6 research outputs found

    Towards Automatic Support of Software Model Evolution with Large Language~Models

    Full text link
    Modeling structure and behavior of software systems plays a crucial role, in various areas of software engineering. As with other software engineering artifacts, software models are subject to evolution. Supporting modelers in evolving models by model completion facilities and providing high-level edit operations such as frequently occurring editing patterns is still an open problem. Recently, large language models (i.e., generative neural networks) have garnered significant attention in various research areas, including software engineering. In this paper, we explore the potential of large language models in supporting the evolution of software models in software engineering. We propose an approach that utilizes large language models for model completion and discovering editing patterns in model histories of software systems. Through controlled experiments using simulated model repositories, we conduct an evaluation of the potential of large language models for these two tasks. We have found that large language models are indeed a promising technology for supporting software model evolution, and that it is worth investigating further in the area of software model evolution

    Mining domain-specific edit operations from model repositories with applications to semantic lifting of model differences and change profiling

    Get PDF
    Model transformations are central to model-driven software development. Applications of model transformations include creating models, handling model co-evolution, model merging, and understanding model evolution. In the past, various (semi-) automatic approaches to derive model transformations from meta-models or from examples have been proposed. These approaches require time-consuming handcrafting or the recording of concrete examples, or they are unable to derive complex transformations. We propose a novel unsupervised approach, called Ockham, which is able to learn edit operations from model histories in model repositories. Ockham is based on the idea that meaningful domain-specifc edit operations are the ones that compress the model diferences. It employs frequent subgraph mining to discover frequent structures in model diference graphs. We evaluate our approach in two controlled experiments and one real-world case study of a large-scale industrial model-driven architecture project in the railway domain. We found that our approach is able to discover frequent edit operations that have actually been applied before. Furthermore, Ockham is able to extract edit operations that are meaningful—in the sense of explaining model diferences through the edit operations they comprise—to practitioners in an industrial setting. We also discuss use cases (i.e., semantic lifting of model diferences and change profles) for the discovered edit operations in this industrial setting. We fnd that the edit operations discovered by Ockham can be used to better understand and simulate the evolution of models

    Specifying and detecting meaningful changes in programs

    Get PDF
    Software developers are often interested in particular changes in programs that are relevant to their current tasks: not all changes to evolving software are equally important. However, most existing differencing tools, such as diff, notify developers of more changes than they wish to see. In this paper, we propose a technique to specify and automatically detect only those changes in programs deemed meaningful, or relevant, to a particular development task. Using four elementary annotations on the grammar of any programming language, namely Ignore, Order, Prefer and Scope, developers can specify, with limited effort, the type of change they wish to detect. Our algorithms use these annotations to transform the input programs into a normalised form, and to remove clones across different normalised programs in order to detect non-trivial and relevant differences. We evaluate our tool on a benchmark of programs to demonstrate its improved precision compared to other differencing approaches
    corecore