69,866 research outputs found

    On Global Warming (Softening Global Constraints)

    Get PDF
    We describe soft versions of the global cardinality constraint and the regular constraint, with efficient filtering algorithms maintaining domain consistency. For both constraints, the softening is achieved by augmenting the underlying graph. The softened constraints can be used to extend the meta-constraint framework for over-constrained problems proposed by Petit, Regin and Bessiere.Comment: 15 pages, 7 figures. Accepted at the 6th International Workshop on Preferences and Soft Constraint

    Optimization viewpoint on Kalman smoothing, with applications to robust and sparse estimation

    Full text link
    In this paper, we present the optimization formulation of the Kalman filtering and smoothing problems, and use this perspective to develop a variety of extensions and applications. We first formulate classic Kalman smoothing as a least squares problem, highlight special structure, and show that the classic filtering and smoothing algorithms are equivalent to a particular algorithm for solving this problem. Once this equivalence is established, we present extensions of Kalman smoothing to systems with nonlinear process and measurement models, systems with linear and nonlinear inequality constraints, systems with outliers in the measurements or sudden changes in the state, and systems where the sparsity of the state sequence must be accounted for. All extensions preserve the computational efficiency of the classic algorithms, and most of the extensions are illustrated with numerical examples, which are part of an open source Kalman smoothing Matlab/Octave package.Comment: 46 pages, 11 figure

    A Generic Path Algorithm for Regularized Statistical Estimation

    Full text link
    Regularization is widely used in statistics and machine learning to prevent overfitting and gear solution towards prior information. In general, a regularized estimation problem minimizes the sum of a loss function and a penalty term. The penalty term is usually weighted by a tuning parameter and encourages certain constraints on the parameters to be estimated. Particular choices of constraints lead to the popular lasso, fused-lasso, and other generalized l1l_1 penalized regression methods. Although there has been a lot of research in this area, developing efficient optimization methods for many nonseparable penalties remains a challenge. In this article we propose an exact path solver based on ordinary differential equations (EPSODE) that works for any convex loss function and can deal with generalized l1l_1 penalties as well as more complicated regularization such as inequality constraints encountered in shape-restricted regressions and nonparametric density estimation. In the path following process, the solution path hits, exits, and slides along the various constraints and vividly illustrates the tradeoffs between goodness of fit and model parsimony. In practice, the EPSODE can be coupled with AIC, BIC, CpC_p or cross-validation to select an optimal tuning parameter. Our applications to generalized l1l_1 regularized generalized linear models, shape-restricted regressions, Gaussian graphical models, and nonparametric density estimation showcase the potential of the EPSODE algorithm.Comment: 28 pages, 5 figure

    A New Approach to Collaborative Filtering: Operator Estimation with Spectral Regularization

    Get PDF
    We present a general approach for collaborative filtering (CF) using spectral regularization to learn linear operators from "users" to the "objects" they rate. Recent low-rank type matrix completion approaches to CF are shown to be special cases. However, unlike existing regularization based CF methods, our approach can be used to also incorporate information such as attributes of the users or the objects -- a limitation of existing regularization based CF methods. We then provide novel representer theorems that we use to develop new estimation methods. We provide learning algorithms based on low-rank decompositions, and test them on a standard CF dataset. The experiments indicate the advantages of generalizing the existing regularization based CF methods to incorporate related information about users and objects. Finally, we show that certain multi-task learning methods can be also seen as special cases of our proposed approach

    Solving finite-domain linear constraints in presence of the alldifferent\texttt{alldifferent}

    Full text link
    In this paper, we investigate the possibility of improvement of the widely-used filtering algorithm for the linear constraints in constraint satisfaction problems in the presence of the alldifferent constraints. In many cases, the fact that the variables in a linear constraint are also constrained by some alldifferent constraints may help us to calculate stronger bounds of the variables, leading to a stronger constraint propagation. We propose an improved filtering algorithm that targets such cases. We provide a detailed description of the proposed algorithm and prove its correctness. We evaluate the approach on five different problems that involve combinations of the linear and the alldifferent constraints. We also compare our algorithm to other relevant approaches. The experimental results show a great potential of the proposed improvement.Comment: 28 pages, 2 figure

    A Non-Local Structure Tensor Based Approach for Multicomponent Image Recovery Problems

    Full text link
    Non-Local Total Variation (NLTV) has emerged as a useful tool in variational methods for image recovery problems. In this paper, we extend the NLTV-based regularization to multicomponent images by taking advantage of the Structure Tensor (ST) resulting from the gradient of a multicomponent image. The proposed approach allows us to penalize the non-local variations, jointly for the different components, through various ℓ1,p\ell_{1,p} matrix norms with p≥1p \ge 1. To facilitate the choice of the hyper-parameters, we adopt a constrained convex optimization approach in which we minimize the data fidelity term subject to a constraint involving the ST-NLTV regularization. The resulting convex optimization problem is solved with a novel epigraphical projection method. This formulation can be efficiently implemented thanks to the flexibility offered by recent primal-dual proximal algorithms. Experiments are carried out for multispectral and hyperspectral images. The results demonstrate the interest of introducing a non-local structure tensor regularization and show that the proposed approach leads to significant improvements in terms of convergence speed over current state-of-the-art methods
    • …
    corecore