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Abstract

We present a general approach for collaborative filtering (CF) using spectral regularization
to learn linear operators from “users” to a set of possibly desired “objects”. Recent low-
rank type matrix completion approaches to CF are shown to be special cases. However,
unlike existing regularization based CF methods, our approach can be used to also incor-
porate information such as attributes of the users or the objects—a limitation of existing
regularization based CF methods. We provide novel representer theorems that we use to
develop new estimation methods. We then provide learning algorithms based on low-rank
decompositions, and test them on a standard CF dataset. The experiments indicate the
advantages of generalizing the existing regularization based CF methods to incorporate re-
lated information about users and objects. Finally, we show that certain multi-task learning
methods can be also seen as special cases of our proposed approach.

1. Introduction

Collaborative filtering (CF) refers to the task of predicting preferences of a given “user”
for some “objects” (e.g., books, music, products, people, etc.) based on his/her previously
revealed preferences—typically in the form of purchases or ratings—as well as the revealed
preferences of other users. In a book recommender system, for example, one would like to
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suggest new books to someone based on what she and other users have recently purchased
or rated. The ultimate goal of CF is to infer the preferences of users in order to offer them
new objects.

A number of CF methods have been developed in the past (Breese et al., 1998, Heckerman
et al., 2000, Salakhutdinov et al., 2007). Recently there has been interest in CF using
regularization based methods (Srebro and Jaakkola, 2003). This work adds to that literature
by developing a novel general approach to developing regularization based CF methods.

Recent regularization based CF methods assume that the only data available are the re-
vealed preferences, where no other information such as background information on the
objects or users is given. In this case, one may formulate the problem as that of inferring
the contents of a partially observed preference matrix : each row represents a user, each
column represents an object (e.g., books or movies), and entries in the matrix represent
a given user’s rating of a given object. When the only information available is a set of
observed user/object ratings, the unknown entries in the matrix must be inferred from the
known ones – of which there are typically very few relative to the size of the matrix.

To make useful predictions within this setting, regularization based CF methods make
certain assumptions about the relatedness of the objects and users. The most common
assumption is that preferences can be decomposed into a small number of factors, both for
users and objects, resulting in the search for a low-rank matrix which approximates the
partially observed matrix of preferences (Srebro and Jaakkola, 2003). The rank constraint
can be interpreted as a regularization on the hypothesis space. Since the rank constraint
gives rise to a non-convex set of matrices, the associated optimization problem will be a
difficult non-convex problem for which only heuristic algorithms exist (Srebro and Jaakkola,
2003). An alternative formulation, proposed by Srebro et al. (2005), suggests penalizing the
predicted matrix by its trace norm, i.e., the sum of its singular values. An added benefit
of the trace norm regularization is that, with a sufficiently large regularization parameter,
the final solution will be low-rank (Fazel et al., 2001, Bach, 2008).

However, a key limitation of current regularization based CF methods is that they do not
take advantage of information, such as attributes of users (e.g., gender, age) or objects
(e.g., book’s author, genre), which is often available. Intuitively, such information might
be useful to guide the inference of preferences, in particular for users and objects with very
few known ratings. For example, at the extreme, users and objects with no prior ratings
can not be considered in the standard CF formulation, while their attributes alone could
provide some basic preference inference.

The main contribution of this paper is to develop a general framework and specific algo-
rithms also based on novel representer theorems for the more general CF setting where other
information, such as attributes for users and/or objects, may be available. More precisely
we show that CF, while typically seen as a problem of matrix completion, can be thought of
more generally as estimating a linear operator from the space of users to the space of objects.
Equivalently, this can be viewed as learning a bilinear form between users and objects. We
then develop spectral regularization based methods to learn such linear operators. When
dealing with operators, rather than matrices, one may also work with infinite dimension,
allowing one to consider arbitrary feature space, possibly induced by some kernel function.
Among key theoretical contributions of this paper are new representer theorems, allowing
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us to develop new general methods that learn finitely many parameters even when working
in infinite dimensional user/object feature space. These representer theorems generalize
the classical representer theorem for minimization of an empirical loss penalized by the
norm in a Reproducing Kernel Hilbert Space (RKHS) to more general penalty functions
and function classes.

We also show that, with the appropriate choice of kernels for both users and objects, we
may consider a number of existing machine learning methods as special cases of our general
framework. In particular, we show that several CF methods such as rank constrained
optimization, trace-norm regularization, and those based on Frobenius norm regularization,
can all be cast as special cases of spectral regularization on operator spaces. Moreover,
particular choices of kernels lead to specific sub-cases such as regular matrix completion and
multitask learning. In the specific application of collaborative filtering with the presence
of attributes, we show that our generalization of these sub-cases leads to better predictive
performance.

The outline of the paper is as follows. In Section 2, we review the notion of a compact
operator on Hilbert Space, and we show how to cast the collaborative filtering problem
within this framework. We then introduce spectral regularization and discuss how rank
constraint, trace norm regularization, and Frobenius norm regularization are all special cases
of spectral regularization. In Section 3, we show how our general framework encompasses
many existing methods by proper choices of the loss function, the kernels, and the spectral
regularizer. In Section 4, we provide three representer theorems for operator estimation with
spectral regularization which allow for efficient learning algorithms. Finally in Section 5 we
present a number of algorithms and describe several techniques to improve efficiency. We
test these algorithms in Section 6 on synthetic examples and a widely used movie database.

2. Learning compact operators with spectral regularization

In this section we propose a mathematical formulation for a general CF problem with
spectral regularization. We then show in Section 3 how several learning problems can be
cast under this general framework.

2.1 A general CF formulation

We consider a general CF problem in which our goal is to model the preference of a user
described by x for an item described by y. We denote by x and y the data objects containing
all relevant or available information; this could, for example, include a unique identifier i for
the i-th user or object. Of course, the users and objects may additionally be characterized by
attributes, in which case x or y would contain some representation of this extra information.
Ultimately, we would like to consider such attribute information as encoded in some positive
definite kernel between users, or equivalently between objects. This naturally leads us to
model the users as elements in a Hilbert space X , and the objects they rate as elements of
another Hilbert space Y.

We assume that our observation data is in the form of ratings from users to objects, a
real-valued score representing the user’s preference for the object. Alternatively, similar
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methods can be applied when the observations are binary, specifying for instance whether
or not a user considered or selected an object.

Given a series of N observations (xi,yi, ti)i=1,...,N in X×Y×R, where ti represents the rating
of user xi for object yi, the generalized CF problem is then to infer a function f : X×Y → R

that can then be used to predict the rating of any user x ∈ X for any object y ∈ Y by
f (x,y). Note that in our notation, xi and yi represent the user and object corresponding
to the i-th rating available. If several ratings of a user for different objects are available, as
is commonly the case, several xi’s will be identical in X—a slight abuse of notation. We
denote by XN and YN the linear spans of {xi , i = 1, . . . , N} and {yi , i = 1, . . . , N} in X
and Y, with respective dimensions mX and mY .

For the function to be estimated we restrict ourselves to bilinear forms given by:

f(x,y) = 〈x, Fy〉X , (1)

for some compact operator F . We now denote by B0 (Y,X ) the set of compact opera-
tors from X to Y. For an introduction to relevant concepts in functional analysis, see
Appendix A.

In the general case we consider below, if X and Y are not Hilbert spaces, one could also first
map (implicitly) users x and objects y into possibly infinite dimensional Hilbert feature
spaces ΦX (x) and ΨY(y) and use kernels. We refer the reader to Appendix A for basic
definitions and properties related to compact operators that are useful below. The inference
problem can now be stated as follows:

Given a training set of ratings, how may we estimate a “good” compact operator F to predict
future ratings using (1)?

We estimate the operator F in (1) from the training data using a standard regularization and
statistical machine learning approach. In particular, we propose to define the operator as
the solution of an optimization problem over B0 (Y,X ) whose objective function balances a
data fitting term RN (F ), which is small for operators that can correctly explain the training
data, with a regularization term Ω(F ). We now describe these two terms in more details.

2.2 Data fitting term

Given a loss function ℓ(t′, t) that quantifies how good a prediction t′ ∈ R is if the true value
is t ∈ R, we consider a fitting term equal to the empirical risk, i.e., the mean loss incurred
on the training set:

RN (F ) =
1

N

N
∑

i=1

ℓ (〈xi, Fyi〉X , ti) . (2)

The particular choice of the loss function should typically depend on the precise problem
to be solved and on the nature of the variables t to be predicted. See more details in
Section 3. In particular, while the representer theorems presented in Section 4 do not need
any convexity with respect to this choice, the algorithms presented in Section 5 do.

4



2.3 Regularization term

For the regularization term, we focus on a class of spectral functions defined as follows.

Definition 1 A function Ω : B0 (Y,X ) 7→ R ∪ {+∞} is called a spectral penalty function
if it can be written as:

Ω(F ) =

d
∑

i=1

si (σi(F )) , (3)

where for any i ≥ 1, si : R
+ 7→ R

+ ∪ {+∞} is a non-decreasing penalty function satisfying
s(0) = 0, and (σi(F ))i=1,...,d are the d singular values of F in decreasing order—d possibly
infinite.

Note that by the spectral theorem presented in Appendix A, any compact operator can be
decomposed into singular vectors, with singular values being a sequence that tends to zero.

Spectral penalty functions include as special cases several functions often encountered in
matrix completion problems:

• For a given integer r, taking si = 0 for i = 1, . . . , r and sr+1(u) = +∞ if u > 0, leads
to the function:

Ω(F ) =

{

0 if rank(F ) ≤ r ,

+∞ otherwise.
(4)

In other words, the set of operators F that satisfy Ω(F ) < +∞ is the set of operators
with rank smaller than r.

• Taking si(u) = u for all i results in the trace norm penalty (see Appendix A):

Ω(F ) =

{

‖F ‖1 if F ∈ B1 (Y,X ) ,

+∞ otherwise,
(5)

where we note with B1 (Y,X ) the set of operators with finite trace norm. Such oper-
ators are referred to as trace class operators.

• Taking si(u) = u2 for all i results in the squared Hilbert-Schmidt norm penalty (also
called squared Frobenius norm for matrices, see Appendix A):

Ω(F ) =

{

‖F ‖2
2 if F ∈ B2 (Y,X ) ,

+∞ otherwise,
(6)

where we note with B2 (Y,X ) the set of operators with finite squared Hilbert-Schmidt
norm. Such operators are referred to as Hilbert Schmidt operators.

These particular functions can be combined together in different ways. For example, we
may constrain the rank to be smaller than r while penalizing the trace norm of the matrix,
which can be obtained by setting si(u) = u for i = 1, . . . , r and sr+1(u) = +∞ if u > 0.
Alternatively, if we want to penalize the Frobenius norm while constraining the rank, we
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set si(u) = u2 for i = 1, . . . , r and sr+1(u) = +∞ if u > 0. We state these two choices
of Ω explicitly since we use these in the experiments (see Section 6) or to design efficient
algorithms (see Section 5):

Trace+Rank Penalty: Ω(F ) =

{

‖F ‖1 if rank(F ) ≤ r,

+∞ otherwise.
(7)

Frobenius+Rank Penalty: Ω(F ) =

{

‖F ‖2
2 if rank(F ) ≤ r,

+∞ otherwise.
(8)

2.4 Operator inference

With both a fitting term and a regularization term, we can now formally define our inference
approach. It consists of finding an operator F̂ , if there exists one, that solves the following
optimization problem:

F̂ ∈ arg min
F∈B0(Y ,X )

RN (F ) + λΩ(F ) , (9)

where λ ∈ R is a parameter that controls the trade-off between fitting and regularization,
and where RN (F ) and Ω(F ) are respectively defined in (2) and (3). We note that if the
set {F ∈ B0 (Y,X ) , Ω(F ) < +∞} is not empty, then necessarily the solution F̂ of this
optimization problem must satisfy Ω(F̂ ) <∞.

We show in Sections 4 and 5 how problem (9) can be solved in practice in particular for
Hilbert spaces of infinite dimensions. Before exploring such implementation-related issues,
in the following section we provide several examples of algorithms that can be derived as
particular cases of (9) and highlight their relationships to existing methods.

3. Examples and related approaches

The general formulation (9) can result in a variety of practical algorithms potentially useful
in different contexts. In particular, three elements can be tailored to one’s particular needs:
the loss function, the kernels (or equivalently the Hilbert spaces), and the spectral penalty
term. We start this section by some generalities about the possible choices for these elements
and their consequences, before highlighting some particular combinations of choices relevant
for different applications.

1. The loss function. The choice of ℓ defines the empirical risk through (2). It is a
classical component of many machine learning methods, and should typically depend
on the type of data to be predicted (e.g., discrete or continuous) and of the final
objective of the algorithm (e.g., classification, regression or ranking). The choice of ℓ
also influences the algorithm, as discussed in Section 5. As a deeper discussion about
the loss function is only tangential to the current work, we only consider the square
loss here, knowing that other convex losses may be considered.

2. The spectral penalty function. The choice of Ω(F ) defines the type of constraint
we impose on the operator that we seek to learn. In Section 2.3, we gave several
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examples of such constraints including the rank constraint (4), the trace norm con-
straint (5), the Hilbert-Schmidt norm constraint (6), or the trace norm constraint over
low-rank operators (7). The choice of a particular penalty might be guided by some
considerations about the problem to be solved, e.g., finding low-rank operators as a
way to discover low-dimensional latent structures in the data. On the other hand, from
an algorithmic perspective, the choice of the spectral penalty may affect the efficiency
or feasibility of our learning algorithm. Certain penalty functions, such as the rank
constraint for example, will lead to non-convex problems because the corresponding
penalty function (4) is not convex itself. However, the same rank constraint can vastly
reduce the number of parameters to be learned. These algorithmic considerations are
discussed in more details in Section 5.

3. The kernels. Our choice of kernels defines the inner products (i.e., embeddings)
of the users and objects in their respective Hilbert spaces. We may use a variety of
possible kernels depending on the problem to be solved and on the attributes available.
Interestingly, the choice of a particular kernel has no influence on the algorithm, as we
show later (however, it does of course influence the running time of these algorithms).
In the current work, we focus on two basic kernels (Dirac kernels and attribute kernels)
and in Section 3.4 we discuss combining these.

• The first kernel we consider is the Dirac kernel. When two users (resp. two
objects) are compared, the Dirac kernel returns 1 if they are the same user
(resp. object), and 0 otherwise. In other words, the Dirac kernel amounts to
representing the users (resp. the objects) by orthonormal vectors in X (resp. in
Y). This kernel can be used whether or not attributes are available for users and
objects. We denote by kXD (resp. kYD) the Dirac kernel for the users (resp. objects).

• The second kernel we consider is a kernel between attributes, when attributes are
available to describe the users and/or objects. We call this an “attribute kernel”.
This would typically be a kernel between vectors, such as the inner product or a
Gaussian RBF kernel, when the descriptions of users and/or objects take the form
of vectors of real-valued attributes, or any kernel on structured objects (Shawe-
Taylor and Cristianini, 2004). We denote by kXA (resp. kYA) the attributes kernel
for the users (resp. objects).

In the following section we illustrate how specific combinations of loss, spectral penalty
and kernels can be relevant for various settings. In particular the choice of kernels leads
to new methods for a range of different estimation problems; namely, matrix completion,
multi-task learning, and pairwise learning. In Section 3.4 we consider a new representation
that allows interpolation between these particular problem formulations.

3.1 Matrix completion

When the Dirac kernel is used for both users and objects, then we can organize the data
{xi, i = 1, . . . , n} into nX groups of identical data points and similarly {yi, i = 1, . . . , n}
into nY groups. Since we use the Dirac kernel, we can represent each of these groups
by the elements of the canonical basis (u1, . . . ,unX

) and
(

v1, . . . ,vnY

)

of R
nX and R

nY ,
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respectively. A bilinear form using Dirac kernels only depends on the identities of the users
and the objects, and we only predict the rating ti based on the identities of the groups in
both spaces. If we assume that each pair user/object is observed at most once, the data can
be re-arranged into a nX × nY incomplete matrix, the learning objective being to complete
this matrix (indeed, in this context, it is not possible to generalize to never seen points in
X and Y).

In this case, our bilinear form framework exactly corresponds to completing the matrix,
since the bilinear function of x and y is exactly equal to u⊤

i Mvj where x = ui (i.e., x is the
i-th person) and y = vj (i.e., y is the j-th object). Thus, the (i, j)-th entry of the matrix
M can be assimilated to the value of the bilinear form defined by the matrix M over the
pair (ui,vj). Moreover the spectral regularizer corresponds to the corresponding spectral
function of the complete matrix M ∈ R

nX×nY .

In this context, finding a low-rank approximation of the observed entries in a matrix is an
appealing strategy, which corresponds to taking the rank penalty constraint (4) combined
with, for example, the square loss error. This however leads to non-convex optimization
problems with multiple local minima, for which only local search heuristics are known (Sre-
bro and Jaakkola, 2003). To circumvent this issue, convex spectral penalty functions can be
considered. Indeed, in the case of binary preferences, combining the hinge loss function with
the trace norm penalty (5) leads to the maximum margin matrix factorization (MMMF)
approach proposed by Srebro et al. (2005), which can be rewritten as a semi-definite pro-
gram. For the sake of efficiency, Rennie and Srebro (2005) proposed to add a constraint
on the rank of the matrix, resulting in a non-convex problem that can nevertheless be han-
dled efficiently by classical gradient descent techniques; in our setting, this corresponds to
changing the trace norm penalty (5) by the penalty (7).

3.2 Multi-task learning

It may be the case that we have attributes only for objects y (we could do the same for
attributes for users). In that case, for a finite number of users {xi , i = 1, . . . , N} organized
in nX groups, we aim to estimate a separate function on objects fi(y) for each of the nX
users i. Considering the estimation of each of these fi’s as a learning task, one can possibly
learn all fi’s simultaneously using a multi-task learning approach.

In order to adapt our general framework to this scenario, it is natural to consider the
attribute kernel kYA for the objects, whose attributes are available, and the Dirac kernel kXD
for the users, for which no attributes are used. Again the choice of the loss function depends
on the precise task to be solved, and the spectral penalty function can be tuned to enforce
some sharing of information between different tasks.

In particular, taking the rank penalty function (4) enforces a decomposition of the tasks
(learning each fi) into a limited number of factors. This results in a method for multitask
learning based on a low-rank representation of the predictor functions fi. The resulting
problem, however, is not convex due to the use of the non-convex rank penalty function.
A natural alternative is then to replace the rank constraint by the trace norm penalty
function (5), resulting in a convex optimization problem when the loss function is convex.
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Recently, a similar approach was independently proposed by Amit et al. (2007) in the
context of multiclass classification and by Argyriou et al. (2008) for multitask learning.

Alternatively, another strategy to enforce some constraints among the tasks is to constrain
the variance of the different classifiers. Evgeniou et al. (2005) showed that this strategy
can be formulated in the framework of support vector machines by considering a multitask
kernel, i.e., a kernel kmultitask over the product space X × Y defined between any two
user/object pairs (x,y) and (x′,y′) by:

kmultitask ((x,y) , (x,y)) =
(

kXD
(

x,x′
)

+ c
)

kYA
(

y,y′
)

, (10)

where c > 0 controls how the variance of the classifiers is constrained compared to the norm
of each classifier. As explained in Appendix A, estimating a function over the product space
X × Y by penalizing the RKHS norm of the kernel (10) is a particular case of our general
framework, where we take the Hilbert-Schmidt norm (6) as spectral penalty function, and
where the kernels between users and between objects are respectively kXD (x,x′) + c and
kYA (y,y′). When c = 0, i.e., when we take a Dirac kernel for the users and an attribute kernel
for the objects, then penalizing the Hilbert-Schmitt norm amounts estimating independent
models for each users, as explained in Evgeniou et al. (2005). Combining two Dirac kernels
for users and objects, respectively, and penalizing the Hilbert-Schmitt norm would not be
very interesting, since the solution would always be 0 except on the training pairs. On
the other hand, replacing the Hilbert-Schmidt norm defined by other penalties such as the
trace norm penalty (5) would be an interesting extension when the kernels kXD (x,x′) + c
and kYA (y,y′) are used: this would constrain both the variance of the predictor functions
fi and their decomposition into a small number of factors, which could be an interesting
approach in some multitask learning applications.

3.3 Pairwise learning

When attributes are available for both users and objects then it is possible to take the
attributes kernels for both of them. Combining this choice with the Hilbert-Schmidt penalty
(6) results in classical machine learning algorithms (e.g., an SVM if the hinge loss is taken
as the loss function) applied to the tensor product of X and Y. This strategy is a classical
approach to learn a function over pairs of points (see, e.g., Jacob and Vert, 2008). Replacing
the Hilbert-Schmidt norm by another spectral penalty function, such as the trace norm,
would result in new algorithms for learning low-rank functions over pairs.

3.4 Combining the attribute and Dirac kernels

As illustrated in the previous subsections, the setting of the application often determines
the combination of kernels to be used for the users and the objects: typically, two Dirac
kernels for the standard CF setting without attributes, one Dirac and one attributes kernel
for multi-task problems, and two attributes kernels when attributes are available for both
users and objects and one wishes to learn over pairs.

There are many situations, however, where the attributes available to describe the users
and/or objects are certainly useful for the inference task, but on the other hand do not fully
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characterize the users and/or objects. For example, if we just know the age and gender
of users, we would like to use this information to model their preferences, but would also
like to allow different preferences for different users even when they share the same age and
gender. In our setting, this means that we may want to use the attributes kernel in order
to utilize known attributes from the users and objects during inference, but also the Dirac
kernel to incorporate the fact that different users and/or objects remain different even when
they share many or all of their attributes.

This naturally leads us to consider the following convex combinations of Dirac and attributes
kernels (Abernethy et al., 2006):

{

kX = ηkXA + (1 − η)kXD ,

kY = ζkYA + (1 − ζ)kYD,
(11)

where 0 ≤ η ≤ 1 and 0 ≤ ζ ≤ 1. These kernels interpolate between the Dirac kernels
(η = 0 and ζ = 0) and the attributes kernels (η = 1 and ζ = 1). Combining this choice of
kernels with, e.g., the trace norm penalty function (5), allows us to continuously interpolate
between different settings corresponding to different “corners” in the (η, ζ) square: standard
CF with matrix completion in (0, 0), multi-task learning in (0, 1) and (1, 0), and learning
over pairs in (1, 1). The extra degree of freedom created when η and ζ are allowed to vary
continuously between 0 and 1 provides a principled way to optimally balance the influence
of the attributes in the function estimation process.

Note that our representational framework encompasses simpler natural approaches to in-
clude attribute information for collaborative filtering: for example, one could consider com-
pleting matrices using matrices of the form UV ⊤+UAR

⊤
A +UAS

⊤
A , where UV ⊤ is a low-rank

matrix to be optimized, UA and VA are the given attributes for the first and second domains,
and RA, SA are parameters to be learned. This formulation corresponds to adding an un-
constrained low-rank term UV ⊤, and the simpler linear predictor from the concatenation
of attributes UAR

⊤
A +UAS

⊤
A (Jacob and Vert, 2008). Our approach implicitly adds a fourth

cross-product term UATV
⊤
A , where T is estimated from data. This exactly corresponds

to imposing that the low rank matrix has a decomposition which includes UA and VA as
columns. Our combination of Dirac and attribute kernels has the advantage of having spe-
cific weights η and ζ that control the trade-off between the constrained and unconstrained
low-rank matrices.

4. Representer theorems

We now present the key theoretical results of this paper and discuss how the general opti-
mization problem (9) can be solved in practice. A first difficulty with this problem is that the
optimization space {F ∈ B0 (Y,X ) : Ω(F ) <∞} can be of infinite dimension. We note that
this can occur even under a rank constraint, because the set {F ∈ B0 (Y,X ) : rank(F ) ≤ R}
is not included into any finite-dimensional linear subspace if X and Y have infinite dimen-
sions. In this section, we show that the optimization problem (9) can be rephrased as a
finite-dimensional problem, and propose practical algorithms to solve it in Section 5. While
the reformulation of the problem as a finite-dimensional problem is a simple instance of
the representer theorem when the Hilbert-Schmidt norm is used as a penalty function (Sec-
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tion 4.1), we prove in Section 4.2 a generalized representer theorem that is valid with any
spectral penalty function.

4.1 The case of the Hilbert-Schmidt penalty function

In the particular case where the penalty function Ω(F ) is the Hilbert-Schmidt norm (6), then
the set {F ∈ B0 (Y,X ) : Ω(F ) <∞} is the set of Hilbert-Schmidt operators. As recalled
in Appendix A. this set is a Hilbert space isometric through (1) to the reproducing kernel
Hilbert space H⊗ of the kernel:

k⊗
((

x,x′
)

,
(

y,y′
))

=
〈

x,x′
〉

X

〈

y,y′
〉

Y
,

and the isometry translates from F to f as:

‖ f ‖2
H⊗

= ‖F ‖2 = Ω(F ) .

As a result, in that case the problem (9) is equivalent to:

min
f∈H⊗

{

RN (f) + λ‖ f ‖2
⊗

}

. (12)

In that case the representer theorem for optimization of empirical risks penalized by the
RKHS norm (Aronszajn, 1950, Schölkopf et al., 2001) can be applied to show that the
solution of (12) necessarily lives in the linear span of the training data. With our notations
this translates into the following result:

Theorem 2 If F̂ is a solution of the problem:

min
F∈B2(Y ,X )

RN (F ) + λ
∞
∑

i=1

σi(F )2 , (13)

then it is necessarily in the linear span of {xi ⊗ yi : i = 1, . . . , N}, i.e., it can be written
as:

F̂ =

N
∑

i=1

αixi ⊗ yi , (14)

for some α ∈ R
N .

For the sake of completeness, and to highlight why this result is specific to the Hilbert-
Schmidt penalty function (6), we rephrase here, with our notations, the main arguments in
the proof of Schölkopf et al. (2001). Any operator F in B2 (Y,X ) can be decomposed as F =
FS + F⊥, where FS is the projection of F onto the linear span of {xi ⊗ yi : i = 1, . . . , N}.
F⊥ being orthogonal to each xi ⊗ yi in the training set, one easily gets RN (F ) = RN (FS),
while ‖F ‖2 = ‖FS ‖2 + ‖F⊥ ‖2 by the Pythagorean theorem. As a result a minimizer F
of the objective function must be such that F⊥ = 0, i.e., must be in the linear span of the
training tensor products.
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4.2 A Representer Theorem for General Spectral Penalty Functions

Let us now move on to the more general situation (9) where a general spectral function
Ω(F ) is used as regularization. Theorem 2 is usually not valid in such a case. Its proof
breaks down because it is not true that Ω(F ) = Ω(FS) + Ω(F⊥) for general Ω, or even that
Ω(F ) ≥ Ω(FS).

The following theorem, whose proof is presented in Appendix B, can be seen as a generalized
representer theorem. It shows that a solution of (9), if it exists, can be expanded over a
finite basis of dimension mX ×mY (where mX and mY are the underlying dimensions of the
subspaces where the data lie), and that it can be found as the solution of a finite-dimensional
optimization problem (with no convexity assumptions on the loss):

Theorem 3 For any spectral penalty function Ω : B0 (Y,X ) 7→ R ∪ {+∞}, let the opti-
mization problem:

min
F∈B0(Y ,X ),

RN (F ) + λΩ(F ) . (15)

If the set of solutions is not empty, then there is a solution F in XN ⊗YN , i.e., there exists
α ∈ R

mX×mY such that:

F =

mX
∑

i=1

mY
∑

j=1

αijui ⊗ vj , (16)

where (u1, . . . ,umX
) and

(

v1, . . . ,vmY

)

form orthonormal bases of XN and YN , respec-
tively. Moreover, in that case the coefficients α can be found by solving the following finite-
dimensional optimization problem:

min
α∈R

mX ×mY

RN

(

diag
(

XαY ⊤
))

+ λΩ(α) , (17)

where Ω(α) refers to the spectral penalty function applied to the matrix α seen as an operator
from R

mY to R
mX , and X ∈ R

N×mX and Y ∈ R
N×mX denote any matrices that satisfy K =

XX⊤ and G = Y Y ⊤ for the two N×N Gram matrices K and G defined by Kij = 〈xi,xj〉X
and Gij = 〈yi,yj〉Y , for 0 ≤ i, j ≤ N .

This theorem shows that, as soon as a spectral penalty function is used to control the
complexity of the compact operators, a solution can be searched in the finite-dimensional
space XN ⊗ YN , which in practice boils down to an optimization problem over the set of
matrices of size mX × mY . The dimension of this space might however be prohibitively
large for real-world applications where, e.g., tens of thousands of users are confronted to
a database of thousands of objects. A convenient way to obtain an important decrease
in complexity (at the expense of possibly losing convexity) is by constraining the rank of
the operator through an adequate choice of a spectral penalty. Indeed, the set of non-zero
singular components of F as an operator is equal to the set of non-zero singular values of
α in (16) seen as a matrix. Consequently any constraint on the rank of F as an operator
results in a constraint on α as a matrix, from which we deduce:

Corollary 4 If, in Theorem 3, the spectral penalty function Ω is infinite on operators of
rank larger than R (i.e., σR+1(u) = +∞ for u > 0), then the matrix α ∈ R

mX×mY in (16)
has rank at most R.
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As a result, if a rank constraint rank(F ) ≤ r is added to the optimization problem then the
representer theorem still holds but the dimension of the parameter α becomes r×(mX +mY)
instead of mX × mY , which is usually beneficial. We note, however, that when a rank
constraint is added to the Hilbert-Schmidt norm penalty, then the classical representer
Theorem 2 and the expansion of the solution over N vectors (14) are not valid anymore,
only Theorem 3 and the expansion (16) can be used.

5. Algorithms

In this section we explain how the optimization problem (17) can be solved in practice.
We first consider a general formulation, then we specialize to the situation where many x’s
and many y’s are identical; i.e., we are in a matrix completion setting where it may be
advantageous to consider other formulations that take into account some group structure
explicitly.

5.1 Convex dual of spectral regularization

When the loss is convex, we can derive the convex dual problem, which can be helpful for
actually solving the optimization problem. This could also provide an alternative proof of
the representer theorem in that particular situation.

For all i = 1, . . . , N , we let denote ψi(vi) = ℓ (vi, ti) the loss corresponding to predicting vi

for the i-th data point. For simplicity, we assume that each ψi is convex (this is usually
met in practice). Following Bach et al. (2005), we let ψ∗

i (αi) denote its Fenchel conjugate
defined as ψ∗

i (αi) = maxvi∈R αivi −ψi(vi). Minimizers of the optimization problem defining
the conjugate function are often referred to as Fenchel duals to αi (Boyd and Vandenberghe,
2003). In particular, we have the following classical examples:

• Least-squares regression: we have ψi(vi) = 1
2(ti − vi)

2 and ψ∗
i (αi) = 1

2α
2
i + αiti.

• Logistic regression: we have ψi(vi) = log(1 + exp(−yivi)), where yi ∈ {−1, 1}, and
ψ∗

i (αi) = (1 + αiti) log(1 + αiti) − αiti log(−αiti) if αiti ∈ (−1, 0), +∞ otherwise.

We also assume that the spectral regularization is such that for all i ∈ N, si = s, where s
is a convex function such that s(0) = 0. In this situation, we have Ω(A) =

∑

i∈N
s(σi(A)).

We can also define a Fenchel conjugate for Ω(A), which is also a spectral function Ω∗(B) =
∑

i∈N
s∗(σi(B)) (Lewis and Sendov, 2002).

Some special cases of interest for s(σ) are:

• s(σ) = |σ| leads to the trace norm and then s∗(τ) = 0 if |τ | is less than 1, and +∞
otherwise.

• s(σ) = 1
2σ

2 leads to the Frobenius/Hilbert Schmidt norm and then s∗(τ) = 1
2τ

2.

• s(σ) = ε log(1+eσ/ε)+ε log(1+e−σ/ε) is a smooth approximation of |σ|, which becomes
tighter when ε is closer to zero. We have: s∗(τ) = 1

ε (1+τ) log(1+τ)+ 1
ε (1−τ) log(1−τ).

Moreover, s′(σ) = τ ⇔ (s∗)′(τ) = σ = 1
ε log 1+τ

1−τ .
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Once the representer theorem has been applied, our optimization problem can be rewritten
in the primal form in (17):

min
α∈R

mx×my

N
∑

i=1

ψi((XαY
⊤)ii) + λΩ(α). (18)

We can now form the Lagrangian, associated with added constraints v = diag(XαY ⊤) and
corresponding Lagrange multiplier β ∈ R

N :

L(v, α, β) =
N
∑

i=1

ψi(vi) −
N
∑

i=1

βi(vi − (XαY ⊤)ii) + λΩ(α),

and minimize with respect to v and W to obtain the dual problem, which is to maximize:

−

N
∑

i=1

ψ∗
i (βi) − λΩ∗

(

−
1

λ
X⊤ Diag(β)Y

)

. (19)

Once the optimal dual variable β is found (there are as many of those as there are obser-
vations), then we can go back to α (which may or may not be of smaller size), by Fenchel
duality, i.e., α is among the Fenchel duals of − 1

λX
⊤ Diag(β)Y . Thus, when the function s is

differentiable and strictly convex (which implies that the set of Fenchel duals is a singleton),
then we obtain the primal variables α in closed form from the dual variables β. When s is
not differentiable, e.g., for the trace norm then, following Amit et al. (2007), we can find
the primal variables by noting that once β is known, the singular vectors of α are known
and we can find the singular values by solving a reduced convex optimization problem.

Computational complexity Note that for optimization, we have two strategies: using
the primal problem in Eq. (18) of dimension mXmY 6 nXnY (the actual dimension of the
underlying data) or using the dual problem in Eq. (19) of dimension N (the number of
ratings). The choice between those two formulations is problem dependent.

5.2 Collaborative filtering

In the presence of (many) identical columns and rows, which is often the case in collabora-
tive filtering situations, the kernel matrices K and L have some columns (and thus rows)
which are identical, and we can instead consider the kernel matrices (with their square-root
decompositions) K̃ = X̃X̃⊤ and L̃ = Ỹ Ỹ ⊤ as the kernel matrices for all distinct elements
of X and Y (let nX and nY be their sizes). Then each observation (xi,yi, ti) corresponds
to a pair of indices (a(i), b(i)) in {1, . . . , nX } × {1, . . . , nY}, and the primal/dual problems
become:

min
α∈R

mx×my

n
∑

i=1

ψi(δ
⊤
a(i)X̃αỸ

⊤δb(i)) + λΩ(α), (20)

where δu is a vector with only zeroes except at position u. The dual function is

−

N
∑

i=1

ψ∗
i (βi) − λΩ∗

(

−
1

λ
X̃⊤

N
∑

i=1

βiδa(i)δ
⊤
b(i)Ỹ

)

.
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Similar to usual kernel machines and the general case presented above, using the primal
or the dual formulation for optimization depends on the number of available ratings N
compared to the ranks mX and mY of the kernel matrices K̃ and L̃. Indeed, the number of
variables in the primal formulation is mXmY , while in the dual formulation it is N .

5.3 Low-rank constrained problem

We approximate the spectral norm by an infinitely differentiable spectral function. Since
we consider in this paper only infinitely differentiable loss functions, our problem is that of
minimizing an infinitely differentiable convex function G(W ) over rectangular matrices of
size p× q for certain integers p and q. As a result of our spectral regularization, we hope to
obtain (approximately) low-rank matrices. In this context, it has proved advantageous to
consider low-rank decompositions of the formW = UV ⊤ where U and V havem < min{p, q}
columns (Burer and Monteiro, 2005, Burer and Choi, 2006). Burer and Monteiro (2005)
have shown that if m = min{p, q} then the non-convex problem of minimizing G(UV ⊤)
with respect to U and V ⊤ has no local minima.

We now prove a stronger result in the context of twice differentiable functions, namely that
if the global optimum of G has rank r < min{p, q}, then the low-rank constrained problem
with rank r + 1 has no local minimum and its global minimum corresponds to the global
minimum of G. The following theorem makes this precise (see Appendix C for proof).

Proposition 5 Let G be a twice differentiable convex function on matrices of size p×q with
compact level sets. Let m > 1 and (U, V ) ∈ R

p×m × R
q×m a local optimum of the function

H : R
p×m × R

q×m 7→ R defined by H(U, V ) = G(UV ⊤), i.e., U is such that ∇H(U, V ) = 0
and the Hessian of H at (U, V ) is positive semi-definite. If U or V is rank deficient, then
N = UV ⊤ is a global minimum of G, i.e., ∇G(N) = 0.

The previous proposition shows that if we have a local minimum for the rank-m problem
and if the solution is rank deficient, then we have a solution of the global optimization
problem. This naturally leads to a sequence of reduced problems of increasing dimension
m, smaller than r + 1, where r is the rank of the global optimum. However, the number
of iterations of each of the local minimizations and the final rank m cannot be bounded a
priori in general.

Note that using a low-rank representation to solve the trace-norm regularized problem leads
to a non-convex minimization problem with no local minima, while simply using the low-
rank representation without the trace norm penalty and potentially with a Frobenius norm
penalty, may lead to local minima; i.e., we consider instead of Eq. (17) with the trace norm,
the following formulation:

min
α∈R

mX ×r, β∈R
mY×r

RN

(

diag
(

Xαβ⊤Y ⊤
))

+ λ

r
∑

q=1

‖α(:, k)‖2‖β(:, k)‖2 , (21)

where α(:, k) and β(:, k) are the k-th columns of α and β. In the simulation section, we
compare the two approaches on a synthetic example, and show that the convex formulation
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solved through a sequence of non-convex formulations leads to better predictive perfor-
mance.

5.4 Kernel learning for spectral functions

In our collaborative filtering context, there are two potentially useful sources of kernel learn-
ing: learning the attribute kernels, or learning the weights η and ζ between Dirac kernels and
attribute kernels. In this section, we show how multiple kernel learning (MKL) (Lanckriet
et al., 2004, Bach et al., 2004) may be extended to spectral regularization.

We first show that the optimization problem that we have defined in earlier sections only
depends on the Kronecker product of kernel matrices K ⊗G:

Proposition 6 The dual solution of the optimization problem in Eq. (22) depends only on
the matrix K ⊗G.

Proof It suffices to show that for all matrices B, then the positive singular values of X⊤BY
only depend on K⊗G. The largest singular value is defined as the maximum of a⊤X⊤BY b
over unit norm vectors a and b. By a change of variable, it is equivalent to maximize
(X⊤ã)X⊤BY (Y ⊤b̃)

‖X⊤ã‖‖Y ⊤b̃‖
= vec(b̃ã⊤)(K⊗G)vec(B)

vec(b̃ã⊤)⊤(K⊗G)vec(b̃ã⊤)
with respect to ã and b̃ (Golub and Loan, 1996).

Thus the largest positive singular value is indeed a function of K ⊗ G. Results for other
singular values may be obtained similarly.

This shows that the natural kernel matrix to be learned in our context is the Kronecker
product K ⊗ G. We thus follow Lanckriet et al. (2004) and consider M kernel matrices
K1, . . . ,KM for X and M kernel matrices G1, . . . , GM for Y; one possibility could be to
learn a convex combination of the matrices Kk ⊗ Gk by minimizing with respect to the
combination weights the optimal value of the problem in Eq. (22). However, unlike the
usual Hilbert norm regularization, this does not lead to a convex problem in general. We
thus focus on the alternative formulation of the MKL problem (Bach et al., 2004): we
consider the sum of the predictor functions associated with each of the individual kernel
pairs (Kk, Gk) and penalize by the sum of the norms.

That is, if we let denote X1, . . . ,XM and Y1, . . . , YM the respective square roots of matrices
K1, . . . ,KM and G1, . . . , GM , we look for predictor functions which are sums of the M
possible atomic predictor functions, and we penalize by the sum of spectral functions, to
obtain the following optimization problem:

min
∀k,αk∈R

mk
x×mk

y

n
∑

i=1

ψi

(

M
∑

k=1

(XkαkY
⊤
k )ii

)

+ λ

M
∑

k=1

Ω(αk).

We form the Lagrangian:

L(v, α1, . . . , αM , β) =
n
∑

i=1

ψi(vi) −
N
∑

i=1

βi(vi −
M
∑

k=1

(XαkY
⊤)ii) + λ

M
∑

k=1

Ω(αk),
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and minimize w.r.t. v and α1, . . . , αM to obtain the dual problem, which is to maximize

−
∑

u

ψ∗
i (βi) −

∑

k

λΩ∗

(

−
1

λ
X⊤

k Diag(β)Yk

)

. (22)

In the case of the trace norm, we obtain support kernels (Bach et al., 2004), i.e., only a
sparse combination of matrices ends up being used. Note that in the dual formulation, there
is only one α to optimize, and thus it is preferable to use the dual formulation rather than
the primal formulation.

This framework can be naturally applied to combine the four corners defined in Section 3.4.
Indeed, we can form M = 4 kernel matrices for each of the four corners and learn a
combination of such matrices. We show in Section 6 how the MKL framework allows to
automatically combine these four corners without setting the trade-off directly though η
and ζ (by the user or through cross-validation).

6. Experiments

In this Section we present several experimental findings for the algorithms and methods
discussed above. Much of the present work was motivated by the problem of collaborative
filtering and we therefore focus solely within this domain. As discussed in Section 3, by
using operator estimation and spectral regularization as a framework for CF, we may utilize
potentially more information to predict preferences. Our primary goal now is to show that,
as one would hope, such capabilities do improve prediction accuracy.

6.1 Datasets and Metrics

We present several plots created by experimenting on synthetic data. This dataset was
generated as follows: (1) sample i.i.d. multivariate features for x of dimension 6, (2) generate
i.i.d. multivariate features for y of dimension 6 as well, (3) sample z from a random bilinear
form in x and y plus some noise, (4) restrict the observed feature space to only 3 features
for both x and y. Since part of the data is discarded, the label cannot be perfectly predicted
by the known features. On the other hand, since we keep some of them, knowing and using
these attributes should work better than not using them. In other words, we expect that
setting η and ζ to be values other than 0 or 1 should provide better performance.

We also experimented with the well-known MovieLens 100k dataset from the GroupLens
Research Group at the University of Minnesota. This dataset consists of ratings of 1682
movies by 943 users. Each user provided a rating, in the form of a score from {1, 2, 3, 4, 5},
for a small subset of the movies. Each user rated at least 20 movies, and the total number of
ratings available is exactly 100,000, averaging about 105 per user. This dataset was rather
appropriate as it included attribute information for both the movies and the users. Each
movie was labeled with at least one among 19 genres (e.g., action or adventure), while the
users’ attributes included age, gender, and an occupation among a list of 21 occupations
(e.g., administrator or artist). We converted the users’ age attribute to a set of binary
features that describes to which of 5 age categories the user belongs.
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Figure 1: Comparison between two spectral penalties: the trace norm (left) and the Frobe-
nius norm (right), each with an additional fixed rank constraint as described in
Section 5.3. Each surface plot displays performance values over a range of η and
ζ values, all obtained using the synthetic dataset. The minimal value achieved by
the trace norm is 0.1222 and the one achieved by the rank constraint is 0.1540.

All test set accuracies are measured as the root mean squared error averaged over 10-fold
cross validations. In particular, we focus on the comparisons of intermediate values of η
and ζ, compared to the four “corners” of the η/ζ−parameter space:

• η = 0, ζ = 0: matrix completion

• η = 0, ζ = 1 and η = 1, ζ = 0: multi-task learning on users or objects

• η = 1, ζ = 1: pairwise learning

6.2 Results

Tracenorm Versus Low-rank In Figure 1, we present two performance plots over the
η/ζ parameter space, both obtained using the synthetic dataset. The left plot displays
the results when utilizing the trace norm spectral penalty. Here we used the low rank
decomposition formulation described in Section 5.3 which (by Proposition 5) has no local
minima. The plot on the right utilizes the same rank-constrained formulation, but with a
Frobenius norm penalty instead. The trace norm constrained algorithm performs slightly
better. Moreover, best predictive performance is achieved in both cases in the middle of
the square and not at any of the four corners.

Kernel Learning In Figure 2, we show the test set accuracy as a function of the reg-
ularization parameter, when we use the kernels corresponding to the four corners as the
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Figure 2: Learning the kernel: test set accuracy vs. regularization parameter. Minimum
value is 0.14.

four basis kernels. We can see that we recover similar performance (error of 0.14 instead of
0.12) than by searching over all η and ζ’s. The same algorithm could also be used to learn
kernels on the attributes.

Performance on MovieLens Data Figure 3 shows the predictive accuracy in RMSE on
the MovieLens dataset, obtained by 10-fold cross-validation. The heat plot provides some
insight on the relative value, for both movies and users, of the given attribute kernels versus
the simple identity kernels. The corners have higher values than some of the values inside
the square, showing that the best balance between attribute and Dirac kernels is achieved
for η, ζ ∈ (0, 1).

7. Conclusions

We have presented a method for solving a generalized matrix completion problem where we
have attributes describing the matrix dimensions. The problem is formalized as the problem
of inferring a linear compact operator between two general Hilbert spaces, which generalizes
the classical finite-dimensional matrix completion problem. We introduced the notion of
spectral regularization for operators, which generalized various spectral penalizations for
matrices, and proved a general representer theorem for this setting. Various approaches,
such as standard low rank matrix completion, are special cases of our method. It is partic-
ularly relevant for CF applications where attributes are available for users and/or objects,
and preliminary experiments confirm the benefits of our method.

An interesting direction of future research is to explore further the multi-task learning
algorithm we obtained with low-rank constraint, and to study the possibility to derive
on-line implementations that may better fit the need for large-scale applications where
training data are continuously increasing. On the theoretical side, a better understanding
of the effects of norm and rank regularizations and their interaction would be of considerable
interest.
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Figure 3: A heat plot of performance for a range of kernel parameter choices, η and ζ, using
the MovieLens dataset.

Appendix A. Compact operators on Hilbert spaces

In this appendix, we recall basic definitions and properties of Hilbert space operators. We
refer the interested reader to general books (Brezis, 1980, Berlinet and Thomas-Agnan,
2003) for more details.

Let X and Y be two Hilbert spaces, with respective inner products denoted by 〈x,x′〉X and
〈y,y′〉Y for x,x′ ∈ X and y,y′ ∈ Y. We denote by B (Y,X ) the set of bounded operators
from X to Y, i.e., of continuous linear mappings from Y to X . For any two elements (x,y)
in X × Y, we denote by x ⊗ y their tensor product, i.e., the linear operator from Y to X
defined by:

∀h ∈ Y , (x⊗ y)h = 〈y,h〉Y x . (23)

We denote by B0 (Y,X ) the set of compact linear operators from Y to X , i.e., the set of
linear operators that map the unit ball of Y to a relatively compact set of X . Alternatively,
they can also be defined as the limit of finite rank operators.

When X and Y have finite dimensions, then B0 (Y,X ) is simply the set of linear mappings
from Y to X , which can be represented by the set of matrices of dimensions dim (X ) ×
dim (Y). In that case the tensor product x⊗ y is represented by the matrix xy⊤, where y⊤

denotes the transpose of y.

For general Hilbert spaces X and Y, any compact linear operator F ∈ B0 (Y,X ) admits a
spectral decomposition:

F =

∞
∑

i=1

σiui ⊗ vi . (24)
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Here the the singular values (σi)i∈N form a sequence of non-negative real numbers such
that lim

i→∞
σi = 0, and (ui)i∈N

and (vi)i∈N
form orthonormal families in X and Y, respec-

tively. Although the vectors (ui)i∈N
and (vi)i∈N

in (24) are not uniquely defined for a given
operator F , the set of singular values is uniquely defined. By convention we denote by
σ1(F ), σ2(F ), . . ., the successive singular values of F ranked by decreasing order. The rank
of F is the number rank(F ) ∈ N ∪ {+∞} of strictly positive singular values.

We now describe three subclasses of compact operators of particular relevance in the rest
of this paper.

• The set of operators with finite rank is denoted BF (Y,X ).

• The operators F ∈ B0 (Y,X ) that satisfy:

∞
∑

i=1

σi(F )2 <∞

are called Hilbert-Schmidt operators. They form a Hilbert space, denoted B2 (Y,X ),
with inner product 〈·, ·〉X⊗Y between basic tensor products given by:

〈

x⊗ y,x′ ⊗ y′
〉

X⊗Y
=
〈

x,x′
〉

X

〈

y,y′
〉

Y
. (25)

In particular, the Hilbert-Schmidt norm of an operator in B2 (Y,X ) is given by:

‖F ‖2 =

(

∞
∑

i=1

σi(F )2

) 1

2

.

Another useful characterization of Hilbert-Schmidt operators is the following. Each
linear operator F : Y → X uniquely defines a bilinear function fH : X × Y → R by

f (x,y) = 〈x, Fy〉X .

The set of functions fF associated to the Hilbert-Schmidt operators forms itself a
Hilbert space of functions X × Y → R, which is the reproducing kernel Hilbert space
of the product kernel defined for ((x,y) , (x′,y′)) ∈ (X × Y)2 by

k⊗
(

(x,y) ,
(

x′,y′
))

=
〈

x,x′
〉

X

〈

y,y′
〉

Y
.

• The operators F ∈ B0 (Y,X ) that satisfy:

∞
∑

i=1

σi(F ) <∞

are called trace-class operators. The set of trace-class operators is denoted B1 (Y,X ).
The trace norm of an operator F ∈ B1 (Y,X ) is given by:

‖F ‖1 =

∞
∑

i=1

σi(F ) .

Obviously the following ordering exists among these various classes of operators:

BF (Y,X ) ⊂ B1 (Y,X ) ⊂ B2 (Y,X ) ⊂ B0 (Y,X ) ⊂ B (Y,X ) ,

and all inclusions are equalities if X and Y have finite dimensions.
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Appendix B. Proof of Theorem 3

We start with a general result about the decrease of singular values for compact operators
composed with projection:

Lemma 7 Let G and H be two Hilbert spaces, H a compact linear subspace of H, and ΠH

denote the orthogonal projection onto H. Then for any compact operator F : G 7→ H it
holds that:

∀i ≥ 1 , σi(ΠHF ) ≤ σi(F ) .

Proof We use the classical characterization of the i-th singular value:

σi(F ) = max
V ∈Vi(G)

min
x∈V,‖x ‖G=1

‖Fx ‖H ,

where Vi(G) denotes the set of all linear subspaces of G of dimension i. Now, observing that
for any x we have ‖ΠHFx ‖H ≤ ‖Fx ‖H proves the Lemma.

Given a training set of patterns (xi,yi)i=1,...,N ∈ X × Y, remember that we denote by XN

and YN the linear subspaces of X and Y spanned by the training patterns {xi , i = 1, . . . , N}
and {yi , i = 1, . . . , N}, respectively. For any operator F ∈ B0 (Y,X ), let us now consider
the operator G = ΠXN

FΠYN
. By construction, F and G agree on the training patterns, in

the sense that for i = 1, . . . , N :

〈xi, Gyi〉X = 〈xi,ΠXN
FΠYN

yi〉X = 〈ΠXN
xi, FΠYN

yi〉X = 〈xi, Fyi〉X .

Therefore F and G have the same empirical risk:

RN (F ) = RN (G) . (26)

Now, by denoting F ∗ the adjoint operator, we can use Lemma 7 and the fact that the
singular values of an operator and its adjoint are the same to obtain, for any i ≥ 1:

σi(G) = σi(ΠXN
FΠYN

)

≤ σi(FΠYN
)

= σi(ΠYN
F ∗)

≤ σi(F
∗)

= σi(F ).

This implies that the spectral penalty term satisfies Ω(G) ≤ Ω(F ). Combined with (26),
this shows that if F is a solution to (15), then G = ΠXN

FΠYN
is also a solution. Observing

that G ∈ XN ⊗ YN concludes the proof of the first part of Theorem 3, resulting in (16).

We have now reduced the optimization problem in B0 (Y,X ) to a finite-dimensional opti-
mization over the matrix α of size mX ×mY . Let us now rephrase the optimization problem
in this finite-dimensional space.

Let us first consider the spectral penalty term Ω(F ). Given the decomposition (16), the
non-zero singular values of F as an operator are exactly the non-zero singular values of α as
a matrix, as soon as (u1, . . . ,umX

) and
(

v1, . . . ,vmY

)

form orthonormal bases of XN and
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YN , respectively. In order to be able to express the empirical risk RN (F ) we must however
consider a decomposition of F over the training patterns, as:

F =
N
∑

i=1

N
∑

j=1

γijxi ⊗ yj . (27)

In order to express the singular values from this expression let us introduce the Gram
matrices K andG of the training patterns, i.e., theN×N matrices defined for i, j = 1, . . . , N
by:

Kij = 〈xi,xj〉X , Gij = 〈yi,yj〉Y .

We note that by definition the ranks of K and G are respectively mX and mY . Let us
now factorize these two matrices as K = XX⊤ and G = Y Y ⊤, where X ∈ R

N×mX and
Y ∈ R

N×mY are any square roots, e.g., obtained by kernel PCA or Cholesky decomposi-
tion (Fine and Scheinberg, 2001, Bach and Jordan, 2005). The matrices X and Y provide a
representation of the pattern in two orthonormal bases which we denote by (u1, . . . ,umX

)
and

(

v1, . . . ,vmY

)

. In particular we have, for any i, j ∈ 1, . . . , N :

xi ⊗ yj =

mX
∑

l=1

mY
∑

m=1

XilYjmul ⊗ vm ,

from which we deduce:

F =

mX
∑

l=1

mY
∑

m=1





N
∑

i=1

N
∑

j=1

XilYjmγij



ul ⊗ vm .

Comparing this expression to (16) we deduce that:

α = X⊤γY .

The empirical error RN (F ) is a function of f (xl,yl) for l = 1, . . . , N . From (27), we see
that:

f (xl,yl) =

N
∑

i=1

N
∑

j=1

γijKilGlj ,

and therefore the vector of predictions FN = (f (xl,yl))l=1,...,N ∈ R
N can be rewritten as:

FN = diag(KγG) = diag
(

XαY ⊤
)

.

We can now replace the empirical risk RN (FN ) by RN

(

diag
(

XαY ⊤
))

and the penalty
Ω(F ) by Ω(α) to deduce the optimization problem (17) from (15), which concludes the
proof of Theorem 3.

Appendix C. Proof of Proposition 5

Since the function has compact level sets, we may assume that we are restricted to an open
bounded subset of R

p×q where the second and first derivatives are uniformly bounded. We
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let denote C > 0 a common upper bound of all derivatives. The gradient of the function H

is equal to ∇H =
(

∇G⊤ U
∇G V

)

, while the Hessian of H is the following quadratic form:

∇2H[(dU, dV ), (dU, dV )] = 2 tr dV ⊤∇GdU + ∇2G[UdV ⊤ + dUV ⊤, UdV ⊤ + dUV ⊤].

Without loss of generality, we may assume that the last columns of U and V are equal to
zero (this can be done by rotation of U or V ). The zero gradient assumption implies that
∇G⊤U = 0 and ∇GV = 0. While if we take dU and dV with the first m− 1 columns equal
to zero, and last columns equal to arbitrary u and v, then the second term in the Hessian
is equal to zero. The positivity of the first term implies that for all u and v, v⊤∇Gu > 0,
i.e., the gradient of G at N = UV ⊤ is equal to zero, and thus we get a stationary point and
thus a global minimum of G.
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