323 research outputs found

    A model-based rams estimation methodology for innovative aircraft on-board systems supporting mdo applications

    Get PDF
    The reduction of aircraft operating costs is one of the most important objectives addressed by aeronautical manufactures and research centers in the last decades. In order to reach this objective, one of the current ways is to develop innovative on-board system architectures, which can bring to lower fuel and maintenance costs. The development and optimization of these new aircraft on-board systems can be addressed through a Multidisciplinary Design Optimization (MDO) approach, which involves different disciplines. One relevant discipline in this MDO problem is Reliability, Availability, Maintainability and Safety (RAMS), which allows the assessment of the reliability and safety of aircraft systems. Indeed the development of innovative systems cannot comply with only performance requirements, but also with reliability and safety constraints. Therefore, the RAMS discipline plays an important role in the development of innovative on-board systems. In the last years, different RAMS models and methods have been defined, considering both conventional and innovative architectures. However, most of them rely on a document-based approach, which makes difficult and time consuming the use of information gained through their analysis to improve system architectures. On the contrary, a model-based approach would make easier and more accessible the study of systems reliability and safety, as explained in several studies. Model Based Systems Engineering (MBSE) is an emerging approach that is mainly used for the design of complex systems. However, only a few studies propose this approach for the evaluation of system safety and reliability. The aim of this paper is therefore to propose a MBSE approach for model-based RAMS evaluations. The paper demonstrates that RAMS models can be developed to quickly and more effectively assess the reliability and safety of conventional and innovative on-board system architectures. In addition, further activities for the integration of the model-based RAMS methodology within MDO processes are described in the paper

    A Model-Based Systems Engineering Approach for Efficient System Architecture Representation in Conceptual Design: A Case Study for Flight Control Systems

    Get PDF
    The reduction of the environmental footprint of aviation requires the development of more efficient aircraft. Emergent technologies in aircraft systems, such as more-electrical aircraft, are potential enablers for the next generation of aircraft. To support the adoption of these new technologies and to tackle the underlying integration challenges, aircraft system architectures need to be considered earlier in the aircraft design process, specifically within the conceptual design stage. To deal with the complexity and to make the system architecture development process more efficient and effective, a key enabler is to improve the representation of system architectures early in the design process. Introducing better architecture representations removes ambiguity and allows engineers to develop a shared understanding of the system. Model Based Systems Engineering (MBSE) has emerged as a systematic methodology to address complexity in systems design and overcome the drawbacks of the traditional paper based systems engineering approach used in aircraft development. This thesis investigates the use of the ARCADIA/Capella MBSE environment for the representation and specification of aircraft systems architecture in conceptual design. This thesis includes survey on the needs for system architecture representations in conceptual design. A methodology is developed within Capella to create architecture representations that are suitable for use in conceptual design. The primary flight control systems (PFCS), which by extension also includes the associated power systems, is selected to illustrate the proposed methodology. The proposed methodology consists of capturing architectural features such as interfaces, exchanges and variability. A catalog of modelling artifacts representing the various flight control actuation technologies at system level, logical and physical level has been developed. These elements can be combined to define any primary flight control system architecture. The model-based specification addresses the need to define rapidly many architecture variants for conventional and more-electrical technologies. The developed methodology is applicable to other aircraft systems. Overall, this work is an initial step towards introducing MBSE earlier in the aircraft development process thereby making it more efficient and responsive to the emerging needs of aircraft development

    PRISE: An Integrated Platform for Research and Teaching of Critical Embedded Systems

    Get PDF
    In this paper, we present PRISE, an integrated workbench for Research and Teaching of critical embedded systems at ISAE, the French Institute for Space and Aeronautics Engineering. PRISE is built around state-of-the-art technologies for the engineering of space and avionics systems used in Space and Avionics domain. It aims at demonstrating key aspects of critical, real-time, embedded systems used in the transport industry, but also validating new scientific contributions for the engineering of software functions. PRISE combines embedded and simulation platforms, and modeling tools. This platform is available for both research and teaching. Being built around widely used commercial and open source software; PRISE aims at being a reference platform for our teaching and research activities at ISAE

    Relational oriented systems engineering framework for flight training

    Get PDF
    The integration of systems of systems (SoS) associated with a flight training mission directly reflects the problem of developing a system engineering process for the design of live, virtual and constructive (LVC) experiments. Due to the complexity and disparity of the technology in a flight training SoS (FTSoS), modeling and analysis of architecture is becoming increasingly important. Relational Oriented Systems Engineering (ROSE) methodology is used to develop a framework for simulation and analysis of a navigational SoS for a typical aircraft. The framework can be used for both the prescription of navigation systems entering and exiting the SoS and for the analysis of pilot behavior as navigation quality of service (QoS) changes. ROSE offers a novel approach to developing a model-based systems engineering (MBSE) process for simulation and analysis of a complex SoS problem

    Parametric CubeSat flight simulation architecture

    Get PDF
    This paper presents the architecture of a system of models that provides realistic simulation of the dynamic, in-orbit behaviour of a CubeSat. Time-dependent relationships between sub-systems and between the satellite and external nodes (ground stations and celestial bodies) are captured through numerical analysis of a multi-disciplinary set of state variables including position, attitude, stored energy, stored data and system temperature. Model-Based Systems Engineering and parametric modelling techniques are employed throughout to help visualise the models and ensure flexibility and expandability. Operational mode states are also incorporated within the design, allowing the systems engineer to assess flight behaviour over a range of mission scenarios. Finally, both long and short term dynamics are captured using a coupled-model philosophy; described as Lifetime and Operations models. An example mission is analysed and preliminary results are presented as an illustration of early capabilities

    Design techniques to support aircraft systems development in a collaborative MDO environment

    Get PDF
    The aircraft design is a complex multidisciplinary and collaborative process. Thousands of disciplinary experts with different design competences are involved within the whole development process. The design disciplines are often in contrast with each other, as their objectives might be not coincident, entailing compromises for the determination of the global optimal solution. Therefore, Multidisciplinary Design and Optimization (MDO) algorithms are being developed to mathematically overcome the divergences among the design disciplines. However, a MDO formulation might identify an optimal solution, but it could be not sufficient to ensure the success of a project. The success of a new project depends on two factors. The first one is relative to the aeronautical product, which has to be compliant with all the capabilities actually demanded by the stakeholders. Furthermore, a “better” airplane may be developed in accordance with customer expectations concerning better performance, lower operating costs and fewer emissions. The second important factor refers to the competitiveness among the new designed product and all the other competitors. The Time-To-Market should be reduced to introduce in the market an innovative product earlier than the other aeronautical industries. Furthermore, development costs should be decreased to maximize profits or to sell the product at a lower price. Finally, the development process must reduce all the risks due to wrong design choices. These two main motivations entail two main objectives of the current dissertation. The first main objective regards the assessment and development of design techniques for the integration of the aircraft subsystems conceptual design discipline within a collaborative and multidisciplinary development methodology. This methodology shall meet all the necessities required to design an optimal and competitive product. The second goal is relative to the employment of the proposed design methodology for the initial development of innovative solutions. As the design process is multidisciplinary, this thesis is focused on the on-board systems discipline, without neglecting the interactions among this discipline with all the other design disciplines. Thus, two kinds of subsystems are treated in the current dissertation. The former deals with hybrid-electric propulsion systems installed aboard Remotely Piloted Aerial Systems (RPASs) and general aviation airplanes. The second case study is centered on More and All Electric on-board system architectures, which are characterized by the removal of the hydraulic and/or pneumatic power generation systems in favor of an enhancement of the electrical system. The proposed design methodology is based on a Systems Engineering approach, according to which all the customer needs and required system functionalities are defined since the earliest phase of the design. The methodology is a five-step process in which several techniques are implemented for the development of a successful product. In Step 1, the design case and the requirements are defined. A Model Based Systems Engineering (MBSE) approach is adopted for the derivation and development of all the functionalities effectively required by all the involved stakeholders. All the design disciplines required in the MDO problem are then collected in Step 2. In particular, all the relations among these disciplines – in terms of inputs/outputs – are outlined, in order to facilitate their connection and the setup of the design workflow. As the present thesis is mainly focused on the on-board system design discipline, several algorithms for the preliminary sizing of conventional and innovative subsystems (included the hybrid propulsion system) are presented. In the third step, an MDO problem is outlined, determining objectives, constraints and design variables. Some design problems are analyzed in the present thesis: un-converged and converged Multidisciplinary Design Analysis (MDA), Design Of Experiments (DOE), optimization. In this regard, a new multi-objective optimization method based on the Fuzzy Logic has been developed during the doctoral research. This proposed process would define the “best” aircraft solution negotiating and relaxing some constraints and requirements characterized by a little worth from the user perspective. In Step 4, the formulation of the MDO problem is then transposed into a MDO framework. Two kinds of design frameworks are here considered. The first one is centered on the subsystems design, with the aim of preliminarily highlighting the impacts of this discipline on the entire Overall Aircraft Design (OAD) process and vice-versa. The second framework is distributed, as many disciplinary experts are involved within the design process. In this case, the level of fidelity of the several disciplinary modules is higher than the first framework, but the effort needed to setup the entire workflow is much higher. The proposed methodology ends with the investigation of the design space through the implemented framework, eventually selecting the solution of the design problem (Step 5). The capability of the proposed methodology and design techniques is demonstrated by means of four application cases. The first case study refers to the initial definition of the physical architecture of a hybrid propulsion system based on a set of needs and capabilities demanded by the customer. The second application study is focused on the preliminary sizing of a hybrid-electric propulsion system to be installed on a retrofit version of a well-known general aviation aircraft. In the third case study, the two kinds of MDO framework previously introduced are employed to design conventional, More Electric and All Electric subsystem architectures for a 90-passenger regional jet. The last case study aims at minimizing the aircraft development costs. A Design-To-Cost approach is adopted for the design of a hybrid propulsion system

    A Model-Based System Engineering Approach to Support System Architecting Activities in Early Aircraft Design

    Get PDF
    The aviation industry aims to reduce its environmental footprint and meet ambitious environmental targets, prompting the exploration of novel aircraft concepts and systems, such as hybrid-electric or distributed propulsion. These emerging technologies introduce complexity to aircraft system architectures, requiring innovative approaches to design, optimization, and safety assessment, particularly for system architecting. Several aspects of system architecting specification and evaluation are typically performed separately, using different people and a mix of manual and model-based processes. Connecting these activities has the potential to make the design process more efficient and effective. This thesis explores how a Model-Based Systems Engineering (MBSE) specification environment can be structured and enriched to enable a better bridge to Multidisciplinary Design Analysis and Optimization (MDAO) and Model-Based Safety Assessment (MBSA) activities. The proposed MBSE approach focuses on enhancing system specifications, particularly for unconventional system architectures, which typically feature greater variability in early design stages. Using the ARCADIA/Capella MBSE environment, a multi-level approach is proposed to structure the system architecture specification and the Property Value Management Tool (PVMT) add-on is used to facilitate the bridge to other system architecting activities. In addition, a catalogue of modeling artifacts is established to facilitate the development of various hybrid-electric system configurations. The MDAO link mechanism is demonstrated with an example from the collaborative AGILE4.0 project. Two test cases demonstrate the implementation of the approach: a hybrid-electric propulsion system and associated sub-systems for the overall approach and the landing gear braking system for the model-based Functional Hazard Analysis (FHA), as an example of an MBSA activity. Overall, this thesis helps improve the integration and collaboration between engineers working on MBSE, MDAO, and MBSA. This better integration will help to reduce the development time and risk. Therefore, the presented thesis contributes to a more efficient aircraft development process, enabling the industry to tackle the emerging needs of unconventional aircraft systems and their integration
    • …
    corecore