6,220 research outputs found

    Considering reachability when comparing data refinements

    Get PDF
    Adding considerations about reachability to the Logics of Specification Languages [1] chapter [2]

    Logic-Based Specification Languages for Intelligent Software Agents

    Full text link
    The research field of Agent-Oriented Software Engineering (AOSE) aims to find abstractions, languages, methodologies and toolkits for modeling, verifying, validating and prototyping complex applications conceptualized as Multiagent Systems (MASs). A very lively research sub-field studies how formal methods can be used for AOSE. This paper presents a detailed survey of six logic-based executable agent specification languages that have been chosen for their potential to be integrated in our ARPEGGIO project, an open framework for specifying and prototyping a MAS. The six languages are ConGoLog, Agent-0, the IMPACT agent programming language, DyLog, Concurrent METATEM and Ehhf. For each executable language, the logic foundations are described and an example of use is shown. A comparison of the six languages and a survey of similar approaches complete the paper, together with considerations of the advantages of using logic-based languages in MAS modeling and prototyping.Comment: 67 pages, 1 table, 1 figure. Accepted for publication by the Journal "Theory and Practice of Logic Programming", volume 4, Maurice Bruynooghe Editor-in-Chie

    A Survey of Languages for Specifying Dynamics: A Knowledge Engineering Perspective

    Get PDF
    A number of formal specification languages for knowledge-based systems has been developed. Characteristics for knowledge-based systems are a complex knowledge base and an inference engine which uses this knowledge to solve a given problem. Specification languages for knowledge-based systems have to cover both aspects. They have to provide the means to specify a complex and large amount of knowledge and they have to provide the means to specify the dynamic reasoning behavior of a knowledge-based system. We focus on the second aspect. For this purpose, we survey existing approaches for specifying dynamic behavior in related areas of research. In fact, we have taken approaches for the specification of information systems (Language for Conceptual Modeling and TROLL), approaches for the specification of database updates and logic programming (Transaction Logic and Dynamic Database Logic) and the generic specification framework of abstract state machine

    Evaluating Knowledge Representation and Reasoning Capabilites of Ontology Specification Languages

    Get PDF
    The interchange of ontologies across the World Wide Web (WWW) and the cooperation among heterogeneous agents placed on it is the main reason for the development of a new set of ontology specification languages, based on new web standards such as XML or RDF. These languages (SHOE, XOL, RDF, OIL, etc) aim to represent the knowledge contained in an ontology in a simple and human-readable way, as well as allow for the interchange of ontologies across the web. In this paper, we establish a common framework to compare the expressiveness of "traditional" ontology languages (Ontolingua, OKBC, OCML, FLogic, LOOM) and "web-based" ontology languages. As a result of this study, we conclude that different needs in KR and reasoning may exist in the building of an ontology-based application, and these needs must be evaluated in order to choose the most suitable ontology language(s)

    Characterizing specification languages which admit initial semantics

    Get PDF
    AbstractThe paper proposes an axiomatic approach to specification languages, and introduces notions of reducibility and equivalence as tools for their study and comparison. Algebraic specification languages are characterized up to equivalence. They are shown to be limited in expressive power by implicational languages

    Test Derivation from Timed Automata

    Get PDF
    A real-time system is a discrete system whose state changes occur in real-numbered time [AH97]. For testing real-time systems, specification languages must be extended with constructs for expressing real-time constraints, the implementation relation must be generalized to consider the temporal dimension, and the data structures and algorithms used to generate tests must be revised to operate on a potentially infinite set of states

    Comparing topic maps constraint specification languages

    Get PDF
    Topic Map Constraint Language (TMCL) provides a means to express constraints on topic maps conforming to ISO/IEC 13250. In this article, we will use a test suite and show, step-by-step, the way we handled several kinds of Topic Maps constraints in many different instances in order to answer questions like: Do they do the same job? Are there some kinds of Topic Maps constraints that are easier to specify with one of them? Do you need different background to use the tools? Is it possible to use them in similar situations (the same topic maps instances)? May we use them to produce an equal result? How do AsTMa!, OSL, Toma, and XTche relate to Topic Maps Constraint Language (TMCL)? What kind of constraints each one of these three can not specify? We will conclude this paper with a summary of the comparisons accomplished between those Topic Maps constraint languages over the use case proposed

    A roadmap to ontology specification languages

    Full text link
    The interchange of ontologies across the World Wide Web (WWW) and the cooperation among heterogeneous agents placed on it is the main reason for the development of a new set of ontology specification languages, based on new web standards such as XML or RDF. These languages (SHOE, XOL, RDF, OIL, etc) aim to represent the knowledge contained in an ontology in a simple and human-readable way, as well as allow for the interchange of ontologies across the web. In this paper, we establish a common framework to compare the expressiveness and reasoning capabilities of "traditional" ontology languages (Ontolingua, OKBC, OCML, FLogic, LOOM) and "web-based" ontology languages, and conclude with the results of applying this framework to the selected languages

    Parameter passing in algebraic specification languages

    Get PDF
    AbstractIn this paper we study the semantics of the parameter passing mechanism in algebraic specification languages. More precisely, this problem is studied for parameterized data types and parameterized specifications. The given results include the extension of the model functor (which is useful for correctness proofs) and the semantic properties of the result of inserting actual parameters into parameterized specifications. In particular, actual parameters can be parameterized and the result is nested parameterized specification. Correctness of an applied (matrix(int)) or a nested (bintree(string())) parameterized specification is shown given correctness of the parts. The formal theory in this paper is restricted to the basic algebraic case where only equations are allowed in the parameter declaration and parameter passing is given by specification morphisms. But we also give the main ideas of a corresponding theory with requirements where we allow different kinds of restrictions in the parameter declaration
    corecore