29,809 research outputs found

    Specifying and Verifying Properties of Space - Extended Version

    Full text link
    The interplay between process behaviour and spatial aspects of computation has become more and more relevant in Computer Science, especially in the field of collective adaptive systems, but also, more generally, when dealing with systems distributed in physical space. Traditional verification techniques are well suited to analyse the temporal evolution of programs; properties of space are typically not explicitly taken into account. We propose a methodology to verify properties depending upon physical space. We define an appropriate logic, stemming from the tradition of topological interpretations of modal logics, dating back to earlier logicians such as Tarski, where modalities describe neighbourhood. We lift the topological definitions to a more general setting, also encompassing discrete, graph-based structures. We further extend the framework with a spatial until operator, and define an efficient model checking procedure, implemented in a proof-of-concept tool.Comment: Presented at "Theoretical Computer Science" 2014, Rom

    The AutoProof Verifier: Usability by Non-Experts and on Standard Code

    Get PDF
    Formal verification tools are often developed by experts for experts; as a result, their usability by programmers with little formal methods experience may be severely limited. In this paper, we discuss this general phenomenon with reference to AutoProof: a tool that can verify the full functional correctness of object-oriented software. In particular, we present our experiences of using AutoProof in two contrasting contexts representative of non-expert usage. First, we discuss its usability by students in a graduate course on software verification, who were tasked with verifying implementations of various sorting algorithms. Second, we evaluate its usability in verifying code developed for programming assignments of an undergraduate course. The first scenario represents usability by serious non-experts; the second represents usability on "standard code", developed without full functional verification in mind. We report our experiences and lessons learnt, from which we derive some general suggestions for furthering the development of verification tools with respect to improving their usability.Comment: In Proceedings F-IDE 2015, arXiv:1508.0338

    Applying Formal Methods to Networking: Theory, Techniques and Applications

    Full text link
    Despite its great importance, modern network infrastructure is remarkable for the lack of rigor in its engineering. The Internet which began as a research experiment was never designed to handle the users and applications it hosts today. The lack of formalization of the Internet architecture meant limited abstractions and modularity, especially for the control and management planes, thus requiring for every new need a new protocol built from scratch. This led to an unwieldy ossified Internet architecture resistant to any attempts at formal verification, and an Internet culture where expediency and pragmatism are favored over formal correctness. Fortunately, recent work in the space of clean slate Internet design---especially, the software defined networking (SDN) paradigm---offers the Internet community another chance to develop the right kind of architecture and abstractions. This has also led to a great resurgence in interest of applying formal methods to specification, verification, and synthesis of networking protocols and applications. In this paper, we present a self-contained tutorial of the formidable amount of work that has been done in formal methods, and present a survey of its applications to networking.Comment: 30 pages, submitted to IEEE Communications Surveys and Tutorial

    Towards Model Checking Executable UML Specifications in mCRL2

    Get PDF
    We describe a translation of a subset of executable UML (xUML) into the process algebraic specification language mCRL2. This subset includes class diagrams with class generalisations, and state machines with signal and change events. The choice of these xUML constructs is dictated by their use in the modelling of railway interlocking systems. The long-term goal is to verify safety properties of interlockings modelled in xUML using the mCRL2 and LTSmin toolsets. Initial verification of an interlocking toy example demonstrates that the safety properties of model instances depend crucially on the run-to-completion assumptions

    A Trace Logic for Local Security Properties

    Get PDF
    We propose a new simple \emph{trace} logic that can be used to specify \emph{local security properties}, i.e. security properties that refer to a single participant of the protocol specification. Our technique allows a protocol designer to provide a formal specification of the desired security properties, and integrate it naturally into the design process of cryptographic protocols. Furthermore, the logic can be used for formal verification. We illustrate the utility of our technique by exposing new attacks on the well studied protocol TMN.Comment: New versio
    corecore