h . w o r d p r e s s . com /

ROREKnowledgeModel . owl#&g t ;
PREFIX l t m : & l t ; h t t p : / / j a m e s n a i s h . w o r d p r e s s . com /

LongTermMemory / phd . owl#&g t ;
SELECT ? r WHERE { I n d i v i d u a l ( ? r ) , Type ( ? r , i m : F a c t ) ,

P r o p e r t y V a l u e ( ? r , i m : i n s t a n t i a t e s F a c t T y p e ,
l t m : R e s o u r c e ) } ]

< / ROREKnowledgeModel:hasFactQuery>
<R O R E K n o w l e d g e M o d e l : h a s E l i c i t a t i o n S t i m u l u s r d f : d a t a t y p e =”&

xsd ; s t r i n g ”>P l e a s e e n s u r e t h a t each f u n c t i o n a l r e s o u r c e
i n t h e Resource Model has been f u l l y s p e c i f i e d .< /
R O R E K n o w l e d g e M o d e l : h a s E l i c i t a t i o n S t i m u l u s>

< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
F u n c t i o n a l R e s p o n s i b i l i t i e s N o t A s s i g n e d C o n d i t i o n −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
F u n c t i o n a l R e s p o n s i b i l i t i e s N o t A s s i g n e d C o n d i t i o n ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; R u l e C o n d i t i o n ” />
<ROREKnowledgeModel :hasCondit ionRule r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl#
F u n c t i o n a l R e s p o n s i b i l i t i e s N o t A s s i g n e d R u l e ” />

< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
F u n c t i o n a l R e s p o n s i b i l i t i e s N o t A s s i g n e d I n d e x −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
F u n c t i o n a l R e s p o n s i b i l i t i e s N o t A s s i g n e d I n d e x ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; I n d e x D e s c r i p t i o n

” />
<ROREKnowledgeModel :hasSourceFac tTypeCons t ra in t r d f : r e s o u r c e

=”&LongTermMemory ; phd . owl# DomainGoal ” />
<ROREKnowledgeMode l : ha sP recond i t i onCons t r a in t r d f : r e s o u r c e =”

&LongTermMemory ; phd . owl#
F u n c t i o n a l R e s p o n s i b i l i t i e s N o t A s s i g n e d C o n d i t i o n ” />

<ROREKnowledgeMode l :ha sAc t iv i t yCons t r a in t r d f : r e s o u r c e =”&
LongTermMemory ; phd . owl# G e n e r a t e S o f t w a r e S p e c i f i c a t i o n s ” />

<ROREKnowledgeMode l :hasTarge tFac tTypeCons t ra in t r d f : r e s o u r c e
=”&LongTermMemory ; phd . owl# O p e r a t i o n ” />

<ROREKnowledgeModel :hasPhaseCons t ra in t r d f : r e s o u r c e =”&
LongTermMemory ; phd . owl# R e q u i r e m e n t s ” />
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< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
F u n c t i o n a l R e s p o n s i b i l i t i e s N o t A s s i g n e d R u l e −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
F u n c t i o n a l R e s p o n s i b i l i t i e s N o t A s s i g n e d R u l e ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; A n a l y s i s R u l e ” />
<ROREKnowledgeModel:hasAntecedent r d f : d a t a t y p e =”&xsd ; s t r i n g ”

>PREFIX im: & l t ; h t t p : / / j a m e s n a i s h . w o r d p r e s s . com /
ROREKnowledgeModel . owl#&g t ; PREFIX l t m : & l t ; h t t p : / /
j a m e s n a i s h . w o r d p r e s s . com / LongTermMemory / phd . owl#&g t ; ASK
{ I n d i v i d u a l ( ? r ) , Type ( ? d , i m : F a c t ) , P r o p e r t y V a l u e ( ? d ,
i m : i n s t a n t i a t e s F a c t T y p e , l t m : O p e r a t i o n ) }< /
ROREKnowledgeModel:hasAntecedent>

<ROREKnowledgeModel:hasConsequent r d f : d a t a t y p e =”&xsd ; s t r i n g ”
> f a l s e< / ROREKnowledgeModel:hasConsequent>

<ROREKnowledgeModel :enforcesGoalFactType r d f : r e s o u r c e =”&
LongTermMemory ; phd . owl# Agent ” />

< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
F u n c t i o n a l R e s p o n s i b i l i t y A s s i g n m e n t S c r i p t −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
F u n c t i o n a l R e s p o n s i b i l i t y A s s i g n m e n t S c r i p t ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; P r o d u c t i o n S c r i p t

” />
<ROREKnowledgeModel :hasInputFactQuery r d f : d a t a t y p e =”&xsd ;

s t r i n g ”>PREFIX im: & l t ; h t t p : / / j a m e s n a i s h . w o r d p r e s s . com /
ROREKnowledgeModel . owl#&g t ;

PREFIX l t m : & l t ; h t t p : / / j a m e s n a i s h . w o r d p r e s s . com /
LongTermMemory / phd . owl#&g t ;

SELECT ? d WHERE { I n d i v i d u a l ( ? d ) , Type ( ? d , i m : F a c t ) ,
P r o p e r t y V a l u e ( ? d , i m : i n s t a n t i a t e s F a c t T y p e ,

l tm:Domain ) } < /
ROREKnowledgeModel :hasInputFactQuery>

<ROREKnowledgeModel:indexedBy r d f : r e s o u r c e =”&LongTermMemory ;
phd . owl# F u n c t i o n a l R e s p o n s i b i l i t i e s N o t A s s i g n e d I n d e x ” />

<ROREKnowledgeMode l :hasF i r s tP roduc t ionRule r d f : r e s o u r c e =”&
LongTermMemory ; phd . owl#
K e y O b j e c t R e s p o n s i b i l i t y A s s i g n m e n t S c r i p t ” />

< / o w l : N a m e d I n d i v i d u a l>
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<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
F u n c t i o n a l R e s p o n s i b i l i t y E d i t i n g S t i m u l u s −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
F u n c t i o n a l R e s p o n s i b i l i t y E d i t i n g S t i m u l u s ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ;

F a c t E d i t i n g E l i c i t a t i o n S t i m u l u s ” />
<R O R E K n o w l e d g e M o d e l : h a s E l i c i t a t i o n S t i m u l u s r d f : d a t a t y p e =”&

xsd ; s t r i n g ”>P l e a s e e n s u r e t h e r e l e v a n t o p e r a t i o n s a r e
a s s i g n e d t o each c l a s s .< /
R O R E K n o w l e d g e M o d e l : h a s E l i c i t a t i o n S t i m u l u s>

<ROREKnowledgeModel:hasFactQuery r d f : d a t a t y p e =”&xsd ; s t r i n g ”>
T a r g e t [ PREFIX im: &l t ; h t t p : / / j a m e s n a i s h . w o r d p r e s s . com /
ROREKnowledgeModel . owl#&g t ;

PREFIX l t m : & l t ; h t t p : / / j a m e s n a i s h . w o r d p r e s s . com / LongTermMemory / phd .
owl#&g t ;

SELECT ? o
WHERE { Type ( ? o , i m : F a c t ) , P r o p e r t y V a l u e ( ? o ,

i m : i n s t a n t i a t e s F a c t T y p e , l tm : ISMObjec t ) } ]< /
ROREKnowledgeModel:hasFactQuery>
< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
G e n e r a t e S o f t w a r e S p e c i f i c a t i o n s −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
G e n e r a t e S o f t w a r e S p e c i f i c a t i o n s ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; A c t i v i t y ” />
<ROREKnowledgeModel:producesModelOfType r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# In fo rma t ionSys t emMode l ” />
<ROREKnowledgeModel:belongsToPhase r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# R e q u i r e m e n t s ” />
< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
G e n e r i c A l g o r i t h m −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
G e n e r i c A l g o r i t h m ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; ModelChunkType ” /

>

<ROREKnowledgeModel:hasChunkFactTypeAggregat ion r d f : r e s o u r c e
=”&LongTermMemory ; phd . owl# A l g o r i t h m O b j e c t s ” />

<ROREKnowledgeModel:hasChunkFactTypeAggregat ion r d f : r e s o u r c e
=”&LongTermMemory ; phd . owl# A l g o r i t h m O p e r a t i o n s ” />
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<ROREKnowledgeModel:hasChunkFactTypeAggregat ion r d f : r e s o u r c e
=”&LongTermMemory ; phd . owl# A l g o r i t h m R e s o u r c e s ” />

< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
GoalModel −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
GoalModel ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; ComplexType ” />
<ROREKnowledgeModel:hasPropertyOfType r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# hasAgentType ” />
<ROREKnowledgeModel:hasPropertyOfType r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# hasDomain ” />
<ROREKnowledgeModel:hasPropertyOfType r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# hasDomainGoal ” />
< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
G o a l S t a t e −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
G o a l S t a t e ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; ComplexType ” />
<ROREKnowledgeModel:hasPropertyOfType r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# m o d e l l e d B y S t a t e ” />
<ROREKnowledgeModel:hasPropertyOfType r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# r e a l i s e d B y ” />
< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
H a s D a t a S i n k C o n d i t i o n −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
H a s D a t a S i n k C o n d i t i o n ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; R u l e C o n d i t i o n ” />
<ROREKnowledgeModel :hasCondi t ionRule r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# HasDataS inkRule ” />
< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
HasDataS inkRule −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
HasDataS inkRule ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; A n a l y s i s R u l e ” />
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<ROREKnowledgeModel:hasAntecedent r d f : d a t a t y p e =”&xsd ; s t r i n g ”
>PREFIX im: & l t ; h t t p : / / j a m e s n a i s h . w o r d p r e s s . com /
ROREKnowledgeModel . owl#&g t ; PREFIX l t m : & l t ; h t t p : / /
j a m e s n a i s h . w o r d p r e s s . com / LongTermMemory / phd . owl#&g t ; ASK
{ I n d i v i d u a l ( ? p ) , Type ( ? p , i m : P r o p e r t y ) , P r o p e r t y V a l u e ( ?
ismprop , i m : i n s t a n t i a t e s F a c t T y p e , l t m : I S M P r o p e r t y ) ,
P r o p e r t y V a l u e ( ? r e s o u r c e , i m : i n s t a n t i a t e s F a c t T y p e ,
l t m : R e s o u r c e ) , P r o p e r t y V a l u e ( ? ismprop , i m : h a s P r o p e r t y , ? p
) , P r o p e r t y V a l u e ( ? p , i m : h a s P r o p e r t y V a l u e , ? r e s o u r c e ) ,
P r o p e r t y V a l u e ( ? p , i m : i n s t a n t i a t e s P r o p e r t y T y p e ,
l t m : h a s D a t a S i n k ) }< / ROREKnowledgeModel:hasAntecedent>

<ROREKnowledgeModel:hasConsequent r d f : d a t a t y p e =”&xsd ; s t r i n g ”
> f a l s e< / ROREKnowledgeModel:hasConsequent>

<ROREKnowledgeModel :enforcesGoalFactType r d f : r e s o u r c e =”&
LongTermMemory ; phd . owl# Resource ” />

< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
HasDataSourceOrS inkCond i t i on −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
H a s D a t a S o u r c e O r S i n k C o n d i t i o n ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; R u l e C o n d i t i o n ” />
<ROREKnowledgeModel :hasCondit ionRule r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# HasDataSourceOrSinkRule ” />
< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
HasDataSourceOrSinkRule −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
HasDataSourceOrSinkRule ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; A n a l y s i s R u l e ” />
<ROREKnowledgeModel:hasAntecedent r d f : d a t a t y p e =”&xsd ; s t r i n g ”

>PREFIX im: & l t ; h t t p : / / j a m e s n a i s h . w o r d p r e s s . com /
ROREKnowledgeModel . owl#&g t ; PREFIX l t m : & l t ; h t t p : / /
j a m e s n a i s h . w o r d p r e s s . com / LongTermMemory / phd . owl#&g t ; ASK
{ I n d i v i d u a l ( ? p ) , Type ( ? p , i m : P r o p e r t y ) , P r o p e r t y V a l u e ( ?
ismprop , i m : i n s t a n t i a t e s F a c t T y p e , l t m : I S M P r o p e r t y ) ,
P r o p e r t y V a l u e ( ? r e s o u r c e , i m : i n s t a n t i a t e s F a c t T y p e ,
l t m : R e s o u r c e ) , P r o p e r t y V a l u e ( ? ismprop , i m : h a s P r o p e r t y , ? p
) , P r o p e r t y V a l u e ( ? p , i m : h a s P r o p e r t y V a l u e , ? r e s o u r c e ) ,
P r o p e r t y V a l u e ( ? p , i m : i n s t a n t i a t e s P r o p e r t y T y p e ,
l t m : h a s D a t a S o u r c e ) }< / ROREKnowledgeModel:hasAntecedent>
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<ROREKnowledgeModel:hasConsequent r d f : d a t a t y p e =”&xsd ; s t r i n g ”
> f a l s e< / ROREKnowledgeModel:hasConsequent>

<ROREKnowledgeModel :enforcesGoalFactType r d f : r e s o u r c e =”&
LongTermMemory ; phd . owl# Resource ” />

< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
H a s F u n c t i o n a l R e s p o n s i b i l i t i e s R u l e −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
H a s F u n c t i o n a l R e s p o n s i b i l i t i e s R u l e ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; A n a l y s i s R u l e ” />
<ROREKnowledgeModel:hasAntecedent r d f : d a t a t y p e =”&xsd ; s t r i n g ”

>PREFIX im: & l t ; h t t p : / / j a m e s n a i s h . w o r d p r e s s . com /
ROREKnowledgeModel . owl#&g t ; PREFIX l t m : & l t ; h t t p : / /
j a m e s n a i s h . w o r d p r e s s . com / LongTermMemory / phd . owl#&g t ; ASK
{ I n d i v i d u a l ( ? r ) , Type ( ? d , i m : F a c t ) , P r o p e r t y V a l u e ( ? d ,
i m : i n s t a n t i a t e s F a c t T y p e , l t m : O p e r a t i o n ) }< /
ROREKnowledgeModel:hasAntecedent>

<ROREKnowledgeModel:hasConsequent r d f : d a t a t y p e =”&xsd ; s t r i n g ”
> t r u e< / ROREKnowledgeModel:hasConsequent>

<ROREKnowledgeModel :enforcesGoalFactType r d f : r e s o u r c e =”&
LongTermMemory ; phd . owl# O p e r a t i o n ” />

< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
HasISMObjec t sRule −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
HasISMObjectsRule ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; A n a l y s i s R u l e ” />
<ROREKnowledgeModel:hasAntecedent r d f : d a t a t y p e =”&xsd ; s t r i n g ”

>PREFIX im: & l t ; h t t p : / / j a m e s n a i s h . w o r d p r e s s . com /
ROREKnowledgeModel . owl#&g t ; PREFIX l t m : & l t ; h t t p : / /
j a m e s n a i s h . w o r d p r e s s . com / LongTermMemory / phd . owl#&g t ; ASK
{ I n d i v i d u a l ( ? o ) , Type ( ? o , i m : F a c t ) , P r o p e r t y V a l u e ( ? o ,

i m : i n s t a n t i a t e s F a c t T y p e , l tm : ISMObjec t ) }< /
ROREKnowledgeModel:hasAntecedent>

<ROREKnowledgeModel:hasConsequent r d f : d a t a t y p e =”&xsd ; s t r i n g ”
> t r u e< / ROREKnowledgeModel:hasConsequent>

<ROREKnowledgeModel :enforcesGoalFactType r d f : r e s o u r c e =”&
LongTermMemory ; phd . owl# ISMObject ” />

< / o w l : N a m e d I n d i v i d u a l>
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<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
HasMoni to rRepor tRu le −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
HasMoni to rRepor tRu le ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; A n a l y s i s R u l e ” />
<ROREKnowledgeModel:hasAntecedent r d f : d a t a t y p e =”&xsd ; s t r i n g ”

>PREFIX im: & l t ; h t t p : / / j a m e s n a i s h . w o r d p r e s s . com /
ROREKnowledgeModel . owl#&g t ; PREFIX l t m : & l t ; h t t p : / /
j a m e s n a i s h . w o r d p r e s s . com / LongTermMemory / phd . owl#&g t ; ASK
{ I n d i v i d u a l ( ? r ) , Type ( ? d , i m : F a c t ) , P r o p e r t y V a l u e ( ? d ,
i m : i n s t a n t i a t e s F a c t T y p e , l t m : R e p o r t ) }< /
ROREKnowledgeModel:hasAntecedent>

<ROREKnowledgeModel:hasConsequent r d f : d a t a t y p e =”&xsd ; s t r i n g ”
> t r u e< / ROREKnowledgeModel:hasConsequent>

<ROREKnowledgeModel :enforcesGoalFactType r d f : r e s o u r c e =”&
LongTermMemory ; phd . owl# R ep or t ” />

< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
ISMGoalModel −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
ISMGoalModel ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ;

F a c t T y p e A g g r e g a t i o n ” />
<ROREKnowledgeModel :aggregatesFactTypes r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# GoalModel ” />
< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
ISMObject −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
ISMObject ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; ComplexType ” />
<ROREKnowledgeModel:hasPropertyOfType r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# has ISMPrope r ty ” />
<ROREKnowledgeModel:hasPropertyOfType r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# h a s O p e r a t i o n ” />
<ROREKnowledgeModel:hasPropertyOfType r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# h a s S u p e r c l a s s ” />
< / o w l : N a m e d I n d i v i d u a l>
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<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
ISMObjectModel −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
ISMObjectModel ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ;

F a c t T y p e A g g r e g a t i o n ” />
<ROREKnowledgeModel :aggregatesFactTypes r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# Objec tModel ” />
< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
ISMProcessModel −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
ISMProcessModel ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ;

F a c t T y p e A g g r e g a t i o n ” />
<ROREKnowledgeModel :aggregatesFactTypes r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# ProcessMode l ” />
< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
ISMProper ty −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
ISMProper ty ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; ComplexType ” />
<ROREKnowledgeModel:hasPropertyOfType r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# h a s D a t a S i n k ” />
<ROREKnowledgeModel:hasPropertyOfType r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# h a s D a t a S o u r c e ” />
<ROREKnowledgeModel:hasPropertyOfType r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# has ISMPrope r tyVa lue ” />
<ROREKnowledgeModel:hasPropertyOfType r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# h a s P r o p e r t y T y p e ” />
< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
ISMResourceModel −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
ISMResourceModel ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ;

F a c t T y p e A g g r e g a t i o n ” />
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<ROREKnowledgeModel :aggregatesFactTypes r d f : r e s o u r c e =”&
LongTermMemory ; phd . owl# ResourceModel ” />

< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
I n f o r m a t i o n S y s t e m M o d e l −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
In fo rma t ionSys t emMode l ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; ModelType ” />
<ROREKnowledgeModel :hasFactTypeAggregat ion r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl#ISMGoalModel ” />
<ROREKnowledgeModel :hasFactTypeAggregat ion r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# ISMObjectModel ” />
<ROREKnowledgeModel :hasFactTypeAggregat ion r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# ISMProcessModel ” />
<ROREKnowledgeModel :hasFactTypeAggregat ion r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# ISMResourceModel ” />
< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
I n t e g e r −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl# I n t e g e r ”
>

< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; NumericType ” />
< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
I n t e r f a c e −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
I n t e r f a c e ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; ComplexType ” />
<ROREKnowledgeModel:subTypeOf r d f : r e s o u r c e =”&LongTermMemory ;

phd . owl# Resource ” />
< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
KeyObjec t −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
KeyObject ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; ComplexType ” />
<ROREKnowledgeModel:subTypeOf r d f : r e s o u r c e =”&LongTermMemory ;

phd . owl# O b j e c t ” />
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<ROREKnowledgeModel:hasPropertyOfType r d f : r e s o u r c e =”&
LongTermMemory ; phd . owl# h a s P r i m a r y S t a t e ” />

<ROREKnowledgeModel:hasPropertyOfType r d f : r e s o u r c e =”&
LongTermMemory ; phd . owl# h a s S e c o n d a r y S t a t e ” />

< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
K e y O b j e c t R e s p o n s i b i l i t y A s s i g n m e n t S c r i p t −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
K e y O b j e c t R e s p o n s i b i l i t y A s s i g n m e n t S c r i p t ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; P r o d u c t i o n R u l e ” /

>

<ROREKnowledgeModel:hasConsequent r d f : d a t a t y p e =”&xsd ; s t r i n g ”
>KeyISMObjects & l t ;

(VAR {CDomain , Domain } ; VAR {KeyOSMObject , KeyObject } ; VAR {
KeyISMObjects , LIST:KeyObjec t } ; VAR {KeyISMObject , KeyObject } ;
VAR {COpera t ion , O p e r a t i o n } ; VAR { P a r a m e t e r s , L I S T : P a r a m e t e r } ;
VAR {CParameter , P a r a m e t e r } ; VAR {OperationName , S t r i n g } ) & l t ;

( [ CDomain & l t ;− RESULTSET∗ :
ASSIGN {KeyOSMObject , CDomain .

hasDomainGoal . h a s G o a l S t a t e .
r e a l i s e d B y . t r a n s f o r m s S t a t e O f } ;

ASSIGN {KeyISMObject , SELECT { t a r g e t
, &quo t ; SELECT ? o WHERE {
I n d i v i d u a l ( ? o ) , SameAs ( ? o , tm: $
KeyOSMObject . name$ C l a s s ) }&quo t
; } } ;

IF {{CDomain . hasDomainGoal . hasName
== &quo t ; A l l o c a t i o n&quo t ; −&g t ;

ASSIGN {
COpera t ion
, CREATE
{
a l l o c a t e T o
$
KeyOSMObject
. name $ ,
O p e r a t i o n
}} ;
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ASSIGN {
P a r a m e t e r s
,
L I S T : P a r a m e t e r
} ;

ASSIGN {
CParameter
, CREATE
{$
KeyOSMObject
. name$
T a r g e t S t r u c t u r e
,
P a r a m e t e r
}} ;

ASSIGN {
CParamete r
.
hasValueType
, SELECT
{ sou rce ,
&quo t ;
SELECT ? t

WHERE {
SameAs ( ? t
, wm:$
CDomain .
hasDomainGoal
.
h a s G o a l S t a t e
.
r e a l i s e d B y
.
p r o d u c e s S t a t e
.
c o n t a i n s I n S t r u c t u r e
. name$
C l a s s ) }&
quo t ; } } ;
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ASSIGN {
P a r a m e t e r s
,
CParamete r
} ;

ASSIGN {
COpera t ion
.
h a s P a r a m e t e r
,
P a r a m e t e r s
} ;

ASSIGN {
KeyISMObject
.
h a s O p e r a t i o n
,
COpera t ion
}} ,

{CDomain . hasDomainGoal .
hasName == &quo t ; C o n t r o l&
quo t ; −&g t ;

ASSIGN {
COpera t ion
, CREATE
{
issueCommandTo
$
KeyOSMObject
. name $ ,
O p e r a t i o n
}} ;

ASSIGN {
P a r a m e t e r s
,
L I S T : P a r a m e t e r
} ;
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ASSIGN {
CParameter
, CREATE
{$
KeyOSMObject
. name$
Command ,
P a r a m e t e r
}} ;

ASSIGN {
P a r a m e t e r s
,
CParamete r
} ; ASSIGN
{

COpera t ion
.
h a s P a r a m e t e r
,
P a r a m e t e r s
} ;

ASSIGN {
KeyISMObject
.
h a s O p e r a t i o n
,
COpera t ion
}} ,

{CDomain . hasDomainGoal .
hasName == &quo t ;
Compos i t ion&quo t ; −&g t ;

ASSIGN {
COpera t ion
, CREATE
{
addComponentTo
$
KeyOSMObject
. name $ ,
O p e r a t i o n
}} ;
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ASSIGN {
P a r a m e t e r s
,
L I S T : P a r a m e t e r
} ;

ASSIGN {
CParameter
, CREATE
{$
KeyOSMObject
. name$
Component
,
P a r a m e t e r
}} ;

ASSIGN {
CParamete r
.
hasValueType
, SELECT
{ sou rce ,
&quo t ;
SELECT ? t

WHERE {
SameAs ( ? t
, wm:$
CDomain .
hasDomainGoal
.
h a s G o a l S t a t e
.
r e a l i s e d B y
.
t r a n s f o r m s S t a t e O f
. name$
C l a s s ) }&
quo t ; } } ;

ASSIGN {
P a r a m e t e r s
,
CParamete r
} ;
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ASSIGN {
COpera t ion
.
h a s P a r a m e t e r
,
P a r a m e t e r s
} ;

ASSIGN {
KeyISMObject
.
h a s O p e r a t i o n
,
COpera t ion
}} ,

{CDomain . hasDomainGoal .
hasName == &quo t ;
Decompos i t i on&quo t ; −&g t ;

ASSIGN {
COpera t ion
, CREATE
{
removeComponentFrom
$
KeyOSMObject
. name $ ,
O p e r a t i o n
}} ;

ASSIGN {
P a r a m e t e r s
,
L I S T : P a r a m e t e r
} ;

ASSIGN {
CParameter
, CREATE
{$
KeyOSMObject
. name$
Component
,
P a r a m e t e r
}} ;
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ASSIGN {
CParamete r
.
hasValueType
, SELECT
{ sou rce ,
&quo t ;
SELECT ? t

WHERE {
SameAs ( ? t
, wm:$
CDomain .
hasDomainGoal
.
h a s G o a l S t a t e
.
r e a l i s e d B y
.
t r a n s f o r m s S t a t e O f
. name$
C l a s s ) }&
quo t ; } } ;

ASSIGN {
P a r a m e t e r s
,
CParamete r
} ;

ASSIGN {
COpera t ion
.
h a s P a r a m e t e r
,
P a r a m e t e r s
} ;

ASSIGN {
KeyISMObject
.
h a s O p e r a t i o n
,
COpera t ion
}} ,
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{CDomain . hasDomainGoal .
hasName == &quo t ;
M a n i p u l a t i o n&quo t ; −&g t ;

ASSIGN {
COpera t ion
, CREATE
{
m a n i p u l a t e P r o p e r t y O f
$
KeyOSMObject
. name $ ,
O p e r a t i o n
}} ;

ASSIGN {
P a r a m e t e r s
,
L I S T : P a r a m e t e r
} ;

ASSIGN {
CParameter
, CREATE
{$
KeyOSMObject
. name$
p r o p e r t y ,

P a r a m e t e r
}} ;

ASSIGN {
CParamete r
.
hasValueType
, SELECT
{ sou rce ,
&quo t ;
SELECT ? t

WHERE {
SameAs ( ? t
,
l t m : I S M P r o p e r t y
) }&quo t
; } } ;
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ASSIGN {
P a r a m e t e r s
,
CParamete r
} ;

ASSIGN {
CParameter
, CREATE
{$
KeyOSMObject
. name$
P r o p e r t y V a l u e
,
P a r a m e t e r
}} ;

ASSIGN {
P a r a m e t e r s
,
CParamete r
} ;

ASSIGN {
COpera t ion
.
h a s P a r a m e t e r
,
P a r a m e t e r s
} ;

ASSIGN {
KeyISMObject
.
h a s O p e r a t i o n
,
COpera t ion
}} ,

{CDomain . hasDomainGoal .
hasName == &quo t ; S e n s i n g&
quo t ; −&g t ;
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ASSIGN {
COpera t ion
, CREATE
{
s e n s e P r o p e r t y O f
$
KeyOSMObject
. name $ ,
O p e r a t i o n
}} ;

ASSIGN {
P a r a m e t e r s
,
L I S T : P a r a m e t e r
} ;

ASSIGN {
CParameter
, CREATE
{$
KeyOSMObject
. name$
P r o p e r t y ,

P a r a m e t e r
}} ;

ASSIGN {
P a r a m e t e r s
,
CParamete r
} ;

ASSIGN {
COpera t ion
.
h a s P a r a m e t e r
,
P a r a m e t e r s
} ;
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ASSIGN {
KeyISMObject
.
h a s O p e r a t i o n
,
COpera t ion
}} ,

{CDomain . hasDomainGoal .
hasName == &quo t ; T r a n s f e r
&quo t ; −&g t ;

ASSIGN {
COpera t ion
, CREATE
{ t r a n s f e r
$
KeyOSMObject
. name$To ,

O p e r a t i o n
}} ;

ASSIGN {
P a r a m e t e r s
,
L I S T : P a r a m e t e r
} ;

ASSIGN {
CParameter
, CREATE
{$
KeyOSMObject
. name$
T a r g e t S t r u c t u r e
,
P a r a m e t e r
}} ;
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ASSIGN {
CParamete r
.
hasValueType
, SELECT
{ sou rce ,
&quo t ;
SELECT ? t

WHERE {
SameAs ( ? t
, wm:$
CDomain .
hasDomainGoal
.
h a s G o a l S t a t e
.
r e a l i s e d B y
.
p r o d u c e s S t a t e
.
c o n t a i n s I n S t r u c t u r e
. name$
C l a s s ) }&
quo t ; } } ;

ASSIGN {
P a r a m e t e r s
,
CParamete r
} ;

ASSIGN {
COpera t ion
.
h a s P a r a m e t e r
,
P a r a m e t e r s
} ;
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ASSIGN {
KeyISMObject
.
h a s O p e r a t i o n
,
COpera t ion
}}} ;

ASSIGN {
KeyISMObjects
,
KeyISMObject
} ] )< /
ROREKnowledgeModel:hasConsequent
>

<ROREKnowledgeModel:hasAntecedent r d f : d a t a t y p e =”&xsd ; s t r i n g ”
>PREFIX l t m : & l t ; h t t p : / / j a m e s n a i s h . w o r d p r e s s . com /
LongTermMemory / phd . owl#&g t ;

PREFIX im: & l t ; h t t p : / / j a m e s n a i s h . w o r d p r e s s . com /
ROREKnowledgeModel . owl#&g t ;

SELECT ? d WHERE { Type ( ? d , i m : F a c t ) , P r o p e r t y V a l u e ( ?
d , i m : i n s t a n t i a t e s F a c t T y p e , l tm:Domain ) }< /
ROREKnowledgeModel:hasAntecedent>

<ROREKnowledgeModel :hasNextProduct ionRule r d f : r e s o u r c e =”&
LongTermMemory ; phd . owl#
A g e n t O b j e c t R e s p o n s i b i l i t y A s s i g n m e n t S c r i p t ” />

< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
NoDataSourceOrS ink Index −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
NoDataSourceOrSinkIndex ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; I n d e x D e s c r i p t i o n

” />
<ROREKnowledgeModel :hasSourceFac tTypeCons t ra in t r d f : r e s o u r c e

=”&LongTermMemory ; phd . owl# Agent ” />
<ROREKnowledgeMode l :ha sAc t iv i t yCons t r a in t r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# G e n e r a t e S o f t w a r e S p e c i f i c a t i o n s ” />
<ROREKnowledgeMode l : ha sP recond i t i onCons t r a in t r d f : r e s o u r c e =”

&LongTermMemory ; phd . owl# H a s D a t a S i n k C o n d i t i o n ” />
<ROREKnowledgeMode l : ha sP recond i t i onCons t r a in t r d f : r e s o u r c e =”

&LongTermMemory ; phd . owl# H a s D a t a S o u r c e O r S i n k C o n d i t i o n ” />
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<ROREKnowledgeModel :hasPhaseCons t ra in t r d f : r e s o u r c e =”&
LongTermMemory ; phd . owl# R e q u i r e m e n t s ” />

<ROREKnowledgeMode l :hasTarge tFac tTypeCons t ra in t r d f : r e s o u r c e
=”&LongTermMemory ; phd . owl# Resource ” />

< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
NoISMObjec t s Index −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
NoISMObjectsIndex ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; I n d e x D e s c r i p t i o n

” />
<ROREKnowledgeMode l :ha sAc t iv i t yCons t r a in t r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# G e n e r a t e S o f t w a r e S p e c i f i c a t i o n s ” />
<ROREKnowledgeMode l :hasTarge tFac tTypeCons t ra in t r d f : r e s o u r c e

=”&LongTermMemory ; phd . owl# ISMObject ” />
<ROREKnowledgeMode l : ha sP recond i t i onCons t r a in t r d f : r e s o u r c e =”

&LongTermMemory ; phd . owl# NoISMObjectsRule ” />
<ROREKnowledgeModel :hasSourceFac tTypeCons t ra in t r d f : r e s o u r c e

=”&LongTermMemory ; phd . owl# O b j e c t ” />
<ROREKnowledgeModel :hasPhaseCons t ra in t r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# R e q u i r e m e n t s ” />
< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
NoISMObjec tsRule −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
NoISMObjectsRule ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; R u l e C o n d i t i o n ” />
<ROREKnowledgeModel :hasCondit ionRule r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# NoISMObjec t sRuleCond i t ion ” />
< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
N o I S M O b j e c t s R u l e C o n d i t i o n −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
NoISMObjec t sRuleCondi t ion ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; A n a l y s i s R u l e ” />
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<ROREKnowledgeModel:hasAntecedent r d f : d a t a t y p e =”&xsd ; s t r i n g ”
>PREFIX im: & l t ; h t t p : / / j a m e s n a i s h . w o r d p r e s s . com /
ROREKnowledgeModel . owl#&g t ; PREFIX l t m : & l t ; h t t p : / /
j a m e s n a i s h . w o r d p r e s s . com / LongTermMemory / phd . owl#&g t ; ASK
{ I n d i v i d u a l ( ? o ) , Type ( ? o , i m : F a c t ) , P r o p e r t y V a l u e ( ? o ,
i m : i n s t a n t i a t e s F a c t T y p e , l tm : ISMObjec t ) }< /
ROREKnowledgeModel:hasAntecedent>

<ROREKnowledgeModel:hasConsequent r d f : d a t a t y p e =”&xsd ; s t r i n g ”
> f a l s e< / ROREKnowledgeModel:hasConsequent>

<ROREKnowledgeModel :enforcesGoalFactType r d f : r e s o u r c e =”&
LongTermMemory ; phd . owl# ISMObject ” />

< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
NoMoni torRepor t s −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
NoMoni to rRepor t s ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; I n d e x D e s c r i p t i o n

” />
<ROREKnowledgeMode l :ha sAc t iv i t yCons t r a in t r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# G e n e r a t e S o f t w a r e S p e c i f i c a t i o n s ” />
<ROREKnowledgeModel :hasSourceFac tTypeCons t ra in t r d f : r e s o u r c e

=”&LongTermMemory ; phd . owl# KeyObject ” />
<ROREKnowledgeMode l : ha sP recond i t i onCons t r a in t r d f : r e s o u r c e =”

&LongTermMemory ; phd . owl# N o M o n i t o r R e p o r t s C o n d i t i o n ” />
<ROREKnowledgeMode l :hasTarge tFac tTypeCons t ra in t r d f : r e s o u r c e

=”&LongTermMemory ; phd . owl# Re por t ” />
<ROREKnowledgeModel :hasPhaseCons t ra in t r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# R e q u i r e m e n t s ” />
< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
N o M o n i t o r R e p o r t s C o n d i t i o n −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
N o M o n i t o r R e p o r t s C o n d i t i o n ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; R u l e C o n d i t i o n ” />
<ROREKnowledgeModel :hasCondi t ionRule r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# NoMoni to rRepor t sRu le ” />
< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
NoMon i to rRepor t sRu le −−>
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<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
NoMoni to rRepor t sRu le ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; A n a l y s i s R u l e ” />
<ROREKnowledgeModel:hasAntecedent r d f : d a t a t y p e =”&xsd ; s t r i n g ”

>PREFIX im: & l t ; h t t p : / / j a m e s n a i s h . w o r d p r e s s . com /
ROREKnowledgeModel . owl#&g t ; PREFIX l t m : & l t ; h t t p : / /
j a m e s n a i s h . w o r d p r e s s . com / LongTermMemory / phd . owl#&g t ; ASK
{ I n d i v i d u a l ( ? r ) , Type ( ? d , i m : F a c t ) , P r o p e r t y V a l u e ( ? d ,
i m : i n s t a n t i a t e s F a c t T y p e , l t m : R e p o r t ) }< /
ROREKnowledgeModel:hasAntecedent>

<ROREKnowledgeModel:hasConsequent r d f : d a t a t y p e =”&xsd ; s t r i n g ”
> f a l s e< / ROREKnowledgeModel:hasConsequent>

<ROREKnowledgeModel :enforcesGoalFactType r d f : r e s o u r c e =”&
LongTermMemory ; phd . owl# Agent ” />

< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
Not i f iedSampleCommand −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
Notif iedSampleCommand ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; ComplexFact ” />
<ROREKnowledgeMode l : i n s t an t i a t e sFac tType r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# ISMObject ” />
< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
N o t i f i e d S a m p l e C o n t r o l A l g o r i t h m −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
N o t i f i e d S a m p l e C o n t r o l A l g o r i t h m ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; ModelChunk ” />
<ROREKnowledgeModel :aggregatesChunkFacts r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# C o n t r o l I n t e r f a c e ” />
<ROREKnowledgeModel : ins tan t ia tesChunkType r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# G e n e r i c A l g o r i t h m ” />
<ROREKnowledgeModel :aggregatesChunkFacts r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# Notif iedSampleCommand ” />
<ROREKnowledgeModel :aggregatesChunkFacts r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# d i s p a t c h A l l N o t i f i e d S a m p l e C o m m a n d s ”
/>

<ROREKnowledgeModel :aggregatesChunkFacts r d f : r e s o u r c e =”&
LongTermMemory ; phd . owl# d i spa tchNot i f i edSampleCommand ” />

< / o w l : N a m e d I n d i v i d u a l>
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<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
OSMDomain −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
OSMDomain”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ;

F a c t T y p e A g g r e g a t i o n ” />
<ROREKnowledgeModel :aggregatesFactTypes r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl#Domain ” />
< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
O b j e c t −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl# O b j e c t ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; ComplexType ” />
<ROREKnowledgeModel:hasPropertyOfType r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# h a s P r o p e r t y ” />
< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
O b j e c t G e n e r a t i o n R u l e −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
O b j e c t G e n e r a t i o n R u l e ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; P r o d u c t i o n R u l e ” /

>

<ROREKnowledgeModel:hasConsequent r d f : d a t a t y p e =”&xsd ; s t r i n g ”
>ISMObjects & l t ; (VAR { ISMObjects , LIST:ISMObject } ; VAR {
SpecObjec t , ISMObject } ) & l t ; ( [ O b j e c t & l t ;− RESULTSET∗ :
ASSIGN{SpecObjec t , CREATE {$ O b j e c t . name$ Class , ISMObject
} } ; [ P r o p e r t y &l t ;− O b j e c t . ALL:hasP rope r ty ∗ : ASSIGN {
S p e c O b j e c t . has ISMProper ty , CREATE {$ P r o p e r t y . name $ ,
ISMProper ty }} ; ASSIGN {$ P r o p e r t y . name $ . h a s P r o p e r t y T y p e ,
P r o p e r t y . hasValueType } ] ; ASSIGN { ISMObjects , S p e c O b j e c t
} ] )< / ROREKnowledgeModel:hasConsequent>

<ROREKnowledgeModel:hasAntecedent r d f : d a t a t y p e =”&xsd ; s t r i n g ”
>PREFIX im: & l t ; h t t p : / / j a m e s n a i s h . w o r d p r e s s . com /
ROREKnowledgeModel . owl#&g t ;

PREFIX l t m : & l t ; h t t p : / / j a m e s n a i s h . w o r d p r e s s . com /
LongTermMemory / phd . owl#&g t ;

SELECT ? o WHERE { I n d i v i d u a l ( ? o ) , Type ( ? o , i m : F a c t ) ,
P r o p e r t y V a l u e ( ? o , i m : i n s t a n t i a t e s F a c t T y p e ,

l t m : O b j e c t ) }
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OR WHERE { I n d i v i d u a l ( ? o ) , Type ( ? o , i m : F a c t ) ,
P r o p e r t y V a l u e ( ? o , i m : i n s t a n t i a t e s F a c t T y p e , ? t ) ,
P r o p e r t y V a l u e ( ? t , im:subTypeOf , l t m : O b j e c t ) }< /
ROREKnowledgeModel:hasAntecedent>

< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
Objec tMode l −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
Objec tModel ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; ComplexType ” />
<ROREKnowledgeModel:hasPropertyOfType r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# a g g r e g a t e s O b j e c t S y s t e m ” />
< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
O b j e c t M o d e l G e n e r a t i o n S c r i p t −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
O b j e c t M o d e l G e n e r a t i o n S c r i p t ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; P r o d u c t i o n S c r i p t

” />
<ROREKnowledgeModel :hasInputFactQuery r d f : d a t a t y p e =”&xsd ;

s t r i n g ”>PREFIX im: & l t ; h t t p : / / j a m e s n a i s h . w o r d p r e s s . com /
ROREKnowledgeModel . owl#&g t ;

PREFIX l t m : & l t ; h t t p : / / j a m e s n a i s h . w o r d p r e s s . com /
LongTermMemory / phd . owl#&g t ;

SELECT ? o WHERE { I n d i v i d u a l ( ? o ) , Type ( ? o , i m : F a c t ) ,
P r o p e r t y V a l u e ( ? o , i m : i n s t a n t i a t e s F a c t T y p e ,

l t m : O b j e c t ) }
OR WHERE { I n d i v i d u a l ( ? o ) , Type ( ? o , i m : F a c t ) ,

P r o p e r t y V a l u e ( ? o , i m : i n s t a n t i a t e s F a c t T y p e , ? t ) ,
P r o p e r t y V a l u e ( ? t , im:subTypeOf , l t m : O b j e c t ) }< /
ROREKnowledgeModel :hasInputFactQuery>

<ROREKnowledgeMode l :hasF i r s tP roduc t ionRule r d f : r e s o u r c e =”&
LongTermMemory ; phd . owl# O b j e c t G e n e r a t i o n R u l e ” />

< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
O b j e c t P r o p e r t y −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
O b j e c t P r o p e r t y ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; ComplexType ” />
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<ROREKnowledgeModel:hasPropertyOfType r d f : r e s o u r c e =”&
LongTermMemory ; phd . owl# hasValueType ” />

< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
O b j e c t P r o p e r t y S t i m u l u s −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
O b j e c t P r o p e r t y S t i m u l u s ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ;

F a c t E d i t i n g E l i c i t a t i o n S t i m u l u s ” />
<ROREKnowledgeModel:hasFactQuery r d f : d a t a t y p e =”&xsd ; s t r i n g ”>

Source [ PREFIX im: &l t ; h t t p : / / j a m e s n a i s h . w o r d p r e s s . com /
ROREKnowledgeModel . owl#&g t ;

PREFIX l t m : & l t ; h t t p : / / j a m e s n a i s h . w o r d p r e s s . com / LongTermMemory / phd .
owl#&g t ;

SELECT ? o
WHERE { I n d i v i d u a l ( ? o ) , Type ( ? o , i m : F a c t ) , P r o p e r t y V a l u e ( ? o ,

i m : i n s t a n t i a t e s F a c t T y p e , l t m : O b j e c t ) }
OR WHERE { I n d i v i d u a l ( ? o ) , Type ( ? o , i m : F a c t ) , P r o p e r t y V a l u e ( ? o ,

i m : i n s t a n t i a t e s F a c t T y p e , ? t ) , P r o p e r t y V a l u e ( ? t , im:subTypeOf ,
l t m : O b j e c t ) } ]< / ROREKnowledgeModel:hasFactQuery>

<R O R E K n o w l e d g e M o d e l : h a s E l i c i t a t i o n S t i m u l u s r d f : d a t a t y p e =”&
xsd ; s t r i n g ”>There a r e o b j e c t s whose p r o p e r t i e s a r e
i n s u f f i c i e n t . P l e a s e s p e c i f y t h e p r o p e r t i e s f o r each
o b j e c t .< / R O R E K n o w l e d g e M o d e l : h a s E l i c i t a t i o n S t i m u l u s>

< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
O b j e c t P r o p e r t y V a l u e −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
O b j e c t P r o p e r t y V a l u e ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; ComplexType ” />
<ROREKnowledgeModel:hasPropertyOfType r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# v a l u e I s ” />
< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
O b j e c t S y s t e m −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
Objec tSys t em ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; ComplexType ” />



415

<ROREKnowledgeModel:hasPropertyOfType r d f : r e s o u r c e =”&
LongTermMemory ; phd . owl# a g g r e g a t e s O b j e c t ” />

< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
Objec tSys t emMode l −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
Objec tSys temModel ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; ModelType ” />
<ROREKnowledgeModel :hasFactTypeAggregat ion r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl#OSMDomain” />
< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
O p e r a t i o n −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
O p e r a t i o n ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; ComplexType ” />
<ROREKnowledgeModel:hasPropertyOfType r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# h a s A l g o r i t h m ” />
<ROREKnowledgeModel:hasPropertyOfType r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# h a s P a r a m e t e r ” />
<ROREKnowledgeModel:hasPropertyOfType r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# hasRe tu rnVa lueType ” />
< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
Parameter −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
P a r a m e t e r ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; ComplexType ” />
<ROREKnowledgeModel:hasPropertyOfType r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# hasValueType ” />
< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
P r i m a r y S t a t e −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
P r i m a r y S t a t e ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; ComplexType ” />
<ROREKnowledgeModel:subTypeOf r d f : r e s o u r c e =”&LongTermMemory ;

phd . owl# S t a t e ” />
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<ROREKnowledgeModel:hasPropertyOfType r d f : r e s o u r c e =”&
LongTermMemory ; phd . owl# c o n t a i n s I n S t r u c t u r e ” />

<ROREKnowledgeModel:hasPropertyOfType r d f : r e s o u r c e =”&
LongTermMemory ; phd . owl# c o n t a i n s K e y O b j e c t ” />

< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
P r o c e s s −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl# P r o c e s s ”
>

< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; ComplexType ” />
<ROREKnowledgeModel:hasPropertyOfType r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# h a s F i r s t S t e p ” />
< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
ProcessModel −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
ProcessMode l ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; ComplexType ” />
<ROREKnowledgeModel:hasPropertyOfType r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# a g g r e g a t e s P r o c e s s ” />
< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
P r o c e s s S t e p −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
P r o c e s s S t e p ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; ComplexType ” />
<ROREKnowledgeModel:hasPropertyOfType r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# h a s N e x t S t e p ” />
<ROREKnowledgeModel:hasPropertyOfType r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# implementedBy ” />
< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
P r o t o c o l −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl# P r o t o c o l
”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; ComplexType ” />
<ROREKnowledgeModel:subTypeOf r d f : r e s o u r c e =”&LongTermMemory ;

phd . owl# I n t e r f a c e ” />
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<ROREKnowledgeModel:hasPropertyOfType r d f : r e s o u r c e =”&
LongTermMemory ; phd . owl# hasMethod ” />

< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
Pro toco lMe thod −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
P r o t o c o l M e t h o d ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; ComplexType ” />
<ROREKnowledgeModel:hasPropertyOfType r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# h a s P a r a m e t e r ” />
<ROREKnowledgeModel:hasPropertyOfType r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# h a s P o s t c o n d i t i o n ” />
<ROREKnowledgeModel:hasPropertyOfType r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# h a s P r e c o n d i t i o n ” />
<ROREKnowledgeModel:hasPropertyOfType r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# hasRe tu rnVa lueType ” />
<ROREKnowledgeModel:hasPropertyOfType r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# h a s T r i g g e r C o n d i t i o n ” />
< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
R e l a t i o n s h i p −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
R e l a t i o n s h i p ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; ComplexType ” />
<ROREKnowledgeModel:hasPropertyOfType r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# h a s C h i l d O b j e c t ” />
<ROREKnowledgeModel:hasPropertyOfType r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# h a s P a r e n t O b j e c t ” />
< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
R e l a t i o n s h i p G e n e r a t i o n R u l e −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
R e l a t i o n s h i p G e n e r a t i o n R u l e ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; P r o d u c t i o n R u l e ” /

>
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<ROREKnowledgeModel:hasConsequent r d f : d a t a t y p e =”&xsd ; s t r i n g ”
>I S M R e l a t i o n s h i p s & l t ; (VAR { I S M R e l a t i o n s h i p s ,
LIST: ISMProper ty } ; VAR { P a r e n t , ISMObject } ; VAR {Chi ld ,
ISMObject } ) & l t ; ( [ R e l a t i o n s h i p &l t ;− RESULTSET∗ : ASSIGN{
I S M R e l a t i o n s h i p s , CREATE {$ R e l a t i o n s h i p . name$ P r o p e r t y ,
ISMProper ty }} ; ASSIGN { P a r e n t , SELECT{ t a r g e t , &quo t ;
PREFIX phd :& l t ; h t t p : / /www. r o r e . com / c a s e s t u d i e s /& g t ;
SELECT phd : $ R e l a t i o n s h i p . h a s P a r e n t . name$&quo t ; } } ; ASSIGN
{Chi ld , SELECT{ t a r g e t , &quo t ; PREFIX phd :&l t ; h t t p : / /www.
r o r e . com / c a s e s t u d i e s /& g t ; SELECT phd : $ R e l a t i o n s h i p .
h a s C h i l d . name$&quo t ; } } ; ASSIGN {$ R e l a t i o n s h i p . name$
P r o p e r t y . hasType , C h i l d } ; ASSIGN { P a r e n t . h a s P r o p e r t y , $
R e l a t i o n s h i p . name$ P r o p e r t y } ] )< /
ROREKnowledgeModel:hasConsequent>

<ROREKnowledgeModel:hasAntecedent r d f : d a t a t y p e =”&xsd ; s t r i n g ”
>PREFIX im: & l t ; h t t p : / / j a m e s n a i s h . w o r d p r e s s . com /
ROREKnowledgeModel . owl&g t ; PREFIX l t m : & l t ; h t t p : / /
j a m e s n a i s h . w o r d p r e s s . com / LongTermMemory / phd . owl&g t ;
SELECT ? r WHERE { Type ( ? r , i m : F a c t ) , P r o p e r t y V a l u e ( ? r ,
i m : i n s t a n t i a t e s F a c t T y p e , l t m : R e l a t i o n s h i p ) }< /
ROREKnowledgeModel:hasAntecedent>

< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
R e m o t e D a t a T r a n s f e r P r o t o c o l −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
R e m o t e D a t a T r a n s f e r P r o t o c o l ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; ComplexFact ” />
<ROREKnowledgeMode l : i n s t an t i a t e sFac tType r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# Resource ” />
< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
Re po r t −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl# Re por t ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; ComplexType ” />
<ROREKnowledgeModel:subTypeOf r d f : r e s o u r c e =”&LongTermMemory ;

phd . owl# U s e r I n t e r f a c e ” />
<ROREKnowledgeModel:hasPropertyOfType r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# h a s F i e l d ” />
<ROREKnowledgeModel:hasPropertyOfType r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# m o d e l s O b j e c t ” />
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< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
R e q u i r e m e n t s −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
R e q u i r e m e n t s ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; Phase ” />

< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
Resource −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl# Resource
”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; ComplexType ” />

< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
ResourceModel −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
ResourceModel ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; ComplexType ” />
<ROREKnowledgeModel:hasPropertyOfType r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# a g g r e g a t e s R e s o u r c e ” />
< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
S e c o n d a r y S t a t e −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
S e c o n d a r y S t a t e ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; ComplexType ” />
<ROREKnowledgeModel:subTypeOf r d f : r e s o u r c e =”&LongTermMemory ;

phd . owl# S t a t e ” />
<ROREKnowledgeModel:hasPropertyOfType r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# h a s P r o p e r t y V a l u e ” />
<ROREKnowledgeModel:hasPropertyOfType r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# s t a t e O f ” />
<ROREKnowledgeModel:hasPropertyOfType r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# s t a t e O v e r P r o p e r t y ” />
< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
S e n s e A l l P r o p e r t i e s B y D a t a S a m p l e A l g o r i t h m −−>
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<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
S e n s e A l l P r o p e r t i e s B y D a t a S a m p l e A l g o r i t h m ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; S t r i n g F a c t ” />
<ROREKnowledgeModel :hasStr ingValue r d f : d a t a t y p e =”&xsd ; s t r i n g

”>s e n s e A l l P r o p e r t i e s ( O b j e c t s [ ] os , I n t e r f a c e s e n s o r ) {
f o r e a c h ( O b j e c t o : os ) { f o r e a c h (

P r o p e r t y p : o . g e t P r o p e r t i e s ( ) ) {
s e n s e P r o p e r t y ( p , s e n s o r ) ; } } }< /
ROREKnowledgeModel :hasStr ingValue>

<ROREKnowledgeMode l : i n s t an t i a t e sFac tType r d f : r e s o u r c e =”&
LongTermMemory ; phd . owl# S t r i n g ” />

< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
S e n s e P r o p e r t y B y D a t a S a m p l e A l g o r i t h m −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
S en s e P r o p e r t y By D a t aS a mp l e A lg o r i t h m ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; S t r i n g F a c t ” />
<ROREKnowledgeModel :hasStr ingValue r d f : d a t a t y p e =”&xsd ; s t r i n g

”>s e n s e P r o p e r t y ( P r o p e r t y p , I n t e r f a c e s e n s o r ) { p . s e t
( s e n s o r . r e a d V a l u e ( p ) ) ; }< /
ROREKnowledgeModel :hasStr ingValue>

<ROREKnowledgeMode l : i n s t an t i a t e sFac tType r d f : r e s o u r c e =”&
LongTermMemory ; phd . owl# S t r i n g ” />

< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
S e n s o r I n t e r f a c e −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
S e n s o r I n t e r f a c e ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; ComplexFact ” />
<ROREKnowledgeMode l : i n s t an t i a t e sFac tType r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# Resource ” />
< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
S t a t e −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl# S t a t e ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; ComplexType ” />

< / o w l : N a m e d I n d i v i d u a l>
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<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
S t a t e T r a n s i t i o n −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
S t a t e T r a n s i t i o n ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; ComplexType ” />
<ROREKnowledgeModel:hasPropertyOfType r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# c o n d i t i o n e d B y ” />
<ROREKnowledgeModel:hasPropertyOfType r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# enac tedBy ” />
<ROREKnowledgeModel:hasPropertyOfType r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# p r o d u c e s S t a t e ” />
<ROREKnowledgeModel:hasPropertyOfType r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# t r a n s f o r m s S t a t e O f ” />
<ROREKnowledgeModel:hasPropertyOfType r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# t r i g g e r e d B y ” />
<ROREKnowledgeModel:hasPropertyOfType r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# t r i g g e r s E n d E v e n t ” />
<ROREKnowledgeModel:hasPropertyOfType r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# t r i g g e r s S t a r t E v e n t ” />
< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
S t a t i v e C o n d i t i o n −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
S t a t i v e C o n d i t i o n ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; ComplexType ” />
<ROREKnowledgeModel:hasPropertyOfType r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# h a s C o n d i t i o n a l S t a t e ” />
<ROREKnowledgeModel:hasPropertyOfType r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# i s P r e c o n d i t i o n ” />
< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
S t r i n g −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl# S t r i n g ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; S t r i n g T y p e ” />

< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
S t r u c t u r e −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
S t r u c t u r e ”>
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< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; ComplexType ” />
<ROREKnowledgeModel:subTypeOf r d f : r e s o u r c e =”&LongTermMemory ;

phd . owl# O b j e c t ” />
< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
T r a n s f e r A l l C o m p l e t e O b j e c t s A l g o r i t h m −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
T r a n s f e r A l l C o m p l e t e O b j e c t s A l g o r i t h m ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; S t r i n g F a c t ” />
<ROREKnowledgeModel :hasStr ingValue r d f : d a t a t y p e =”&xsd ; s t r i n g

”>R e m o t e D a t a T r a n s f e r P r o t o c o l . c o n n e c t (HOST) ; f o r (
T r a n s f e r r a b l e O b j e c t o : A l l T r a n s f e r r a b l e O b j e c t s ) { o .
t r a n s f e r ( R e m o t e D a t a T r a n s f e r P r o t o c o l . i n s t a n c e , o .
t a r g e t L o c a t i o n ) ; } R e m o t e D a t a T r a n s f e r P r o t o c o l . i n s t a n c e .
c l o s e ( ) ;< / ROREKnowledgeModel :hasStr ingValue>

<ROREKnowledgeMode l : i n s t an t i a t e sFac tType r d f : r e s o u r c e =”&
LongTermMemory ; phd . owl# S t r i n g ” />

< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
T r a n s f e r C o m p l e t e O b j e c t A l g o r i t h m −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
T r a n s f e r C o m p l e t e O b j e c t A l g o r i t h m ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; S t r i n g F a c t ” />
<ROREKnowledgeModel :hasStr ingValue r d f : d a t a t y p e =”&xsd ; s t r i n g

”> t r a n s f e r R e s o u r c e . t r a n s f e r ( t h i s . l o c a t i o n , t a r g e t L o c a t i o n
) ;< / ROREKnowledgeModel :hasStr ingValue>

<ROREKnowledgeMode l : i n s t an t i a t e sFac tType r d f : r e s o u r c e =”&
LongTermMemory ; phd . owl# S t r i n g ” />

< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
U s e r I n t e r f a c e −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
U s e r I n t e r f a c e ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; ComplexType ” />
<ROREKnowledgeModel:subTypeOf r d f : r e s o u r c e =”&LongTermMemory ;

phd . owl# I n t e r f a c e ” />
< / o w l : N a m e d I n d i v i d u a l>
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<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
Value −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl# Value ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; ComplexType ” />

< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
a g g r e g a t e s O b j e c t −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
a g g r e g a t e s O b j e c t ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; P r o p e r t y T y p e ” />
<ROREKnowledgeModel :hasPropertyValueType r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# ISMObject ” />
< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
a g g r e g a t e s O b j e c t S y s t e m −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
a g g r e g a t e s O b j e c t S y s t e m ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; P r o p e r t y T y p e ” />
<ROREKnowledgeModel :hasPropertyValueType r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# Objec tSys t em ” />
< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
a g g r e g a t e s P r o c e s s −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
a g g r e g a t e s P r o c e s s ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; P r o p e r t y T y p e ” />
<ROREKnowledgeModel :hasPropertyValueType r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# P r o c e s s ” />
< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
a g g r e g a t e s R e s o u r c e −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
a g g r e g a t e s R e s o u r c e ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; P r o p e r t y T y p e ” />
<ROREKnowledgeModel :hasPropertyValueType r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# Resource ” />
< / o w l : N a m e d I n d i v i d u a l>
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<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
a l l o c a t e A l l O b j e c t s −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
a l l o c a t e A l l O b j e c t s ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; ComplexFact ” />
<ROREKnowledgeMode l : i n s t an t i a t e sFac tType r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# O p e r a t i o n ” />
<ROREKnowledgeModel:hasProperty r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl#
a l l o c a t e A l l O b j e c t s h a s A l g o r i t h m A l l o c a t e A l l O b j e c t s B y C l a s s i f i c a t i o n A l g o r i t h m
” />

< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
a l l o c a t e A l l O b j e c t s h a s A l g o r i t h m A l l o c a t e A l l O b j e c t s B y C l a s s i f i c a t i o n A l g o r i t h m
−−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
a l l o c a t e A l l O b j e c t s h a s A l g o r i t h m A l l o c a t e A l l O b j e c t s B y C l a s s i f i c a t i o n A l g o r i t h m
”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; P r o p e r t y ” />
<ROREKnowledgeModel :hasProper tyValue r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl#
A l l o c a t e A l l O b j e c t s B y C l a s s i f i c a t i o n A l g o r i t h m ” />

<R O R E K n o w l e d g e M o d e l : i n s t a n t i a t e s P r o p e r t y T y p e r d f : r e s o u r c e =”&
LongTermMemory ; phd . owl# h a s A l g o r i t h m ” />

< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
a l l o c a t e O b j e c t −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
a l l o c a t e O b j e c t ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; ComplexFact ” />
<ROREKnowledgeMode l : i n s t an t i a t e sFac tType r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# O p e r a t i o n ” />
<ROREKnowledgeModel:hasProperty r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl#
a l l o c a t e O b j e c t h a s A l g o r i t h m A l l o c a t e O b j e c t B y C l a s s i f i c a t i o n A l g o r i t h m
” />

<ROREKnowledgeModel:hasProperty r d f : r e s o u r c e =”&
LongTermMemory ; phd . owl#
a l l o c a t e O b j e c t h a s P a r a m e t e r a l l o c a t i o n R u l e s ” />
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<ROREKnowledgeModel:hasProperty r d f : r e s o u r c e =”&
LongTermMemory ; phd . owl#
a l l o c a t e O b j e c t h a s P a r a m e t e r p o s s i b l e S t r u c t u r e s ” />

< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
a l l o c a t e O b j e c t h a s A l g o r i t h m A l l o c a t e O b j e c t B y C l a s s i f i c a t i o n A l g o r i t h m
−−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
a l l o c a t e O b j e c t h a s A l g o r i t h m A l l o c a t e O b j e c t B y C l a s s i f i c a t i o n A l g o r i t h m
”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; P r o p e r t y ” />
<ROREKnowledgeModel :hasProper tyValue r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl#
A l l o c a t e O b j e c t B y C l a s s i f i c a t i o n A l g o r i t h m ” />

<R O R E K n o w l e d g e M o d e l : i n s t a n t i a t e s P r o p e r t y T y p e r d f : r e s o u r c e =”&
LongTermMemory ; phd . owl# h a s A l g o r i t h m ” />

< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
a l l o c a t e O b j e c t h a s P a r a m e t e r a l l o c a t i o n R u l e s −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
a l l o c a t e O b j e c t h a s P a r a m e t e r a l l o c a t i o n R u l e s ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; P r o p e r t y ” />
<ROREKnowledgeModel :hasProper tyValue r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# a l l o c a t i o n R u l e s ” />
<R O R E K n o w l e d g e M o d e l : i n s t a n t i a t e s P r o p e r t y T y p e r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# h a s P a r a m e t e r ” />
< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
a l l o c a t e O b j e c t h a s P a r a m e t e r p o s s i b l e S t r u c t u r e s −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
a l l o c a t e O b j e c t h a s P a r a m e t e r p o s s i b l e S t r u c t u r e s ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; P r o p e r t y ” />
<R O R E K n o w l e d g e M o d e l : i n s t a n t i a t e s P r o p e r t y T y p e r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# h a s P a r a m e t e r ” />
<ROREKnowledgeModel :hasProper tyValue r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# p o s s i b l e S t r u c t u r e s ” />
< / o w l : N a m e d I n d i v i d u a l>
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<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
a l l o c a t i o n R u l e s −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
a l l o c a t i o n R u l e s ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; ComplexFact ” />
<ROREKnowledgeMode l : i n s t an t i a t e sFac tType r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# P a r a m e t e r ” />
< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
c o n d i t i o n e d B y −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
c o n d i t i o n e d B y ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; P r o p e r t y T y p e ” />
<ROREKnowledgeModel :hasPropertyValueType r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# S t a t i v e C o n d i t i o n ” />
< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
c o n t a i n s I n S t r u c t u r e −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
c o n t a i n s I n S t r u c t u r e ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; P r o p e r t y T y p e ” />
<ROREKnowledgeModel :hasPropertyValueType r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# S t r u c t u r e ” />
< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
c o n t a i n s K e y O b j e c t −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
c o n t a i n s K e y O b j e c t ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; P r o p e r t y T y p e ” />
<ROREKnowledgeModel :hasPropertyValueType r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# KeyObject ” />
< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
d e t e c t e d B y −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
d e t e c t e d B y ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; P r o p e r t y T y p e ” />
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<ROREKnowledgeModel :hasPropertyValueType r d f : r e s o u r c e =”&
LongTermMemory ; phd . owl# O b j e c t ” />

< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
d i s p a t c h A l l N o t i f i e d S a m p l e C o m m a n d s −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
d i s p a t c h A l l N o t i f i e d S a m p l e C o m m a n d s ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; ComplexFact ” />
<ROREKnowledgeMode l : i n s t an t i a t e sFac tType r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# O p e r a t i o n ” />
<ROREKnowledgeModel:hasProperty r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl#
d i s p a t c h A l l N o t i f i e d S a m p l e C o m m a n d s h a s A l g o r i t h m d i s p a t c h A l l N o t i f i e d S a m p l e C o m m a n d s A l g o r i t h m
” />

< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
d i s p a t c h A l l N o t i f i e d S a m p l e C o m m a n d s A l g o r i t h m −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
d i s p a t c h A l l N o t i f i e d S a m p l e C o m m a n d s A l g o r i t h m ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; S t r i n g F a c t ” />
<ROREKnowledgeModel :hasStr ingValue r d f : d a t a t y p e =”&xsd ; s t r i n g

”>commandAllObjec ts ( O b j e c t s [ ] os , I n t e r f a c e s e n s o r ) {
Command c ; f o r e a c h ( O b j e c t o : os ) {

f o r e a c h ( P r o p e r t y p : o . g e t P r o p e r t i e s ( ) ) {
c = new Command ( p , p . Da taSource . g e t V a l u e ( ) ) ;

commandObject ( p , s e n s o r ) ; } } }< /
ROREKnowledgeModel :hasStr ingValue>

<ROREKnowledgeMode l : i n s t an t i a t e sFac tType r d f : r e s o u r c e =”&
LongTermMemory ; phd . owl# S t r i n g ” />

< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
d i s p a t c h A l l N o t i f i e d S a m p l e C o m m a n d s h a s A l g o r i t h m d i s p a t c h A l l N o t i f i e d S a m p l e C o m m a n d s A l g o r i t h m
−−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
d i s p a t c h A l l N o t i f i e d S a m p l e C o m m a n d s h a s A l g o r i t h m d i s p a t c h A l l N o t i f i e d S a m p l e C o m m a n d s A l g o r i t h m
”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; P r o p e r t y ” />
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<ROREKnowledgeModel :hasProper tyValue r d f : r e s o u r c e =”&
LongTermMemory ; phd . owl#
d i s p a t c h A l l N o t i f i e d S a m p l e C o m m a n d s A l g o r i t h m ” />

<R O R E K n o w l e d g e M o d e l : i n s t a n t i a t e s P r o p e r t y T y p e r d f : r e s o u r c e =”&
LongTermMemory ; phd . owl# h a s A l g o r i t h m ” />

< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
d i spa t chNo t i f i edSamp leCommand −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
d i spa tchNot i f i edSampleCommand ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; ComplexFact ” />
<ROREKnowledgeMode l : i n s t an t i a t e sFac tType r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# O p e r a t i o n ” />
<ROREKnowledgeModel:hasProperty r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl#
d i spa t chNot i f i edSampleCommandhasAlgo r i t hmDispa t chNo t i f i edSampleCommandAlgor i t hm
” />

< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
d i s p a t c h N o t i f i e d S a m p l e C o m m a n d h a s A l g o r i t h m D i s p a t c h N o t i f i e d S a m p l e C o m m a n d A l g o r i t h m
−−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
d i spa t chNot i f i edSampleCommandhasAlgo r i t hmDispa t chNot i f i edSampleCommandAlgor i t hm
”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; P r o p e r t y ” />
<ROREKnowledgeModel :hasProper tyValue r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl#
Dispa tchNot i f i edSampleCommandAlgor i thm ” />

<R O R E K n o w l e d g e M o d e l : i n s t a n t i a t e s P r o p e r t y T y p e r d f : r e s o u r c e =”&
LongTermMemory ; phd . owl# h a s A l g o r i t h m ” />

< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
d i s p a t c h e d B y −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
d i s p a t c h e d B y ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; P r o p e r t y T y p e ” />
<ROREKnowledgeModel :hasPropertyValueType r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# O b j e c t ” />
< / o w l : N a m e d I n d i v i d u a l>
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<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
enac t edBy −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
enac tedBy ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; P r o p e r t y T y p e ” />
<ROREKnowledgeModel :hasPropertyValueType r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# Agent ” />
< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
f r o m S t a t e −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
f r o m S t a t e ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; P r o p e r t y T y p e ” />
<ROREKnowledgeModel :hasPropertyValueType r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# S t a t e ” />
< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
hasAgen tType −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
hasAgentType ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; P r o p e r t y T y p e ” />
<ROREKnowledgeModel :hasPropertyValueType r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# AgentType ” />
< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
h a s A l g o r i t h m −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
h a s A l g o r i t h m ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; P r o p e r t y T y p e ” />
<ROREKnowledgeModel :hasPropertyValueType r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# S t r i n g ” />
< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
h a s A t t r i b u t e −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
h a s A t t r i b u t e ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; P r o p e r t y T y p e ” />
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<ROREKnowledgeModel :hasPropertyValueType r d f : r e s o u r c e =”&
LongTermMemory ; phd . owl# D a t a b a s e A t t r i b u t e ” />

< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
h a s C h i l d O b j e c t −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
h a s C h i l d O b j e c t ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; P r o p e r t y T y p e ” />
<ROREKnowledgeModel :hasPropertyValueType r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# O b j e c t ” />
< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
h a s C o n d i t i o n a l S t a t e −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
h a s C o n d i t i o n a l S t a t e ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; P r o p e r t y T y p e ” />
<ROREKnowledgeModel :hasPropertyValueType r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# S t a t e ” />
< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
hasDa taS ink −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
h a s D a t a S i n k ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; P r o p e r t y T y p e ” />
<ROREKnowledgeModel :hasPropertyValueType r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# Resource ” />
< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
hasDataSource −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
h a s D a t a S o u r c e ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; P r o p e r t y T y p e ” />
<ROREKnowledgeModel :hasPropertyValueType r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# Resource ” />
< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
hasDomain −−>
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<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
hasDomain ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; P r o p e r t y T y p e ” />
<ROREKnowledgeModel :hasPropertyValueType r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl#Domain ” />
< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
hasDomainGoal −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
hasDomainGoal ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; P r o p e r t y T y p e ” />
<ROREKnowledgeModel :hasPropertyValueType r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# DomainGoal ” />
< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
hasDomainType −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
hasDomainType ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; P r o p e r t y T y p e ” />
<ROREKnowledgeModel :hasPropertyValueType r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl#DomainType ” />
< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
h a s F i e l d −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl# h a s F i e l d
”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; P r o p e r t y T y p e ” />
<ROREKnowledgeModel :hasPropertyValueType r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# S t r i n g ” />
< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
h a s F i r s t S t e p −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
h a s F i r s t S t e p ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; P r o p e r t y T y p e ” />
<ROREKnowledgeModel :hasPropertyValueType r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# P r o c e s s S t e p ” />
< / o w l : N a m e d I n d i v i d u a l>
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<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
h a s G e n e r i c P r o p e r t y −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
h a s G e n e r i c P r o p e r t y ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; P r o p e r t y T y p e ” />
<ROREKnowledgeModel :hasPropertyValueType r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# O b j e c t P r o p e r t y ” />
< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
h a s G o a l S t a t e −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
h a s G o a l S t a t e ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; P r o p e r t y T y p e ” />
<ROREKnowledgeModel :hasPropertyValueType r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# G o a l S t a t e ” />
< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
has ISMProper ty −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
has ISMPrope r ty ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; P r o p e r t y T y p e ” />
<ROREKnowledgeModel :hasPropertyValueType r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# ISMProper ty ” />
< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
has ISMProper t yVa lue −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
has ISMPrope r tyVa lue ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; P r o p e r t y T y p e ” />
<ROREKnowledgeModel :hasPropertyValueType r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# Value ” />
< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
hasMethod −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
hasMethod ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; P r o p e r t y T y p e ” />
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<ROREKnowledgeModel :hasPropertyValueType r d f : r e s o u r c e =”&
LongTermMemory ; phd . owl# P r o t o c o l M e t h o d ” />

< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
hasName −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#hasName ”
>

< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; P r o p e r t y T y p e ” />
<ROREKnowledgeModel :hasPropertyValueType r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# S t r i n g ” />
< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
h a s N e x t S t e p −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
h a s N e x t S t e p ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; P r o p e r t y T y p e ” />
<ROREKnowledgeModel :hasPropertyValueType r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# P r o c e s s S t e p ” />
< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
h a s O p e r a t i o n −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
h a s O p e r a t i o n ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; P r o p e r t y T y p e ” />
<ROREKnowledgeModel :hasPropertyValueType r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# O p e r a t i o n ” />
< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
hasParameter −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
h a s P a r a m e t e r ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; P r o p e r t y T y p e ” />
<ROREKnowledgeModel :hasPropertyValueType r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# P a r a m e t e r ” />
< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
h a s P a r e n t O b j e c t −−>
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<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
h a s P a r e n t O b j e c t ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; P r o p e r t y T y p e ” />
<ROREKnowledgeModel :hasPropertyValueType r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# O b j e c t ” />
< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
h a s P o s t c o n d i t i o n −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
h a s P o s t c o n d i t i o n ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; P r o p e r t y T y p e ” />
<ROREKnowledgeModel :hasPropertyValueType r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# S t r i n g ” />
< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
h a s P r e c o n d i t i o n −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
h a s P r e c o n d i t i o n ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; P r o p e r t y T y p e ” />
<ROREKnowledgeModel :hasPropertyValueType r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# S t r i n g ” />
< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
h a s P r i m a r y S t a t e −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
h a s P r i m a r y S t a t e ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; P r o p e r t y T y p e ” />
<ROREKnowledgeModel :hasPropertyValueType r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# P r i m a r y S t a t e ” />
< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
h a s P r o p e r t y −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
h a s P r o p e r t y ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; P r o p e r t y T y p e ” />
<ROREKnowledgeModel :hasPropertyValueType r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# O b j e c t P r o p e r t y ” />
< / o w l : N a m e d I n d i v i d u a l>
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<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
h a s P r o p e r t y T y p e −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
h a s P r o p e r t y T y p e ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; P r o p e r t y T y p e ” />
<ROREKnowledgeModel :hasPropertyValueType r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# S t r i n g ” />
< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
h a s P r o p e r t y V a l u e −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
h a s P r o p e r t y V a l u e ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; P r o p e r t y T y p e ” />
<ROREKnowledgeModel :hasPropertyValueType r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# O b j e c t P r o p e r t y V a l u e ” />
< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
h a s R e t u r n V a l u e T y p e −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
hasRe tu rnVa lueType ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; P r o p e r t y T y p e ” />
<ROREKnowledgeModel :hasPropertyValueType r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# S t r i n g ” />
< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
h a s S e c o n d a r y S t a t e −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
h a s S e c o n d a r y S t a t e ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; P r o p e r t y T y p e ” />
<ROREKnowledgeModel :hasPropertyValueType r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# S e c o n d a r y S t a t e ” />
< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
h a s S t a t e T r a n s i t i o n −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
h a s S t a t e T r a n s i t i o n ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; P r o p e r t y T y p e ” />
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<ROREKnowledgeModel :hasPropertyValueType r d f : r e s o u r c e =”&
LongTermMemory ; phd . owl# S t a t e T r a n s i t i o n ” />

< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
h a s S t r u c t u r e −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
h a s S t r u c t u r e ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; P r o p e r t y T y p e ” />

< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
h a s S u p e r c l a s s −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
h a s S u p e r c l a s s ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; P r o p e r t y T y p e ” />
<ROREKnowledgeModel :hasPropertyValueType r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# ISMObject ” />
< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
h a s T a b l e −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl# h a s T a b l e
”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; P r o p e r t y T y p e ” />
<ROREKnowledgeModel :hasPropertyValueType r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# D a t a b a s e T a b l e ” />
< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
h a s T r i g g e r C o n d i t i o n −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
h a s T r i g g e r C o n d i t i o n ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; P r o p e r t y T y p e ” />
<ROREKnowledgeModel :hasPropertyValueType r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# S t r i n g ” />
< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
hasValueType −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
hasValueType ”>
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< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; P r o p e r t y T y p e ” />
<ROREKnowledgeModel :hasPropertyValueType r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# S t r i n g ” />
< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
implementedBy −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
implementedBy ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; P r o p e r t y T y p e ” />
<ROREKnowledgeModel :hasPropertyValueType r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# O p e r a t i o n ” />
< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
i s M o n i t o r e d −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
i s M o n i t o r e d ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; P r o p e r t y T y p e ” />
<ROREKnowledgeModel :hasPropertyValueType r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# Boolean ” />
< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
i s P r e c o n d i t i o n −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
i s P r e c o n d i t i o n ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; P r o p e r t y T y p e ” />
<ROREKnowledgeModel :hasPropertyValueType r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# Boolean ” />
< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
m o d e l l e d B y S t a t e −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
m o d e l l e d B y S t a t e ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; P r o p e r t y T y p e ” />
<ROREKnowledgeModel :hasPropertyValueType r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# S t a t e ” />
< / o w l : N a m e d I n d i v i d u a l>
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<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
m o d e l s O b j e c t −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
m o d e l s O b j e c t ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; P r o p e r t y T y p e ” />
<ROREKnowledgeModel :hasPropertyValueType r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# ISMObject ” />
< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
o b j e c t −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl# o b j e c t ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; ComplexFact ” />
<ROREKnowledgeMode l : i n s t an t i a t e sFac tType r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# P a r a m e t e r ” />
< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
p o s s i b l e S t r u c t u r e s −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
p o s s i b l e S t r u c t u r e s ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; ComplexFact ” />
<ROREKnowledgeMode l : i n s t an t i a t e sFac tType r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# P a r a m e t e r ” />
< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
p r o d u c e s S t a t e −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
p r o d u c e s S t a t e ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; P r o p e r t y T y p e ” />
<ROREKnowledgeModel :hasPropertyValueType r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# S t a t e ” />
< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
r e a l i s e d B y −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
r e a l i s e d B y ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; P r o p e r t y T y p e ” />
<ROREKnowledgeModel :hasPropertyValueType r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# S t a t e T r a n s i t i o n ” />
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< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
s a t i s f i e d B y −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
s a t i s f i e d B y ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; ComplexFact ” />
<ROREKnowledgeMode l : i n s t an t i a t e sFac tType r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# O p e r a t i o n ” />
<ROREKnowledgeModel:hasProperty r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# s a t i s f i e d B y h a s P a r a m e t e r o b j e c t ” />
< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
s a t i s f i e d B y h a s P a r a m e t e r o b j e c t −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
s a t i s f i e d B y h a s P a r a m e t e r o b j e c t ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; P r o p e r t y ” />
<R O R E K n o w l e d g e M o d e l : i n s t a n t i a t e s P r o p e r t y T y p e r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# h a s P a r a m e t e r ” />
<ROREKnowledgeModel :hasProper tyValue r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# o b j e c t ” />
< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
s e n s e A l l P r o p e r t i e s −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
s e n s e A l l P r o p e r t i e s ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; ComplexFact ” />
<ROREKnowledgeMode l : i n s t an t i a t e sFac tType r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# O p e r a t i o n ” />
<ROREKnowledgeModel:hasProperty r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl#
s e n s e A l l P r o p e r t i e s h a s A l g o r i t h m S e n s e A l l P r o p e r t i e s B y D a t a S a m p l e A l g o r i t h m
” />

< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
s e n s e A l l P r o p e r t i e s h a s A l g o r i t h m S e n s e A l l P r o p e r t i e s B y D a t a S a m p l e A l g o r i t h m
−−>
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<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
s e n s e A l l P r o p e r t i e s h a s A l g o r i t h m S e n s e A l l P r o p e r t i e s B y D a t a S a m p l e A l g o r i t h m
”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; P r o p e r t y ” />
<ROREKnowledgeModel :hasProper tyValue r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl#
S e n s e A l l P r o p e r t i e s B y D a t a S a m p l e A l g o r i t h m ” />

<R O R E K n o w l e d g e M o d e l : i n s t a n t i a t e s P r o p e r t y T y p e r d f : r e s o u r c e =”&
LongTermMemory ; phd . owl# h a s A l g o r i t h m ” />

< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
s e n s e P r o p e r t y −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
s e n s e P r o p e r t y ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; ComplexFact ” />
<ROREKnowledgeMode l : i n s t an t i a t e sFac tType r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# O p e r a t i o n ” />
<ROREKnowledgeModel:hasProperty r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl#
s e n s e P r o p e r t y h a s A l g o r i t h m S e n s e P r o p e r t y B y D a t a S a m p l e A l g o r i t h m
” />

< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
s e n s e P r o p e r t y h a s A l g o r i t h m S e n s e P r o p e r t y B y D a t a S a m p l e A l g o r i t h m
−−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
s e n s e P r o p e r t y h a s A l g o r i t h m S e n s e P r o p e r t y B y D a t a S a m p l e A l g o r i t h m ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; P r o p e r t y ” />
<ROREKnowledgeModel :hasProper tyValue r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# Se n s eP r o pe r t yB y D a t a S am p l eA l g o r i t hm
” />

<R O R E K n o w l e d g e M o d e l : i n s t a n t i a t e s P r o p e r t y T y p e r d f : r e s o u r c e =”&
LongTermMemory ; phd . owl# h a s A l g o r i t h m ” />

< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
s t a t e O f −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl# s t a t e O f ”
>

< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; P r o p e r t y T y p e ” />
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<ROREKnowledgeModel :hasPropertyValueType r d f : r e s o u r c e =”&
LongTermMemory ; phd . owl# O b j e c t ” />

< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
s t a t e O v e r P r o p e r t y −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
s t a t e O v e r P r o p e r t y ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; P r o p e r t y T y p e ” />
<ROREKnowledgeModel :hasPropertyValueType r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# O b j e c t P r o p e r t y ” />
< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
t a r g e t L o c a t i o n −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
t a r g e t L o c a t i o n ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; ComplexFact ” />
<ROREKnowledgeMode l : i n s t an t i a t e sFac tType r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# P a r a m e t e r ” />
< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
t r a n s f e r A l l C o m p l e t e O b j e c t s −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
t r a n s f e r A l l C o m p l e t e O b j e c t s ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; ComplexFact ” />
<ROREKnowledgeMode l : i n s t an t i a t e sFac tType r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# O p e r a t i o n ” />
<ROREKnowledgeModel:hasProperty r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl#
t r a n s f e r A l l C o m p l e t e O b j e c t s h a s A l g o r i t h m T r a n s f e r A l l C o m p l e t e O b j e c t s A l g o r i t h m
” />

< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
t r a n s f e r A l l C o m p l e t e O b j e c t s h a s A l g o r i t h m T r a n s f e r A l l C o m p l e t e O b j e c t s A l g o r i t h m
−−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
t r a n s f e r A l l C o m p l e t e O b j e c t s h a s A l g o r i t h m T r a n s f e r A l l C o m p l e t e O b j e c t s A l g o r i t h m
”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; P r o p e r t y ” />
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<ROREKnowledgeModel :hasProper tyValue r d f : r e s o u r c e =”&
LongTermMemory ; phd . owl#
T r a n s f e r A l l C o m p l e t e O b j e c t s A l g o r i t h m ” />

<R O R E K n o w l e d g e M o d e l : i n s t a n t i a t e s P r o p e r t y T y p e r d f : r e s o u r c e =”&
LongTermMemory ; phd . owl# h a s A l g o r i t h m ” />

< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
t r a n s f e r C o m p l e t e O b j e c t −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
t r a n s f e r C o m p l e t e O b j e c t ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; ComplexFact ” />
<ROREKnowledgeMode l : i n s t an t i a t e sFac tType r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# O p e r a t i o n ” />
<ROREKnowledgeModel:hasProperty r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl#
t r a n s f e r C o m p l e t e O b j e c t h a s A l g o r i t h m T r a n s f e r C o m p l e t e O b j e c t A l g o r i t h m
” />

<ROREKnowledgeModel:hasProperty r d f : r e s o u r c e =”&
LongTermMemory ; phd . owl#
t r a n s f e r C o m p l e t e O b j e c t h a s P a r a m e t e r t a r g e t L o c a t i o n ” />

<ROREKnowledgeModel:hasProperty r d f : r e s o u r c e =”&
LongTermMemory ; phd . owl#
t r a n s f e r C o m p l e t e O b j e c t h a s P a r a m e t e r t r a n s f e r I n t e r f a c e R e s o u r c e
” />

< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
t r a n s f e r C o m p l e t e O b j e c t h a s A l g o r i t h m T r a n s f e r C o m p l e t e O b j e c t A l g o r i t h m
−−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
t r a n s f e r C o m p l e t e O b j e c t h a s A l g o r i t h m T r a n s f e r C o m p l e t e O b j e c t A l g o r i t h m
”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; P r o p e r t y ” />
<ROREKnowledgeModel :hasProper tyValue r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# T r a n s f e r C o m p l e t e O b j e c t A l g o r i t h m ” />
<R O R E K n o w l e d g e M o d e l : i n s t a n t i a t e s P r o p e r t y T y p e r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# h a s A l g o r i t h m ” />
< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
t r a n s f e r C o m p l e t e O b j e c t h a s P a r a m e t e r t a r g e t L o c a t i o n −−>
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<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
t r a n s f e r C o m p l e t e O b j e c t h a s P a r a m e t e r t a r g e t L o c a t i o n ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; P r o p e r t y ” />
<R O R E K n o w l e d g e M o d e l : i n s t a n t i a t e s P r o p e r t y T y p e r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# h a s P a r a m e t e r ” />
<ROREKnowledgeModel :hasProper tyValue r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# t a r g e t L o c a t i o n ” />
< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
t r a n s f e r C o m p l e t e O b j e c t h a s P a r a m e t e r t r a n s f e r I n t e r f a c e R e s o u r c e
−−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
t r a n s f e r C o m p l e t e O b j e c t h a s P a r a m e t e r t r a n s f e r I n t e r f a c e R e s o u r c e ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; P r o p e r t y ” />
<R O R E K n o w l e d g e M o d e l : i n s t a n t i a t e s P r o p e r t y T y p e r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# h a s P a r a m e t e r ” />
<ROREKnowledgeModel :hasProper tyValue r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# t r a n s f e r I n t e r f a c e R e s o u r c e ” />
< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
t r a n s f e r I n t e r f a c e R e s o u r c e −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
t r a n s f e r I n t e r f a c e R e s o u r c e ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; ComplexFact ” />
<ROREKnowledgeMode l : i n s t an t i a t e sFac tType r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# P a r a m e t e r ” />
< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
t r a n s f o r m s S t a t e O f −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
t r a n s f o r m s S t a t e O f ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; P r o p e r t y T y p e ” />
<ROREKnowledgeModel :hasPropertyValueType r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# KeyObject ” />
< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
t r i g g e r e d B y −−>
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<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
t r i g g e r e d B y ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; P r o p e r t y T y p e ” />
<ROREKnowledgeModel :hasPropertyValueType r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# Event ” />
< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
t r i g g e r s E n d E v e n t −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
t r i g g e r s E n d E v e n t ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; P r o p e r t y T y p e ” />
<ROREKnowledgeModel :hasPropertyValueType r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# Event ” />
< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
t r i g g e r s S t a r t E v e n t −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl#
t r i g g e r s S t a r t E v e n t ”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; P r o p e r t y T y p e ” />
<ROREKnowledgeModel :hasPropertyValueType r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# Event ” />
< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
v a l u e F o r −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl# v a l u e F o r
”>
< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; P r o p e r t y T y p e ” />
<ROREKnowledgeModel :hasPropertyValueType r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# O b j e c t ” />
< / o w l : N a m e d I n d i v i d u a l>

<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
v a l u e I s −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl# v a l u e I s ”
>

< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; P r o p e r t y T y p e ” />
<ROREKnowledgeModel :hasPropertyValueType r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# Value ” />
< / o w l : N a m e d I n d i v i d u a l>
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<!−− h t t p : / / j a m e s n a i s h . wordpres s . com / LongTermMemory / phd . owl #
v a l u e O f −−>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&LongTermMemory ; phd . owl# va lueOf ”
>

< r d f : t y p e r d f : r e s o u r c e =”&ROREKnowledgeModel ; P r o p e r t y T y p e ” />
<ROREKnowledgeModel :hasPropertyValueType r d f : r e s o u r c e =”&

LongTermMemory ; phd . owl# O b j e c t P r o p e r t y ” />
< / o w l : N a m e d I n d i v i d u a l>

<!−−
/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /

/ /
/ / R u l e s
/ /
/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /

−−>
< r d f : D e s c r i p t i o n r d f : a b o u t =” u r n : s w r l # c h i l d ”>

< r d f : t y p e r d f : r e s o u r c e =”&s w r l ; V a r i a b l e ” />
< / r d f : D e s c r i p t i o n>
< r d f : D e s c r i p t i o n r d f : a b o u t =” u r n : s w r l # p a r e n t ”>

< r d f : t y p e r d f : r e s o u r c e =”&s w r l ; V a r i a b l e ” />
< / r d f : D e s c r i p t i o n>
< r d f : D e s c r i p t i o n r d f : a b o u t =” u r n : s w r l # f1 ”>

< r d f : t y p e r d f : r e s o u r c e =”&s w r l ; V a r i a b l e ” />
< / r d f : D e s c r i p t i o n>
< r d f : D e s c r i p t i o n r d f : a b o u t =” u r n : s w r l # f2 ”>

< r d f : t y p e r d f : r e s o u r c e =”&s w r l ; V a r i a b l e ” />
< / r d f : D e s c r i p t i o n>
< r d f : D e s c r i p t i o n>

< r d f : t y p e r d f : r e s o u r c e =”&s w r l ; Imp ” />
<s w r l : h e a d>

< r d f : D e s c r i p t i o n>
< r d f : t y p e r d f : r e s o u r c e =”&s w r l ; AtomLis t ” />
< r d f : r e s t r d f : r e s o u r c e =”&r d f ; n i l ” />
< r d f : f i r s t>

< r d f : D e s c r i p t i o n>
< r d f : t y p e r d f : r e s o u r c e =”&s w r l ;

I n d i v i d u a l P r o p e r t y A t o m ” />
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< s w r l : p r o p e r t y P r e d i c a t e r d f : r e s o u r c e =”&
ROREKnowledgeModel ; i n s t a n t i a t e s F a c t T y p e ” /
>

<s w r l : a r g u m e n t 1 r d f : r e s o u r c e =” u r n : s w r l # c h i l d
” />

<s w r l : a r g u m e n t 2 r d f : r e s o u r c e =” u r n : s w r l # f2 ” />
< / r d f : D e s c r i p t i o n>

< / r d f : f i r s t>
< / r d f : D e s c r i p t i o n>

< / s w r l : h e a d>
<s w r l : b o d y>

< r d f : D e s c r i p t i o n>
< r d f : t y p e r d f : r e s o u r c e =”&s w r l ; AtomLis t ” />
< r d f : r e s t>

< r d f : D e s c r i p t i o n>
< r d f : t y p e r d f : r e s o u r c e =”&s w r l ; AtomLis t ” />
< r d f : f i r s t>

< r d f : D e s c r i p t i o n>
< r d f : t y p e r d f : r e s o u r c e =”&s w r l ;

ClassAtom ” />
< s w r l : c l a s s P r e d i c a t e r d f : r e s o u r c e =”&

ROREKnowledgeModel ; F a c t ” />
<s w r l : a r g u m e n t 1 r d f : r e s o u r c e =”

u r n : s w r l # p a r e n t ” />
< / r d f : D e s c r i p t i o n>

< / r d f : f i r s t>
< r d f : r e s t>

< r d f : D e s c r i p t i o n>
< r d f : t y p e r d f : r e s o u r c e =”&s w r l ;

AtomLis t ” />
< r d f : r e s t>

< r d f : D e s c r i p t i o n>
< r d f : t y p e r d f : r e s o u r c e =”&

s w r l ; AtomLis t ” />
< r d f : f i r s t>

< r d f : D e s c r i p t i o n>
< r d f : t y p e

r d f : r e s o u r c e =”&
s w r l ;
I n d i v i d u a l P r o p e r t y A t o m
” />
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<

s w r l : p r o p e r t y P r e d i c a t e
r d f : r e s o u r c e =”&

ROREKnowledgeModel
;
i n s t a n t i a t e s F a c t T y p e
” />

<s w r l : a r g u m e n t 2
r d f : r e s o u r c e =”
u r n : s w r l # f2 ” />

<s w r l : a r g u m e n t 1
r d f : r e s o u r c e =”
u r n : s w r l # p a r e n t ” /
>

< / r d f : D e s c r i p t i o n>
< / r d f : f i r s t>
< r d f : r e s t>

< r d f : D e s c r i p t i o n>
< r d f : t y p e

r d f : r e s o u r c e =”&
s w r l ; AtomLis t ” />

< r d f : r e s t
r d f : r e s o u r c e =”&
r d f ; n i l ” />

< r d f : f i r s t>
< r d f : D e s c r i p t i o n

>

< r d f : t y p e
r d f : r e s o u r c e
=”&s w r l ;
I n d i v i d u a l P r o p e r t y A t o m
” />

<

s w r l : p r o p e r t y P r e d i c a t e

r d f : r e s o u r c e
=”&
ROREKnowledgeModel
;
subTypeOf
” />
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<

s w r l : a r g u m e n t 1

r d f : r e s o u r c e
=”
u r n : s w r l #
f1 ” />

<

s w r l : a r g u m e n t 2

r d f : r e s o u r c e
=”
u r n : s w r l #
f2 ” />

< /
r d f : D e s c r i p t i o n
>

< / r d f : f i r s t>
< / r d f : D e s c r i p t i o n>

< / r d f : r e s t>
< / r d f : D e s c r i p t i o n>

< / r d f : r e s t>
< r d f : f i r s t>

< r d f : D e s c r i p t i o n>
< r d f : t y p e r d f : r e s o u r c e =”&

s w r l ;
I n d i v i d u a l P r o p e r t y A t o m ” />

< s w r l : p r o p e r t y P r e d i c a t e
r d f : r e s o u r c e =”&
ROREKnowledgeModel ;
i n s t a n t i a t e s F a c t T y p e ” />

<s w r l : a r g u m e n t 1 r d f : r e s o u r c e
=” u r n : s w r l # c h i l d ” />

<s w r l : a r g u m e n t 2 r d f : r e s o u r c e
=” u r n : s w r l # f1 ” />

< / r d f : D e s c r i p t i o n>
< / r d f : f i r s t>

< / r d f : D e s c r i p t i o n>
< / r d f : r e s t>

< / r d f : D e s c r i p t i o n>
< / r d f : r e s t>
< r d f : f i r s t>
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< r d f : D e s c r i p t i o n>
< r d f : t y p e r d f : r e s o u r c e =”&s w r l ; ClassAtom ” />
< s w r l : c l a s s P r e d i c a t e r d f : r e s o u r c e =”&

ROREKnowledgeModel ; F a c t ” />
<s w r l : a r g u m e n t 1 r d f : r e s o u r c e =” u r n : s w r l # c h i l d

” />
< / r d f : D e s c r i p t i o n>

< / r d f : f i r s t>
< / r d f : D e s c r i p t i o n>

< / s w r l : b o d y>
< / r d f : D e s c r i p t i o n>

< / rdf :RDF>
<!−− Genera ted by t h e OWL API ( v e r s i o n 3 . 3 . 1 9 5 7 ) h t t p : / / ow l ap i .

s o u r c e f o r g e . n e t −−>
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1. Cycle 1

1.1. Attempted Completeness Analysis
Analysis Rules Found

Fired Analysis Rule "HasISMObjectsRule" with result "false". Overall conclusion is: Model is

not complete

1.2. Attempted Quality Analysis
Analysis Rules Found

Fired Analysis Rule "HasISMObjectsRule" with result "false".

New Information Requirement Generated

Goal Fact Type: ISMObject

Goal Postcondition: 

PREFIX im:

<http://jamesnaish.wordpress.com/ROREKnowledgeModel.ow

l#> PREFIX ltm:

<http://jamesnaish.wordpress.com/LongTermMemory/phd.ow

l#>  ASK { Individual(?o), Type(?o, im:Fact),

PropertyValue(?o, im:instantiatesFactType,

ltm:ISMObject) }

1.3. Attempted Chunk-based Inference
Inference Chunks Found

1.4. Attempted Rule-based Inference
Production Scripts Found

Attempting to fire the Production Script "HasISMObjectsRule".

Source Ont is: http://jamesnaish.wordpress.com/Model/AutopilotSourceModel.owl

Temp Ont is: http://jamesnaish.wordpress.com/Temporary/TEMP0480468299.owl

Object <- RESULTSET [

SpecObject=CREATE ($Object.name$Class, ISMObject)

: Success

Property <- Object.ALL:hasProperty [

SpecObject.hasISMProperty=CREATE ($Property.name$,

ISMProperty)

: Success

$Property.name$.hasPropertyType=Property.hasValueType

: Success

SpecObject.hasISMProperty=CREATE ($Property.name$,

ISMProperty)

: Success

$Property.name$.hasPropertyType=Property.hasValueType

: Success



SpecObject.hasISMProperty=CREATE ($Property.name$,

ISMProperty)

: Success

$Property.name$.hasPropertyType=Property.hasValueType

: Success

SpecObject.hasISMProperty=CREATE ($Property.name$,

ISMProperty)

: Success

$Property.name$.hasPropertyType=Property.hasValueType

: Success

]: Success

ISMObjects=SpecObject

: Success

SpecObject=CREATE ($Object.name$Class, ISMObject)

: Success

Property <- Object.ALL:hasProperty [

SpecObject.hasISMProperty=CREATE ($Property.name$,

ISMProperty)

: Success

$Property.name$.hasPropertyType=Property.hasValueType

: Success

]: Success

ISMObjects=SpecObject

: Success

SpecObject=CREATE ($Object.name$Class, ISMObject)

: Success

Property <- Object.ALL:hasProperty [

]: Success

ISMObjects=SpecObject

: Success

SpecObject=CREATE ($Object.name$Class, ISMObject)

: Success

Property <- Object.ALL:hasProperty [

]: Success

ISMObjects=SpecObject

: Success

SpecObject=CREATE ($Object.name$Class, ISMObject)

: Success

Property <- Object.ALL:hasProperty [

]: Success



ISMObjects=SpecObject

: Success

SpecObject=CREATE ($Object.name$Class, ISMObject)

: Success

Property <- Object.ALL:hasProperty [

SpecObject.hasISMProperty=CREATE ($Property.name$,

ISMProperty)

: Success

$Property.name$.hasPropertyType=Property.hasValueType

: Success

]: Success

ISMObjects=SpecObject

: Success

]: Success

The production script was fired successfully, producing the following facts:

PlaneClass

XGyroClass

SkyClass

XControllerClass

YControllerClass

YGyroClass

1.5. Attempted Integration
Integration was attempted using the "Additive" strategy.

Integration was successful.



2. Cycle 2

2.1. Attempted Completeness Analysis
Analysis Rules Found

Fired Analysis Rule "HasISMObjectsRule" with result "true". Overall conclusion is: Model is

not complete

Fired Analysis Rule "HasMonitorReportRule" with result "false". Overall conclusion is: Model

is not complete

2.2. Attempted Quality Analysis
Analysis Rules Found

Fired Analysis Rule "HasMonitorReportRule" with result "false".

New Information Requirement Generated

Goal Fact Type: Report

Goal Postcondition: 

PREFIX im:

<http://jamesnaish.wordpress.com/ROREKnowledgeModel.ow

l#>  PREFIX ltm:

<http://jamesnaish.wordpress.com/LongTermMemory/phd.ow

l#> ASK { Individual(?r), Type(?d, im:Fact),

PropertyValue(?d, im:instantiatesFactType, ltm:Report)

}

2.3. Attempted Rule-based Inference
Production Scripts Found

Attempting to fire the Production Script "HasMonitorReportRule".

Source Ont is: http://jamesnaish.wordpress.com/Model/AutopilotSourceModel.owl

Temp Ont is: http://jamesnaish.wordpress.com/Temporary/TEMP0864148981.owl

CKeyObject <- RESULTSET [

CListReport=CREATE ($CKeyObject.name$ListReport,

Report)

: Success

CListReport.hasField=CREATE (has$CKeyObject.name$s,

String)

: Success

Reports=CListReport

: Success

CReport=CREATE ($CKeyObject.name$Report, Report)

: Success

CReport.hasField=CREATE ($CKeyObject.name$Name,

String)

: Success



CProperty <- CKeyObject.ALL:hasProperty [

CReport.hasField=CREATE

($CKeyObject.name$$CProperty.name$, String)

: Success

CReport.hasField=CREATE

($CKeyObject.name$$CProperty.name$, String)

: Success

CReport.hasField=CREATE

($CKeyObject.name$$CProperty.name$, String)

: Success

CReport.hasField=CREATE

($CKeyObject.name$$CProperty.name$, String)

: Success

]: Success

Reports=CReport

: Success

]: Success

The production script was fired successfully, producing the following facts:

PlaneListReport

PlaneReport

2.4. Attempted Integration
Integration was attempted using the "Additive" strategy.

Integration was successful.



3. Cycle 4

3.1. Attempted Completeness Analysis
Analysis Rules Found

Fired Analysis Rule "HasISMObjectsRule" with result "true". Overall conclusion is: Model is

not complete

Fired Analysis Rule "HasMonitorReportRule" with result "true". Overall conclusion is: Model

is not complete

Fired Analysis Rule "HasFunctionalResponsibilitiesRule" with result "false". Overall

conclusion is: Model is not complete

3.2. Attempted Quality Analysis
Analysis Rules Found

Fired Analysis Rule "HasFunctionalResponsibilitiesRule" with result "false".

New Information Requirement Generated

Goal Fact Type: Operation

Goal Postcondition: 

PREFIX im:

<http://jamesnaish.wordpress.com/ROREKnowledgeModel.ow

l#>  PREFIX ltm:

<http://jamesnaish.wordpress.com/LongTermMemory/phd.ow

l#> ASK { Individual(?r), Type(?d, im:Fact),

PropertyValue(?d, im:instantiatesFactType,

ltm:Operation)  }

3.3. Attempted Chunk-based Inference
Inference Chunks Found

3.4. Attempted Rule-based Inference
Production Scripts Found

Attempting to fire the Production Script "HasFunctionalResponsibilitiesRule".

Source Ont is: http://jamesnaish.wordpress.com/Model/AutopilotSourceModel.owl

Temp Ont is: http://jamesnaish.wordpress.com/Temporary/TEMP1672075311.owl

CDomain <- RESULTSET [

KeyOSMObject=CDomain.hasDomainGoal.hasGoalState.realis

edBy.transformsStateOf

: Success

KeyISMObject=SELECT (SELECT ?o WHERE { Individual(?o),

SameAs(?o, tm:$KeyOSMObject.name$Class) })

: Success

FIRING CONDITIONAL:[

CDomain.hasDomainGoal.hasName is Control? [

COperation=CREATE (issueCommandTo$KeyOSMObject.name$,



Operation)

: Success

Parameters=LIST:Parameter

: Success

CParameter=CREATE ($KeyOSMObject.name$Command,

Parameter)

: Success

Parameters=CParameter

: Success

COperation.hasParameter=Parameters

: Success

KeyISMObject.hasOperation=COperation

: Success

]: Success

]: Success

KeyISMObjects=KeyISMObject

: Success

KeyOSMObject=CDomain.hasDomainGoal.hasGoalState.realis

edBy.transformsStateOf

: Success

KeyISMObject=SELECT (SELECT ?o WHERE { Individual(?o),

SameAs(?o, tm:$KeyOSMObject.name$Class) })

: Success

FIRING CONDITIONAL:[

CDomain.hasDomainGoal.hasName is Sensing? [

COperation=CREATE (sensePropertyOf$KeyOSMObject.name$,

Operation)

: Success

Parameters=LIST:Parameter

: Success

CParameter=CREATE ($KeyOSMObject.name$Property,

Parameter)

: Success

Parameters=CParameter

: Success

COperation.hasParameter=Parameters

: Success

KeyISMObject.hasOperation=COperation

: Success

]: Success



]: Success

KeyISMObjects=KeyISMObject

: Success

KeyOSMObject=CDomain.hasDomainGoal.hasGoalState.realis

edBy.transformsStateOf

: Success

KeyISMObject=SELECT (SELECT ?o WHERE { Individual(?o),

SameAs(?o, tm:$KeyOSMObject.name$Class) })

: Success

FIRING CONDITIONAL:[

CDomain.hasDomainGoal.hasName is Sensing? [

COperation=CREATE (sensePropertyOf$KeyOSMObject.name$,

Operation)

: Success

Parameters=LIST:Parameter

: Success

CParameter=CREATE ($KeyOSMObject.name$Property,

Parameter)

: Success

Parameters=CParameter

: Success

COperation.hasParameter=Parameters

: Success

KeyISMObject.hasOperation=COperation

: Success

]: Success

]: Success

KeyISMObjects=KeyISMObject

: Success

KeyOSMObject=CDomain.hasDomainGoal.hasGoalState.realis

edBy.transformsStateOf

: Success

KeyISMObject=SELECT (SELECT ?o WHERE { Individual(?o),

SameAs(?o, tm:$KeyOSMObject.name$Class) })

: Success

FIRING CONDITIONAL:[

CDomain.hasDomainGoal.hasName is Control? [

COperation=CREATE (issueCommandTo$KeyOSMObject.name$,

Operation)

: Success



Parameters=LIST:Parameter

: Success

CParameter=CREATE ($KeyOSMObject.name$Command,

Parameter)

: Success

Parameters=CParameter

: Success

COperation.hasParameter=Parameters

: Success

KeyISMObject.hasOperation=COperation

: Success

]: Success

]: Success

KeyISMObjects=KeyISMObject

: Success

]: Success

Source Ont is: http://jamesnaish.wordpress.com/Model/AutopilotSourceModel.owl

Temp Ont is: http://jamesnaish.wordpress.com/Temporary/TEMP1672075311.owl

CDomain <- RESULTSET [

KeyOSMObject=CDomain.hasDomainGoal.hasGoalState.realis

edBy.transformsStateOf

: Success

AgentOSMObject=CDomain.hasDomainGoal.hasGoalState.real

isedBy.enactedBy

: Success

AgentISMObject=SELECT (SELECT ?o WHERE {

Individual(?o), SameAs(?o,

tm:$AgentOSMObject.name$Class) })

: Success

FIRING CONDITIONAL:[

CDomain.hasDomainGoal.hasName is Control? [

COperation=CREATE (command$KeyOSMObject.name$Objects,

Operation)

: Success

AgentISMObject.hasOperation=COperation

: Success

]: Success

]: Success

AgentISMObjects=AgentISMObject

: Success



KeyOSMObject=CDomain.hasDomainGoal.hasGoalState.realis

edBy.transformsStateOf

: Success

AgentOSMObject=CDomain.hasDomainGoal.hasGoalState.real

isedBy.enactedBy

: Success

AgentISMObject=SELECT (SELECT ?o WHERE {

Individual(?o), SameAs(?o,

tm:$AgentOSMObject.name$Class) })

: Success

FIRING CONDITIONAL:[

CDomain.hasDomainGoal.hasName is Sensing? [

COperation=CREATE (sense$KeyOSMObject.name$Objects,

Operation)

: Success

AgentISMObject.hasOperation=COperation

: Success

]: Success

]: Success

AgentISMObjects=AgentISMObject

: Success

KeyOSMObject=CDomain.hasDomainGoal.hasGoalState.realis

edBy.transformsStateOf

: Success

AgentOSMObject=CDomain.hasDomainGoal.hasGoalState.real

isedBy.enactedBy

: Success

AgentISMObject=SELECT (SELECT ?o WHERE {

Individual(?o), SameAs(?o,

tm:$AgentOSMObject.name$Class) })

: Success

FIRING CONDITIONAL:[

CDomain.hasDomainGoal.hasName is Sensing? [

COperation=CREATE (sense$KeyOSMObject.name$Objects,

Operation)

: Success

AgentISMObject.hasOperation=COperation

: Success

]: Success

]: Success



AgentISMObjects=AgentISMObject

: Success

KeyOSMObject=CDomain.hasDomainGoal.hasGoalState.realis

edBy.transformsStateOf

: Success

AgentOSMObject=CDomain.hasDomainGoal.hasGoalState.real

isedBy.enactedBy

: Success

AgentISMObject=SELECT (SELECT ?o WHERE {

Individual(?o), SameAs(?o,

tm:$AgentOSMObject.name$Class) })

: Success

FIRING CONDITIONAL:[

CDomain.hasDomainGoal.hasName is Control? [

COperation=CREATE (command$KeyOSMObject.name$Objects,

Operation)

: Success

AgentISMObject.hasOperation=COperation

: Success

]: Success

]: Success

AgentISMObjects=AgentISMObject

: Success

]: Success

The production script was fired successfully, producing the following facts:

PlaneClass

PlaneClass

PlaneClass

PlaneClass

YControllerClass

XGyroClass

YGyroClass

XControllerClass

3.5. Attempted Integration
Pairing Facts "PlaneClass" and "PlaneClass".

Pairing Facts "PlaneClass" and "PlaneClass".

Pairing Facts "PlaneClass" and "PlaneClass".

Pairing Facts "PlaneClass" and "PlaneClass".

Pairing Facts "XControllerClass" and "XControllerClass".

Pairing Facts "XGyroClass" and "XGyroClass".



Pairing Facts "YControllerClass" and "YControllerClass".

Pairing Facts "YGyroClass" and "YGyroClass".

Integration was attempted using the "Additive" strategy.

Integration was successful.



4. Cycle 6

4.1. Attempted Completeness Analysis
Analysis Rules Found

Fired Analysis Rule "HasISMObjectsRule" with result "true". Overall conclusion is: Model is

not complete

Fired Analysis Rule "HasMonitorReportRule" with result "true". Overall conclusion is: Model

is not complete

Fired Analysis Rule "HasFunctionalResponsibilitiesRule" with result "true". Overall conclusion

is: Model is not complete

4.2. Attempted Quality Analysis
Analysis Rules Found

Fired Analysis Rule "HasFunctionalResponsibilitiesRule" with result "true".

Fired Analysis Rule "HasFunctionalResponsibilitiesRule" with result "true".

Fired Analysis Rule "HasFunctionalResponsibilitiesRule" with result "true".

Fired Analysis Rule "HasFunctionalResponsibilitiesRule" with result "false".

New Information Requirement Generated

Goal Fact Type: Resource

Goal Postcondition: 

PREFIX im:

<http://jamesnaish.wordpress.com/ROREKnowledgeModel.ow

l#>  PREFIX ltm:

<http://jamesnaish.wordpress.com/LongTermMemory/phd.ow

l#> ASK { Individual(?p), Type(?p, im:Property),

PropertyValue(?ismprop, im:instantiatesFactType,

ltm:ISMProperty), PropertyValue(?resource,

im:instantiatesFactType, ltm:Resource),

PropertyValue(?ismprop, im:hasProperty, ?p),

PropertyValue(?p, im:hasPropertyValue, ?resource),

PropertyValue(?p, im:instantiatesPropertyType,

ltm:hasDataSource)  }

4.3. Attempted Chunk-based Inference
Inference Chunks Found

4.4. Attempted Integration
Pairing Facts "senseAllProperties" and "sensePlaneObjects".

Pairing Facts "senseProperty" and "sensePropertyOfPlane".

Integration was attempted using the "Additive" strategy.

Integration was successful.



5. Cycle 8

5.1. Attempted Completeness Analysis
Analysis Rules Found

Fired Analysis Rule "HasISMObjectsRule" with result "true". Overall conclusion is: Model is

not complete

Fired Analysis Rule "HasFunctionalResponsibilitiesRule" with result "true". Overall conclusion

is: Model is not complete

Fired Analysis Rule "HasMonitorReportRule" with result "true". Overall conclusion is: Model

is not complete

Fired Analysis Rule "DataSourcesSpecifiedRule" with result "false". Overall conclusion is:

Model is not complete

5.2. Attempted Quality Analysis
Analysis Rules Found

Fired Analysis Rule "DataSourcesSpecifiedRule" with result "true".

Fired Analysis Rule "DataSourcesSpecifiedRule" with result "true".

Fired Analysis Rule "DataSourcesSpecifiedRule" with result "false".

New Information Requirement Generated

Goal Fact Type: Resource

Goal Postcondition: 

PREFIX im:

<http://jamesnaish.wordpress.com/ROREKnowledgeModel.ow

l#>  PREFIX ltm:

<http://jamesnaish.wordpress.com/LongTermMemory/phd.ow

l#> ASK { Individual(?p), Type(?p, im:Property),

PropertyValue(?ismprop, im:instantiatesFactType,

ltm:ISMProperty), PropertyValue(?resource,

im:instantiatesFactType, ltm:Resource),

PropertyValue(?ismprop, im:hasProperty, ?p),

PropertyValue(?p, im:hasPropertyValue, ?resource),

PropertyValue(?p, im:instantiatesPropertyType,

ltm:hasDataSource)  }

5.3. Attempted Integration
Pairing Facts "dispatchAllNotifiedSampleCommands" and "commandPlaneObjects".

Pairing Facts "dispatchNotifiedSampleCommand" and "issueCommandToPlane".

Integration was attempted using the "Additive" strategy.

Integration was successful.



6. Cycle 10

6.1. Attempted Completeness Analysis
Analysis Rules Found

Fired Analysis Rule "HasISMObjectsRule" with result "true". Overall conclusion is: Model is

not complete

Fired Analysis Rule "HasFunctionalResponsibilitiesRule" with result "true". Overall conclusion

is: Model is not complete

Fired Analysis Rule "HasMonitorReportRule" with result "true". Overall conclusion is: Model

is not complete

Fired Analysis Rule "DataSourcesSpecifiedRule" with result "false". Overall conclusion is:

Model is not complete

6.2. Attempted Quality Analysis
Analysis Rules Found

Fired Analysis Rule "DataSourcesSpecifiedRule" with result "false".

New Information Requirement Generated

Goal Fact Type: Resource

Goal Postcondition: 

PREFIX im:

<http://jamesnaish.wordpress.com/ROREKnowledgeModel.ow

l#>  PREFIX ltm:

<http://jamesnaish.wordpress.com/LongTermMemory/phd.ow

l#> ASK { Individual(?p), Type(?p, im:Property),

PropertyValue(?ismprop, im:instantiatesFactType,

ltm:ISMProperty), PropertyValue(?resource,

im:instantiatesFactType, ltm:Resource),

PropertyValue(?ismprop, im:hasProperty, ?p),

PropertyValue(?p, im:hasPropertyValue, ?resource),

PropertyValue(?p, im:instantiatesPropertyType,

ltm:hasDataSource)  }

6.3. Attempted Chunk-based Inference
Inference Chunks Found

6.4. Attempted Rule-based Inference
Production Scripts Found

6.5. Attempted Elicitation
Elicitation Stimuli Found

Attempting to fire the Elicitation Stimulus "FunctionalResourceConfigurationStimulus", a fact-

editing stimulus

The elicitation stimulus was fired successfully, producing the following facts:

SensorInterface



ControlInterface

6.6. Attempted Integration
Pairing Facts "ControlInterface" and "ControlInterface".

Pairing Facts "SensorInterface" and "SensorInterface".

Integration was attempted using the "Additive" strategy.

Integration was successful.



7. Cycle 12

7.1. Attempted Completeness Analysis
Analysis Rules Found

Fired Analysis Rule "HasISMObjectsRule" with result "true". Overall conclusion is: Model is

not complete

Fired Analysis Rule "HasFunctionalResponsibilitiesRule" with result "true". Overall conclusion

is: Model is not complete

Fired Analysis Rule "HasMonitorReportRule" with result "true". Overall conclusion is: Model

is not complete

Fired Analysis Rule "DataSourcesSpecifiedRule" with result "false". Overall conclusion is:

Model is not complete

7.2. Attempted Quality Analysis
Analysis Rules Found

Fired Analysis Rule "DataSourcesSpecifiedRule" with result "false".

New Information Requirement Generated

Goal Fact Type: Resource

Goal Postcondition: 

PREFIX im:

<http://jamesnaish.wordpress.com/ROREKnowledgeModel.ow

l#>  PREFIX ltm:

<http://jamesnaish.wordpress.com/LongTermMemory/phd.ow

l#> ASK { Individual(?p), Type(?p, im:Property),

PropertyValue(?ismprop, im:instantiatesFactType,

ltm:ISMProperty), PropertyValue(?resource,

im:instantiatesFactType, ltm:Resource),

PropertyValue(?ismprop, im:hasProperty, ?p),

PropertyValue(?p, im:hasPropertyValue, ?resource),

PropertyValue(?p, im:instantiatesPropertyType,

ltm:hasDataSource)  }

7.3. Attempted Elicitation
Elicitation Stimuli Found

7.4. Attempted Elicitation
Elicitation Stimuli Found

Attempting to fire the Elicitation Stimulus "DataSourceAndSinkStimulus", a fact-editing

stimulus

The elicitation stimulus was fired successfully, producing the following facts:

NotifiedSampleCommand

SkyClass

PlaneClass



XControllerClass

XGyroClass

YControllerClass

YGyroClass

7.5. Attempted Integration
Pairing Facts "NotifiedSampleCommand" and "NotifiedSampleCommand".

Pairing Facts "PlaneClass" and "PlaneClass".

Pairing Facts "SkyClass" and "SkyClass".

Pairing Facts "XControllerClass" and "XControllerClass".

Pairing Facts "XGyroClass" and "XGyroClass".

Pairing Facts "YControllerClass" and "YControllerClass".

Pairing Facts "YGyroClass" and "YGyroClass".

Integration was attempted using the "Additive" strategy.

Integration was successful.



8. Cycle 14

8.1. Attempted Completeness Analysis
Analysis Rules Found

Fired Analysis Rule "HasISMObjectsRule" with result "true". Overall conclusion is: Model is

not complete

Fired Analysis Rule "HasFunctionalResponsibilitiesRule" with result "true". Overall conclusion

is: Model is not complete

Fired Analysis Rule "DataSinksSpecifiedRule" with result "true". Overall conclusion is: Model

is not complete

Fired Analysis Rule "HasMonitorReportRule" with result "true". Overall conclusion is: Model

is not complete

Fired Analysis Rule "DataSourcesSpecifiedRule" with result "true". Overall conclusion is:

Model is complete thus far



Appendix D

File Transfer Example Log
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1. Cycle 1

1.1. Attempted Completeness Analysis
Analysis Rules Found

Fired Analysis Rule "HasISMObjectsRule" with result "false". Overall conclusion is: Model is

not complete

1.2. Attempted Quality Analysis
Analysis Rules Found

Fired Analysis Rule "HasISMObjectsRule" with result "false".

New Information Requirement Generated

Goal Fact Type: ISMObject

Goal Postcondition: 

PREFIX im:

<http://jamesnaish.wordpress.com/ROREKnowledgeModel.ow

l#> PREFIX ltm:

<http://jamesnaish.wordpress.com/LongTermMemory/phd.ow

l#>  ASK { Individual(?o), Type(?o, im:Fact),

PropertyValue(?o, im:instantiatesFactType,

ltm:ISMObject) }

1.3. Attempted Chunk-based Inference
Inference Chunks Found

1.4. Attempted Rule-based Inference
Production Scripts Found

Attempting to fire the Production Script "HasISMObjectsRule".

Source Ont is: http://jamesnaish.wordpress.com/Model/FileTransferSourceModel.owl

Temp Ont is: http://jamesnaish.wordpress.com/Temporary/TEMP0604616089.owl

Object <- RESULTSET [

SpecObject=CREATE ($Object.name$Class, ISMObject)

: Success

Property <- Object.ALL:hasProperty [

]: Success

ISMObjects=SpecObject

: Success

SpecObject=CREATE ($Object.name$Class, ISMObject)

: Success

Property <- Object.ALL:hasProperty [

]: Success

ISMObjects=SpecObject

: Success

SpecObject=CREATE ($Object.name$Class, ISMObject)



: Success

Property <- Object.ALL:hasProperty [

]: Success

ISMObjects=SpecObject

: Success

SpecObject=CREATE ($Object.name$Class, ISMObject)

: Success

Property <- Object.ALL:hasProperty [

]: Success

ISMObjects=SpecObject

: Success

SpecObject=CREATE ($Object.name$Class, ISMObject)

: Success

Property <- Object.ALL:hasProperty [

]: Success

ISMObjects=SpecObject

: Success

SpecObject=CREATE ($Object.name$Class, ISMObject)

: Success

Property <- Object.ALL:hasProperty [

]: Success

ISMObjects=SpecObject

: Success

]: Success

The production script was fired successfully, producing the following facts:

DownloadFileClass

RemoteDirectoryClass

UploadFileClass

FileUploaderClass

FileDownloaderClass

LocalDirectoryClass

1.5. Attempted Integration
Integration was attempted using the "Additive" strategy.

Integration was successful.



2. Cycle 2

2.1. Attempted Completeness Analysis
Analysis Rules Found

Fired Analysis Rule "HasISMObjectsRule" with result "true". Overall conclusion is: Model is

not complete

Fired Analysis Rule "HasMonitorReportRule" with result "false". Overall conclusion is: Model

is not complete

2.2. Attempted Quality Analysis
Analysis Rules Found

Fired Analysis Rule "HasMonitorReportRule" with result "false".

New Information Requirement Generated

Goal Fact Type: Report

Goal Postcondition: 

PREFIX im:

<http://jamesnaish.wordpress.com/ROREKnowledgeModel.ow

l#>  PREFIX ltm:

<http://jamesnaish.wordpress.com/LongTermMemory/phd.ow

l#> ASK { Individual(?r), Type(?d, im:Fact),

PropertyValue(?d, im:instantiatesFactType, ltm:Report)

}

2.3. Attempted Chunk-based Inference
Inference Chunks Found

2.4. Attempted Rule-based Inference
Production Scripts Found

Attempting to fire the Production Script "HasMonitorReportRule".

Source Ont is: http://jamesnaish.wordpress.com/Model/FileTransferSourceModel.owl

Temp Ont is: http://jamesnaish.wordpress.com/Temporary/TEMP1301040187.owl

CKeyObject <- RESULTSET [

]: Success

The production script was fired successfully, producing the following facts:

2.5. Attempted Integration
Integration was attempted using the "Additive" strategy.

Integration was successful.



3. Cycle 4

3.1. Attempted Completeness Analysis
Analysis Rules Found

Fired Analysis Rule "HasISMObjectsRule" with result "true". Overall conclusion is: Model is

not complete

Fired Analysis Rule "HasFunctionalResponsibilitiesRule" with result "false". Overall

conclusion is: Model is not complete

3.2. Attempted Quality Analysis
Analysis Rules Found

Fired Analysis Rule "HasFunctionalResponsibilitiesRule" with result "false".

New Information Requirement Generated

Goal Fact Type: Operation

Goal Postcondition: 

PREFIX im:

<http://jamesnaish.wordpress.com/ROREKnowledgeModel.ow

l#>  PREFIX ltm:

<http://jamesnaish.wordpress.com/LongTermMemory/phd.ow

l#> ASK { Individual(?r), Type(?d, im:Fact),

PropertyValue(?d, im:instantiatesFactType,

ltm:Operation)  }

3.3. Attempted Rule-based Inference
Production Scripts Found

Attempting to fire the Production Script "HasFunctionalResponsibilitiesRule".

Source Ont is: http://jamesnaish.wordpress.com/Model/FileTransferSourceModel.owl

Temp Ont is: http://jamesnaish.wordpress.com/Temporary/TEMP2045294436.owl

CDomain <- RESULTSET [

KeyOSMObject=CDomain.hasDomainGoal.hasGoalState.realis

edBy.transformsStateOf

: Success

KeyISMObject=SELECT (SELECT ?o WHERE { Individual(?o),

SameAs(?o, tm:$KeyOSMObject.name$Class) })

: Success

FIRING CONDITIONAL:[

CDomain.hasDomainGoal.hasName is Allocation? [

COperation=CREATE (allocateTo$KeyOSMObject.name$,

Operation)

: Success

Parameters=LIST:Parameter

: Success



CParameter=CREATE ($KeyOSMObject.name$TargetStructure,

Parameter)

: Success

CParameter.hasValueType=SELECT (SELECT ?t WHERE {

SameAs(?t,

wm:$CDomain.hasDomainGoal.hasGoalState.realisedBy.prod

ucesState.containsInStructure.name$Class) })

: Success

Parameters=CParameter

: Success

COperation.hasParameter=Parameters

: Success

KeyISMObject.hasOperation=COperation

: Success

]: Success

]: Success

KeyISMObjects=KeyISMObject

: Success

KeyOSMObject=CDomain.hasDomainGoal.hasGoalState.realis

edBy.transformsStateOf

: Success

KeyISMObject=SELECT (SELECT ?o WHERE { Individual(?o),

SameAs(?o, tm:$KeyOSMObject.name$Class) })

: Success

FIRING CONDITIONAL:[

CDomain.hasDomainGoal.hasName is Allocation? [

COperation=CREATE (allocateTo$KeyOSMObject.name$,

Operation)

: Success

Parameters=LIST:Parameter

: Success

CParameter=CREATE ($KeyOSMObject.name$TargetStructure,

Parameter)

: Success

CParameter.hasValueType=SELECT (SELECT ?t WHERE {

SameAs(?t,

wm:$CDomain.hasDomainGoal.hasGoalState.realisedBy.prod

ucesState.containsInStructure.name$Class) })

: Success

Parameters=CParameter



: Success

COperation.hasParameter=Parameters

: Success

KeyISMObject.hasOperation=COperation

: Success

]: Success

]: Success

KeyISMObjects=KeyISMObject

: Success

KeyOSMObject=CDomain.hasDomainGoal.hasGoalState.realis

edBy.transformsStateOf

: Success

KeyISMObject=SELECT (SELECT ?o WHERE { Individual(?o),

SameAs(?o, tm:$KeyOSMObject.name$Class) })

: Success

FIRING CONDITIONAL:[

CDomain.hasDomainGoal.hasName is Transfer? [

COperation=CREATE (transfer$KeyOSMObject.name$To,

Operation)

: Success

Parameters=LIST:Parameter

: Success

CParameter=CREATE ($KeyOSMObject.name$TargetStructure,

Parameter)

: Success

CParameter.hasValueType=SELECT (SELECT ?t WHERE {

SameAs(?t,

wm:$CDomain.hasDomainGoal.hasGoalState.realisedBy.prod

ucesState.containsInStructure.name$Class) })

: Success

Parameters=CParameter

: Success

COperation.hasParameter=Parameters

: Success

KeyISMObject.hasOperation=COperation

: Success

]: Success

]: Success

KeyISMObjects=KeyISMObject

: Success



KeyOSMObject=CDomain.hasDomainGoal.hasGoalState.realis

edBy.transformsStateOf

: Success

KeyISMObject=SELECT (SELECT ?o WHERE { Individual(?o),

SameAs(?o, tm:$KeyOSMObject.name$Class) })

: Success

FIRING CONDITIONAL:[

CDomain.hasDomainGoal.hasName is Transfer? [

COperation=CREATE (transfer$KeyOSMObject.name$To,

Operation)

: Success

Parameters=LIST:Parameter

: Success

CParameter=CREATE ($KeyOSMObject.name$TargetStructure,

Parameter)

: Success

CParameter.hasValueType=SELECT (SELECT ?t WHERE {

SameAs(?t,

wm:$CDomain.hasDomainGoal.hasGoalState.realisedBy.prod

ucesState.containsInStructure.name$Class) })

: Success

Parameters=CParameter

: Success

COperation.hasParameter=Parameters

: Success

KeyISMObject.hasOperation=COperation

: Success

]: Success

]: Success

KeyISMObjects=KeyISMObject

: Success

]: Success

Source Ont is: http://jamesnaish.wordpress.com/Model/FileTransferSourceModel.owl

Temp Ont is: http://jamesnaish.wordpress.com/Temporary/TEMP2045294436.owl

CDomain <- RESULTSET [

KeyOSMObject=CDomain.hasDomainGoal.hasGoalState.realis

edBy.transformsStateOf

: Success

AgentOSMObject=CDomain.hasDomainGoal.hasGoalState.real

isedBy.enactedBy



: Success

AgentISMObject=SELECT (SELECT ?o WHERE {

Individual(?o), SameAs(?o,

tm:$AgentOSMObject.name$Class) })

: Success

FIRING CONDITIONAL:[

CDomain.hasDomainGoal.hasName is Allocation? [

COperation=CREATE (allocate$KeyOSMObject.name$Objects,

Operation)

: Success

AgentISMObject.hasOperation=COperation

: Success

]: Success

]: Success

AgentISMObjects=AgentISMObject

: Success

KeyOSMObject=CDomain.hasDomainGoal.hasGoalState.realis

edBy.transformsStateOf

: Success

AgentOSMObject=CDomain.hasDomainGoal.hasGoalState.real

isedBy.enactedBy

: Success

AgentISMObject=SELECT (SELECT ?o WHERE {

Individual(?o), SameAs(?o,

tm:$AgentOSMObject.name$Class) })

: Success

FIRING CONDITIONAL:[

CDomain.hasDomainGoal.hasName is Allocation? [

COperation=CREATE (allocate$KeyOSMObject.name$Objects,

Operation)

: Success

AgentISMObject.hasOperation=COperation

: Success

]: Success

]: Success

AgentISMObjects=AgentISMObject

: Success

KeyOSMObject=CDomain.hasDomainGoal.hasGoalState.realis

edBy.transformsStateOf

: Success



AgentOSMObject=CDomain.hasDomainGoal.hasGoalState.real

isedBy.enactedBy

: Success

AgentISMObject=SELECT (SELECT ?o WHERE {

Individual(?o), SameAs(?o,

tm:$AgentOSMObject.name$Class) })

: Success

FIRING CONDITIONAL:[

CDomain.hasDomainGoal.hasName is Transfer? [

COperation=CREATE (transfer$KeyOSMObject.name$Objects,

Operation)

: Success

AgentISMObject.hasOperation=COperation

: Success

]: Success

]: Success

AgentISMObjects=AgentISMObject

: Success

KeyOSMObject=CDomain.hasDomainGoal.hasGoalState.realis

edBy.transformsStateOf

: Success

AgentOSMObject=CDomain.hasDomainGoal.hasGoalState.real

isedBy.enactedBy

: Success

AgentISMObject=SELECT (SELECT ?o WHERE {

Individual(?o), SameAs(?o,

tm:$AgentOSMObject.name$Class) })

: Success

FIRING CONDITIONAL:[

CDomain.hasDomainGoal.hasName is Transfer? [

COperation=CREATE (transfer$KeyOSMObject.name$Objects,

Operation)

: Success

AgentISMObject.hasOperation=COperation

: Success

]: Success

]: Success

AgentISMObjects=AgentISMObject

: Success

]: Success



The production script was fired successfully, producing the following facts:

UploadFileClass

DownloadFileClass

UploadFileClass

DownloadFileClass

FileUploaderClass

FileDownloaderClass

FileUploaderClass

FileDownloaderClass

3.4. Attempted Integration
Pairing Facts "DownloadFileClass" and "DownloadFileClass".

Pairing Facts "DownloadFileClass" and "DownloadFileClass".

Pairing Facts "FileDownloaderClass" and "FileDownloaderClass".

Pairing Facts "FileDownloaderClass" and "FileDownloaderClass".

Pairing Facts "FileUploaderClass" and "FileUploaderClass".

Pairing Facts "FileUploaderClass" and "FileUploaderClass".

Pairing Facts "UploadFileClass" and "UploadFileClass".

Pairing Facts "UploadFileClass" and "UploadFileClass".

Integration was attempted using the "Additive" strategy.

Integration was successful.



4. Cycle 6

4.1. Attempted Completeness Analysis
Analysis Rules Found

Fired Analysis Rule "HasISMObjectsRule" with result "true". Overall conclusion is: Model is

not complete

Fired Analysis Rule "HasFunctionalResponsibilitiesRule" with result "true". Overall conclusion

is: Model is not complete

4.2. Attempted Quality Analysis
Analysis Rules Found

Fired Analysis Rule "HasFunctionalResponsibilitiesRule" with result "false".

New Information Requirement Generated

Goal Fact Type: Resource

Goal Postcondition: 

PREFIX im:

<http://jamesnaish.wordpress.com/ROREKnowledgeModel.ow

l#>  PREFIX ltm:

<http://jamesnaish.wordpress.com/LongTermMemory/phd.ow

l#> ASK { Individual(?p), Type(?p, im:Property),

PropertyValue(?ismprop, im:instantiatesFactType,

ltm:ISMProperty), PropertyValue(?resource,

im:instantiatesFactType, ltm:Resource),

PropertyValue(?ismprop, im:hasProperty, ?p),

PropertyValue(?p, im:hasPropertyValue, ?resource),

PropertyValue(?p, im:instantiatesPropertyType,

ltm:hasDataSource)  }

4.3. Attempted Chunk-based Inference
Inference Chunks Found

4.4. Attempted Integration
Pairing Facts "allocateAllObjects" and "allocateDownloadFileObjects".

Pairing Facts "allocateAllObjects" and "allocateUploadFileObjects".

Pairing Facts "allocateObject" and "allocateToDownloadFile".

Pairing Facts "allocateObject" and "allocateToUploadFile".

Integration was attempted using the "Additive" strategy.

Integration was successful.



5. Cycle 8

5.1. Attempted Completeness Analysis
Analysis Rules Found

Fired Analysis Rule "DataSourcesSpecifiedRule" with result "false". Overall conclusion is:

Model is not complete

5.2. Attempted Quality Analysis
Analysis Rules Found

Fired Analysis Rule "DataSourcesSpecifiedRule" with result "false".

New Information Requirement Generated

Goal Fact Type: Resource

Goal Postcondition: 

PREFIX im:

<http://jamesnaish.wordpress.com/ROREKnowledgeModel.ow

l#>  PREFIX ltm:

<http://jamesnaish.wordpress.com/LongTermMemory/phd.ow

l#> ASK { Individual(?p), Type(?p, im:Property),

PropertyValue(?ismprop, im:instantiatesFactType,

ltm:ISMProperty), PropertyValue(?resource,

im:instantiatesFactType, ltm:Resource),

PropertyValue(?ismprop, im:hasProperty, ?p),

PropertyValue(?p, im:hasPropertyValue, ?resource),

PropertyValue(?p, im:instantiatesPropertyType,

ltm:hasDataSource)  }

5.3. Attempted Chunk-based Inference
Inference Chunks Found

5.4. Attempted Integration
Pairing Facts "transferAllCompleteObjects" and "transferDownloadFileObjects".

Pairing Facts "transferAllCompleteObjects" and "transferUploadFileObjects".

Pairing Facts "transferCompleteObject" and "transferDownloadFileTo".

Pairing Facts "transferCompleteObject" and "transferUploadFileTo".

Integration was attempted using the "Additive" strategy.

Integration was successful.



6. Cycle 10

6.1. Attempted Completeness Analysis
Analysis Rules Found

Fired Analysis Rule "DataSourcesSpecifiedRule" with result "false". Overall conclusion is:

Model is not complete

6.2. Attempted Quality Analysis
Analysis Rules Found

Fired Analysis Rule "DataSourcesSpecifiedRule" with result "false".

New Information Requirement Generated

Goal Fact Type: Resource

Goal Postcondition: 

PREFIX im:

<http://jamesnaish.wordpress.com/ROREKnowledgeModel.ow

l#>  PREFIX ltm:

<http://jamesnaish.wordpress.com/LongTermMemory/phd.ow

l#> ASK { Individual(?p), Type(?p, im:Property),

PropertyValue(?ismprop, im:instantiatesFactType,

ltm:ISMProperty), PropertyValue(?resource,

im:instantiatesFactType, ltm:Resource),

PropertyValue(?ismprop, im:hasProperty, ?p),

PropertyValue(?p, im:hasPropertyValue, ?resource),

PropertyValue(?p, im:instantiatesPropertyType,

ltm:hasDataSource)  }

6.3. Attempted Chunk-based Inference
Inference Chunks Found

6.4. Attempted Rule-based Inference
Production Scripts Found

6.5. Attempted Elicitation
Elicitation Stimuli Found

Attempting to fire the Elicitation Stimulus "FunctionalResourceConfigurationStimulus", a fact-

editing stimulus

The elicitation stimulus was fired successfully, producing the following facts:

RemoteDataTransferProtocol

ClassificationRuleSource

6.6. Attempted Integration
Pairing Facts "ClassificationRuleSource" and "ClassificationRuleSource".

Pairing Facts "RemoteDataTransferProtocol" and "RemoteDataTransferProtocol".

Integration was attempted using the "Additive" strategy.

Integration was successful.



7. Cycle 12

7.1. Attempted Completeness Analysis
Analysis Rules Found

Fired Analysis Rule "DataSourcesSpecifiedRule" with result "false". Overall conclusion is:

Model is not complete

7.2. Attempted Quality Analysis
Analysis Rules Found

Fired Analysis Rule "DataSourcesSpecifiedRule" with result "false".

New Information Requirement Generated

Goal Fact Type: Resource

Goal Postcondition: 

PREFIX im:

<http://jamesnaish.wordpress.com/ROREKnowledgeModel.ow

l#>  PREFIX ltm:

<http://jamesnaish.wordpress.com/LongTermMemory/phd.ow

l#> ASK { Individual(?p), Type(?p, im:Property),

PropertyValue(?ismprop, im:instantiatesFactType,

ltm:ISMProperty), PropertyValue(?resource,

im:instantiatesFactType, ltm:Resource),

PropertyValue(?ismprop, im:hasProperty, ?p),

PropertyValue(?p, im:hasPropertyValue, ?resource),

PropertyValue(?p, im:instantiatesPropertyType,

ltm:hasDataSource)  }

7.3. Attempted Chunk-based Inference
Inference Chunks Found

7.4. Attempted Rule-based Inference
Production Scripts Found

7.5. Attempted Elicitation
Elicitation Stimuli Found

Attempting to fire the Elicitation Stimulus "DataSourceAndSinkStimulus", a fact-editing

stimulus

The elicitation stimulus was fired successfully, producing the following facts:

AllocationRule

FileUploaderClass

DownloadFileClass

RemoteDirectoryClass

LocalDirectoryClass

FileDownloaderClass

UploadFileClass



7.6. Attempted Integration
Pairing Facts "AllocationRule" and "AllocationRule".

Pairing Facts "DownloadFileClass" and "DownloadFileClass".

Pairing Facts "FileDownloaderClass" and "FileDownloaderClass".

Pairing Facts "FileUploaderClass" and "FileUploaderClass".

Pairing Facts "LocalDirectoryClass" and "LocalDirectoryClass".

Pairing Facts "RemoteDirectoryClass" and "RemoteDirectoryClass".

Pairing Facts "UploadFileClass" and "UploadFileClass".

Integration was attempted using the "Additive" strategy.

Integration was successful.



8. Cycle 14

8.1. Attempted Completeness Analysis
Analysis Rules Found

Fired Analysis Rule "DataSourcesSpecifiedRule" with result "true". Overall conclusion is:

Model is not complete

Fired Analysis Rule "HasMonitorReportRule" with result "false". Overall conclusion is: Model

is not complete

Fired Analysis Rule "DataSinksSpecifiedRule" with result "true". Overall conclusion is: Model

is not complete

Fired Analysis Rule "HasFunctionalResponsibilitiesRule" with result "true". Overall conclusion

is: Model is not complete

Fired Analysis Rule "HasISMObjectsRule" with result "true". Overall conclusion is: Model is

not complete
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1. Cycle 1

1.1. Attempted Completeness Analysis
Analysis Rules Found

Fired Analysis Rule "HasISMObjectsRule" with result "false". Overall conclusion is: Model is

not complete

1.2. Attempted Quality Analysis
Analysis Rules Found

Fired Analysis Rule "HasISMObjectsRule" with result "false".

New Information Requirement Generated

Goal Fact Type: ISMObject

Goal Postcondition: 

PREFIX im:

<http://jamesnaish.wordpress.com/ROREKnowledgeModel.ow

l#> PREFIX ltm:

<http://jamesnaish.wordpress.com/LongTermMemory/phd.ow

l#>  ASK { Individual(?o), Type(?o, im:Fact),

PropertyValue(?o, im:instantiatesFactType,

ltm:ISMObject) }

1.3. Attempted Chunk-based Inference
Inference Chunks Found

1.4. Attempted Rule-based Inference
Production Scripts Found

Attempting to fire the Production Script "HasISMObjectsRule".

Source Ont is: http://jamesnaish.wordpress.com/Model/OrderManagementSourceModel.owl

Temp Ont is: http://jamesnaish.wordpress.com/Temporary/TEMP0390117878.owl

Object <- RESULTSET [

SpecObject=CREATE ($Object.name$Class, ISMObject)

: Success

Property <- Object.ALL:hasProperty [

]: Success

ISMObjects=SpecObject

: Success

SpecObject=CREATE ($Object.name$Class, ISMObject)

: Success

Property <- Object.ALL:hasProperty [

]: Success

ISMObjects=SpecObject

: Success

SpecObject=CREATE ($Object.name$Class, ISMObject)



: Success

Property <- Object.ALL:hasProperty [

]: Success

ISMObjects=SpecObject

: Success

SpecObject=CREATE ($Object.name$Class, ISMObject)

: Success

Property <- Object.ALL:hasProperty [

]: Success

ISMObjects=SpecObject

: Success

SpecObject=CREATE ($Object.name$Class, ISMObject)

: Success

Property <- Object.ALL:hasProperty [

SpecObject.hasISMProperty=CREATE ($Property.name$,

ISMProperty)

: Success

$Property.name$.hasPropertyType=Property.hasValueType

: Success

SpecObject.hasISMProperty=CREATE ($Property.name$,

ISMProperty)

: Success

$Property.name$.hasPropertyType=Property.hasValueType

: Success

]: Success

ISMObjects=SpecObject

: Success

SpecObject=CREATE ($Object.name$Class, ISMObject)

: Success

Property <- Object.ALL:hasProperty [

]: Success

ISMObjects=SpecObject

: Success

SpecObject=CREATE ($Object.name$Class, ISMObject)

: Success

Property <- Object.ALL:hasProperty [

]: Success

ISMObjects=SpecObject

: Success

SpecObject=CREATE ($Object.name$Class, ISMObject)



: Success

Property <- Object.ALL:hasProperty [

]: Success

ISMObjects=SpecObject

: Success

SpecObject=CREATE ($Object.name$Class, ISMObject)

: Success

Property <- Object.ALL:hasProperty [

]: Success

ISMObjects=SpecObject

: Success

SpecObject=CREATE ($Object.name$Class, ISMObject)

: Success

Property <- Object.ALL:hasProperty [

]: Success

ISMObjects=SpecObject

: Success

SpecObject=CREATE ($Object.name$Class, ISMObject)

: Success

Property <- Object.ALL:hasProperty [

]: Success

ISMObjects=SpecObject

: Success

SpecObject=CREATE ($Object.name$Class, ISMObject)

: Success

Property <- Object.ALL:hasProperty [

]: Success

ISMObjects=SpecObject

: Success

SpecObject=CREATE ($Object.name$Class, ISMObject)

: Success

Property <- Object.ALL:hasProperty [

]: Success

ISMObjects=SpecObject

: Success

SpecObject=CREATE ($Object.name$Class, ISMObject)

: Success

Property <- Object.ALL:hasProperty [

]: Success

ISMObjects=SpecObject



: Success

SpecObject=CREATE ($Object.name$Class, ISMObject)

: Success

Property <- Object.ALL:hasProperty [

]: Success

ISMObjects=SpecObject

: Success

]: Success

The production script was fired successfully, producing the following facts:

TCardPoolClass

DispatchAreaClass

ProductionLineOperativeClass

OrderDownloaderClass

TCardClass

ProductionLineClass

OrderServerClass

OrderClass

OrderScheduleClass

TCardPrinterClass

DeliveryVanClass

OrderSchedulerClass

OrderManagementSystemClass

OrderPoolClass

DrillClass

1.5. Attempted Integration
Integration was attempted using the "Additive" strategy.

Integration was successful.



2. Cycle 2

2.1. Attempted Completeness Analysis
Analysis Rules Found

Fired Analysis Rule "HasISMObjectsRule" with result "true". Overall conclusion is: Model is

not complete

Fired Analysis Rule "HasMonitorReportRule" with result "false". Overall conclusion is: Model

is not complete

2.2. Attempted Quality Analysis
Analysis Rules Found

Fired Analysis Rule "HasMonitorReportRule" with result "false".

New Information Requirement Generated

Goal Fact Type: Report

Goal Postcondition: 

PREFIX im:

<http://jamesnaish.wordpress.com/ROREKnowledgeModel.ow

l#>  PREFIX ltm:

<http://jamesnaish.wordpress.com/LongTermMemory/phd.ow

l#> ASK { Individual(?r), Type(?d, im:Fact),

PropertyValue(?d, im:instantiatesFactType, ltm:Report)

}

2.3. Attempted Chunk-based Inference
Inference Chunks Found

2.4. Attempted Rule-based Inference
Production Scripts Found

Attempting to fire the Production Script "HasMonitorReportRule".

Source Ont is: http://jamesnaish.wordpress.com/Model/OrderManagementSourceModel.owl

Temp Ont is: http://jamesnaish.wordpress.com/Temporary/TEMP1819903711.owl

CKeyObject <- RESULTSET [

CListReport=CREATE ($CKeyObject.name$ListReport,

Report)

: Success

CListReport.hasField=CREATE (has$CKeyObject.name$s,

String)

: Success

Reports=CListReport

: Success

CReport=CREATE ($CKeyObject.name$Report, Report)

: Success

CReport.hasField=CREATE ($CKeyObject.name$Name,



String)

: Success

CProperty <- CKeyObject.ALL:hasProperty [

]: Success

Reports=CReport

: Success

CListReport=CREATE ($CKeyObject.name$ListReport,

Report)

: Success

CListReport.hasField=CREATE (has$CKeyObject.name$s,

String)

: Success

Reports=CListReport

: Success

CReport=CREATE ($CKeyObject.name$Report, Report)

: Success

CReport.hasField=CREATE ($CKeyObject.name$Name,

String)

: Success

CProperty <- CKeyObject.ALL:hasProperty [

]: Success

Reports=CReport

: Success

]: Success

The production script was fired successfully, producing the following facts:

OrderListReport

OrderReport

DrillListReport

DrillReport

2.5. Attempted Integration
Integration was attempted using the "Additive" strategy.

Integration was successful.



3. Cycle 4

3.1. Attempted Completeness Analysis
Analysis Rules Found

Fired Analysis Rule "HasISMObjectsRule" with result "true". Overall conclusion is: Model is

not complete

Fired Analysis Rule "HasMonitorReportRule" with result "true". Overall conclusion is: Model

is not complete

Fired Analysis Rule "HasFunctionalResponsibilitiesRule" with result "false". Overall

conclusion is: Model is not complete

3.2. Attempted Quality Analysis
Analysis Rules Found

Fired Analysis Rule "HasFunctionalResponsibilitiesRule" with result "false".

New Information Requirement Generated

Goal Fact Type: Operation

Goal Postcondition: 

PREFIX im:

<http://jamesnaish.wordpress.com/ROREKnowledgeModel.ow

l#>  PREFIX ltm:

<http://jamesnaish.wordpress.com/LongTermMemory/phd.ow

l#> ASK { Individual(?r), Type(?d, im:Fact),

PropertyValue(?d, im:instantiatesFactType,

ltm:Operation)  }

3.3. Attempted Chunk-based Inference
Inference Chunks Found

3.4. Attempted Rule-based Inference
Production Scripts Found

Attempting to fire the Production Script "HasFunctionalResponsibilitiesRule".

Source Ont is: http://jamesnaish.wordpress.com/Model/OrderManagementSourceModel.owl

Temp Ont is: http://jamesnaish.wordpress.com/Temporary/TEMP1239670094.owl

CDomain <- RESULTSET [

KeyOSMObject=CDomain.hasDomainGoal.hasGoalState.realis

edBy.transformsStateOf

: Success

KeyISMObject=SELECT (SELECT ?o WHERE { Individual(?o),

SameAs(?o, tm:$KeyOSMObject.name$Class) })

: Success

FIRING CONDITIONAL:[

CDomain.hasDomainGoal.hasName is Transfer? [

COperation=CREATE (transfer$KeyOSMObject.name$To,



Operation)

: Success

Parameters=LIST:Parameter

: Success

CParameter=CREATE ($KeyOSMObject.name$TargetStructure,

Parameter)

: Success

CParameter.hasValueType=SELECT (SELECT ?t WHERE {

SameAs(?t,

wm:$CDomain.hasDomainGoal.hasGoalState.realisedBy.prod

ucesState.containsInStructure.name$Class) })

: Success

Parameters=CParameter

: Success

COperation.hasParameter=Parameters

: Success

KeyISMObject.hasOperation=COperation

: Success

]: Success

]: Success

KeyISMObjects=KeyISMObject

: Success

KeyOSMObject=CDomain.hasDomainGoal.hasGoalState.realis

edBy.transformsStateOf

: Success

KeyISMObject=SELECT (SELECT ?o WHERE { Individual(?o),

SameAs(?o, tm:$KeyOSMObject.name$Class) })

: Success

FIRING CONDITIONAL:[

CDomain.hasDomainGoal.hasName is Allocation? [

COperation=CREATE (allocateTo$KeyOSMObject.name$,

Operation)

: Success

Parameters=LIST:Parameter

: Success

CParameter=CREATE ($KeyOSMObject.name$TargetStructure,

Parameter)

: Success

CParameter.hasValueType=SELECT (SELECT ?t WHERE {

SameAs(?t,



wm:$CDomain.hasDomainGoal.hasGoalState.realisedBy.prod

ucesState.containsInStructure.name$Class) })

: Success

Parameters=CParameter

: Success

COperation.hasParameter=Parameters

: Success

KeyISMObject.hasOperation=COperation

: Success

]: Success

]: Success

KeyISMObjects=KeyISMObject

: Success

KeyOSMObject=CDomain.hasDomainGoal.hasGoalState.realis

edBy.transformsStateOf

: Success

KeyISMObject=SELECT (SELECT ?o WHERE { Individual(?o),

SameAs(?o, tm:$KeyOSMObject.name$Class) })

: Success

FIRING CONDITIONAL:[

CDomain.hasDomainGoal.hasName is Transfer? [

COperation=CREATE (transfer$KeyOSMObject.name$To,

Operation)

: Success

Parameters=LIST:Parameter

: Success

CParameter=CREATE ($KeyOSMObject.name$TargetStructure,

Parameter)

: Success

CParameter.hasValueType=SELECT (SELECT ?t WHERE {

SameAs(?t,

wm:$CDomain.hasDomainGoal.hasGoalState.realisedBy.prod

ucesState.containsInStructure.name$Class) })

: Success

Parameters=CParameter

: Success

COperation.hasParameter=Parameters

: Success

KeyISMObject.hasOperation=COperation

: Success



]: Success

]: Success

KeyISMObjects=KeyISMObject

: Success

KeyOSMObject=CDomain.hasDomainGoal.hasGoalState.realis

edBy.transformsStateOf

: Success

KeyISMObject=SELECT (SELECT ?o WHERE { Individual(?o),

SameAs(?o, tm:$KeyOSMObject.name$Class) })

: Success

FIRING CONDITIONAL:[

CDomain.hasDomainGoal.hasName is Manipulation? [

COperation=CREATE

(manipulatePropertyOf$KeyOSMObject.name$, Operation)

: Success

Parameters=LIST:Parameter

: Success

CParameter=CREATE ($KeyOSMObject.name$property,

Parameter)

: Success

Parameters=CParameter

: Success

CParameter=CREATE ($KeyOSMObject.name$PropertyValue,

Parameter)

: Success

Parameters=CParameter

: Success

COperation.hasParameter=Parameters

: Success

KeyISMObject.hasOperation=COperation

: Success

]: Success

]: Success

KeyISMObjects=KeyISMObject

: Success

]: Success

Source Ont is: http://jamesnaish.wordpress.com/Model/OrderManagementSourceModel.owl

Temp Ont is: http://jamesnaish.wordpress.com/Temporary/TEMP1239670094.owl

CDomain <- RESULTSET [

KeyOSMObject=CDomain.hasDomainGoal.hasGoalState.realis



edBy.transformsStateOf

: Success

AgentOSMObject=CDomain.hasDomainGoal.hasGoalState.real

isedBy.enactedBy

: Success

AgentISMObject=SELECT (SELECT ?o WHERE {

Individual(?o), SameAs(?o,

tm:$AgentOSMObject.name$Class) })

: Success

FIRING CONDITIONAL:[

CDomain.hasDomainGoal.hasName is Transfer? [

COperation=CREATE (transfer$KeyOSMObject.name$Objects,

Operation)

: Success

AgentISMObject.hasOperation=COperation

: Success

]: Success

]: Success

AgentISMObjects=AgentISMObject

: Success

KeyOSMObject=CDomain.hasDomainGoal.hasGoalState.realis

edBy.transformsStateOf

: Success

AgentOSMObject=CDomain.hasDomainGoal.hasGoalState.real

isedBy.enactedBy

: Success

AgentISMObject=SELECT (SELECT ?o WHERE {

Individual(?o), SameAs(?o,

tm:$AgentOSMObject.name$Class) })

: Success

FIRING CONDITIONAL:[

CDomain.hasDomainGoal.hasName is Allocation? [

COperation=CREATE (allocate$KeyOSMObject.name$Objects,

Operation)

: Success

AgentISMObject.hasOperation=COperation

: Success

]: Success

]: Success

AgentISMObjects=AgentISMObject



: Success

KeyOSMObject=CDomain.hasDomainGoal.hasGoalState.realis

edBy.transformsStateOf

: Success

AgentOSMObject=CDomain.hasDomainGoal.hasGoalState.real

isedBy.enactedBy

: Success

AgentISMObject=SELECT (SELECT ?o WHERE {

Individual(?o), SameAs(?o,

tm:$AgentOSMObject.name$Class) })

: Success

FIRING CONDITIONAL:[

CDomain.hasDomainGoal.hasName is Transfer? [

COperation=CREATE (transfer$KeyOSMObject.name$Objects,

Operation)

: Success

AgentISMObject.hasOperation=COperation

: Success

]: Success

]: Success

AgentISMObjects=AgentISMObject

: Success

KeyOSMObject=CDomain.hasDomainGoal.hasGoalState.realis

edBy.transformsStateOf

: Success

AgentOSMObject=CDomain.hasDomainGoal.hasGoalState.real

isedBy.enactedBy

: Success

AgentISMObject=SELECT (SELECT ?o WHERE {

Individual(?o), SameAs(?o,

tm:$AgentOSMObject.name$Class) })

: Success

FIRING CONDITIONAL:[

CDomain.hasDomainGoal.hasName is Manipulation? [

COperation=CREATE

(manipulate$KeyOSMObject.name$Objects, Operation)

: Success

AgentISMObject.hasOperation=COperation

: Success

]: Success



]: Success

AgentISMObjects=AgentISMObject

: Success

]: Success

The production script was fired successfully, producing the following facts:

DrillClass

OrderClass

OrderClass

TCardClass

ProductionLineOperativeClass

OrderSchedulerClass

OrderDownloaderClass

TCardPrinterClass

3.5. Attempted Integration
Pairing Facts "DrillClass" and "DrillClass".

Pairing Facts "OrderClass" and "OrderClass".

Pairing Facts "OrderClass" and "OrderClass".

Pairing Facts "OrderDownloaderClass" and "OrderDownloaderClass".

Pairing Facts "OrderSchedulerClass" and "OrderSchedulerClass".

Pairing Facts "ProductionLineOperativeClass" and "ProductionLineOperativeClass".

Pairing Facts "TCardClass" and "TCardClass".

Pairing Facts "TCardPrinterClass" and "TCardPrinterClass".

Integration was attempted using the "Additive" strategy.

Integration was successful.



4. Cycle 6

4.1. Attempted Completeness Analysis
Analysis Rules Found

Fired Analysis Rule "HasISMObjectsRule" with result "true". Overall conclusion is: Model is

not complete

Fired Analysis Rule "HasMonitorReportRule" with result "true". Overall conclusion is: Model

is not complete

Fired Analysis Rule "HasFunctionalResponsibilitiesRule" with result "true". Overall conclusion

is: Model is not complete

Fired Analysis Rule "DataSourcesSpecifiedRule" with result "false". Overall conclusion is:

Model is not complete

4.2. Attempted Quality Analysis
Analysis Rules Found

Fired Analysis Rule "DataSourcesSpecifiedRule" with result "false".

New Information Requirement Generated

Goal Fact Type: Resource

Goal Postcondition: 

PREFIX im:

<http://jamesnaish.wordpress.com/ROREKnowledgeModel.ow

l#>  PREFIX ltm:

<http://jamesnaish.wordpress.com/LongTermMemory/phd.ow

l#> ASK { Individual(?p), Type(?p, im:Property),

PropertyValue(?ismprop, im:instantiatesFactType,

ltm:ISMProperty), PropertyValue(?resource,

im:instantiatesFactType, ltm:Resource),

PropertyValue(?ismprop, im:hasProperty, ?p),

PropertyValue(?p, im:hasPropertyValue, ?resource),

PropertyValue(?p, im:instantiatesPropertyType,

ltm:hasDataSource)  }

4.3. Attempted Chunk-based Inference
Inference Chunks Found

4.4. Attempted Integration
Pairing Facts "transferAllCompleteObjects" and "transferOrderObjects".

Pairing Facts "transferCompleteObject" and "transferOrderTo".

Integration was attempted using the "Additive" strategy.

Integration was successful.



5. Cycle 8

5.1. Attempted Completeness Analysis
Analysis Rules Found

Fired Analysis Rule "DataSourcesSpecifiedRule" with result "false". Overall conclusion is:

Model is not complete

5.2. Attempted Quality Analysis
Analysis Rules Found

Fired Analysis Rule "DataSourcesSpecifiedRule" with result "false".

New Information Requirement Generated

Goal Fact Type: Resource

Goal Postcondition: 

PREFIX im:

<http://jamesnaish.wordpress.com/ROREKnowledgeModel.ow

l#>  PREFIX ltm:

<http://jamesnaish.wordpress.com/LongTermMemory/phd.ow

l#> ASK { Individual(?p), Type(?p, im:Property),

PropertyValue(?ismprop, im:instantiatesFactType,

ltm:ISMProperty), PropertyValue(?resource,

im:instantiatesFactType, ltm:Resource),

PropertyValue(?ismprop, im:hasProperty, ?p),

PropertyValue(?p, im:hasPropertyValue, ?resource),

PropertyValue(?p, im:instantiatesPropertyType,

ltm:hasDataSource)  }

5.3. Attempted Chunk-based Inference
Inference Chunks Found

5.4. Attempted Integration
Pairing Facts "allocateAllObjects" and "allocateOrderObjects".

Pairing Facts "allocateObject" and "allocateToOrder".

Integration was attempted using the "Additive" strategy.

Integration was successful.



6. Cycle 10

6.1. Attempted Completeness Analysis
Analysis Rules Found

Fired Analysis Rule "DataSourcesSpecifiedRule" with result "false". Overall conclusion is:

Model is not complete

Fired Analysis Rule "DataSourcesSpecifiedRule" with result "false". Overall conclusion is:

Model is not complete

6.2. Attempted Quality Analysis
Analysis Rules Found

Fired Analysis Rule "DataSourcesSpecifiedRule" with result "false".

New Information Requirement Generated

Goal Fact Type: Resource

Goal Postcondition: 

PREFIX im:

<http://jamesnaish.wordpress.com/ROREKnowledgeModel.ow

l#>  PREFIX ltm:

<http://jamesnaish.wordpress.com/LongTermMemory/phd.ow

l#> ASK { Individual(?p), Type(?p, im:Property),

PropertyValue(?ismprop, im:instantiatesFactType,

ltm:ISMProperty), PropertyValue(?resource,

im:instantiatesFactType, ltm:Resource),

PropertyValue(?ismprop, im:hasProperty, ?p),

PropertyValue(?p, im:hasPropertyValue, ?resource),

PropertyValue(?p, im:instantiatesPropertyType,

ltm:hasDataSource)  }

6.3. Attempted Chunk-based Inference
Inference Chunks Found

6.4. Attempted Integration
Pairing Facts "manipulateAllObjects" and "manipulateTCardObjects".

Pairing Facts "manipulateObject" and "manipulatePropertyOfTCard".

Integration was attempted using the "Additive" strategy.

Integration was successful.



7. Cycle 12

7.1. Attempted Completeness Analysis
Analysis Rules Found

Fired Analysis Rule "DataSourcesSpecifiedRule" with result "false". Overall conclusion is:

Model is not complete

7.2. Attempted Quality Analysis
Analysis Rules Found

Fired Analysis Rule "HasISMObjectsRule" with result "false".

New Information Requirement Generated

Goal Fact Type: Resource

Goal Postcondition: 

PREFIX im:

<http://jamesnaish.wordpress.com/ROREKnowledgeModel.ow

l#>  PREFIX ltm:

<http://jamesnaish.wordpress.com/LongTermMemory/phd.ow

l#> ASK { Individual(?p), Type(?p, im:Property),

PropertyValue(?ismprop, im:instantiatesFactType,

ltm:ISMProperty), PropertyValue(?resource,

im:instantiatesFactType, ltm:Resource),

PropertyValue(?ismprop, im:hasProperty, ?p),

PropertyValue(?p, im:hasPropertyValue, ?resource),

PropertyValue(?p, im:instantiatesPropertyType,

ltm:hasDataSource)  }

7.3. Attempted Chunk-based Inference
Inference Chunks Found

7.4. Attempted Rule-based Inference
Production Scripts Found

7.5. Attempted Elicitation
Elicitation Stimuli Found

Attempting to fire the Elicitation Stimulus "FunctionalResourceConfigurationStimulus", a fact-

editing stimulus

The elicitation stimulus was fired successfully, producing the following facts:

ManipulationDeviceCommsProtocol

ClassificationRuleSource

RemoteDataTransferProtocol

7.6. Attempted Integration
Pairing Facts "ClassificationRuleSource" and "ClassificationRuleSource".

Pairing Facts "ManipulationDeviceCommsProtocol" and

"ManipulationDeviceCommsProtocol".



Pairing Facts "RemoteDataTransferProtocol" and "RemoteDataTransferProtocol".

Integration was attempted using the "Additive" strategy.

Integration was successful.



8. Cycle 14

8.1. Attempted Completeness Analysis
Analysis Rules Found

Fired Analysis Rule "DataSourcesSpecifiedRule" with result "false". Overall conclusion is:

Model is not complete

8.2. Attempted Quality Analysis
Analysis Rules Found

Fired Analysis Rule "DataSourcesSpecifiedRule" with result "false".

New Information Requirement Generated

Goal Fact Type: Resource

Goal Postcondition: 

PREFIX im:

<http://jamesnaish.wordpress.com/ROREKnowledgeModel.ow

l#>  PREFIX ltm:

<http://jamesnaish.wordpress.com/LongTermMemory/phd.ow

l#> ASK { Individual(?p), Type(?p, im:Property),

PropertyValue(?ismprop, im:instantiatesFactType,

ltm:ISMProperty), PropertyValue(?resource,

im:instantiatesFactType, ltm:Resource),

PropertyValue(?ismprop, im:hasProperty, ?p),

PropertyValue(?p, im:hasPropertyValue, ?resource),

PropertyValue(?p, im:instantiatesPropertyType,

ltm:hasDataSource)  }

8.3. Attempted Elicitation
Elicitation Stimuli Found

8.4. Attempted Elicitation
Elicitation Stimuli Found

Attempting to fire the Elicitation Stimulus "DataSourceAndSinkStimulus", a fact-editing

stimulus

The elicitation stimulus was fired successfully, producing the following facts:

OrderScheduleClass

OrderDownloaderClass

OrderServerClass

OrderClass

OrderSchedulerClass

ManipulationScriptGenerator

TCardPoolClass

TCardClass

AllocationRule



DeliveryVanClass

DrillClass

ProductionLineClass

OrderPoolClass

TCardPrinterClass

DispatchAreaClass

ProductionLineOperativeClass

OrderManagementSystemClass

8.5. Attempted Integration
Pairing Facts "AllocationRule" and "AllocationRule".

Pairing Facts "DeliveryVanClass" and "DeliveryVanClass".

Pairing Facts "DispatchAreaClass" and "DispatchAreaClass".

Pairing Facts "DrillClass" and "DrillClass".

Pairing Facts "ManipulationScriptGenerator" and "ManipulationScriptGenerator".

Pairing Facts "OrderClass" and "OrderClass".

Pairing Facts "OrderDownloaderClass" and "OrderDownloaderClass".

Pairing Facts "OrderManagementSystemClass" and "OrderManagementSystemClass".

Pairing Facts "OrderPoolClass" and "OrderPoolClass".

Pairing Facts "OrderScheduleClass" and "OrderScheduleClass".

Pairing Facts "OrderSchedulerClass" and "OrderSchedulerClass".

Pairing Facts "OrderServerClass" and "OrderServerClass".

Pairing Facts "ProductionLineClass" and "ProductionLineClass".

Pairing Facts "ProductionLineOperativeClass" and "ProductionLineOperativeClass".

Pairing Facts "TCardClass" and "TCardClass".

Pairing Facts "TCardPoolClass" and "TCardPoolClass".

Pairing Facts "TCardPrinterClass" and "TCardPrinterClass".

Integration was attempted using the "Additive" strategy.

Integration was successful.



9. Cycle 16

9.1. Attempted Completeness Analysis
Analysis Rules Found

Fired Analysis Rule "DataSourcesSpecifiedRule" with result "true". Overall conclusion is:

Model is not complete

Fired Analysis Rule "HasMonitorReportRule" with result "true". Overall conclusion is: Model

is not complete

Fired Analysis Rule "DataSinksSpecifiedRule" with result "false". Overall conclusion is: Model

is not complete

Fired Analysis Rule "HasFunctionalResponsibilitiesRule" with result "true". Overall conclusion

is: Model is not complete

Fired Analysis Rule "HasISMObjectsRule" with result "true". Overall conclusion is: Model is

not complete


