56,853 research outputs found

    Computing Persistent Homology within Coq/SSReflect

    Full text link
    Persistent homology is one of the most active branches of Computational Algebraic Topology with applications in several contexts such as optical character recognition or analysis of point cloud data. In this paper, we report on the formal development of certified programs to compute persistent Betti numbers, an instrumental tool of persistent homology, using the Coq proof assistant together with the SSReflect extension. To this aim it has been necessary to formalize the underlying mathematical theory of these algorithms. This is another example showing that interactive theorem provers have reached a point where they are mature enough to tackle the formalization of nontrivial mathematical theories

    Convergence between Categorical Representations of Reeb Space and Mapper

    Get PDF
    The Reeb space, which generalizes the notion of a Reeb graph, is one of the few tools in topological data analysis and visualization suitable for the study of multivariate scientific datasets. First introduced by Edelsbrunner et al., it compresses the components of the level sets of a multivariate mapping and obtains a summary representation of their relationships. A related construction called mapper, and a special case of the mapper construction called the Joint Contour Net have been shown to be effective in visual analytics. Mapper and JCN are intuitively regarded as discrete approximations of the Reeb space, however without formal proofs or approximation guarantees. An open question has been proposed by Dey et al. as to whether the mapper construction converges to the Reeb space in the limit. In this paper, we are interested in developing the theoretical understanding of the relationship between the Reeb space and its discrete approximations to support its use in practical data analysis. Using tools from category theory, we formally prove the convergence between the Reeb space and mapper in terms of an interleaving distance between their categorical representations. Given a sequence of refined discretizations, we prove that these approximations converge to the Reeb space in the interleaving distance; this also helps to quantify the approximation quality of the discretization at a fixed resolution

    Computable decision making on the reals and other spaces via partiality and nondeterminism

    Full text link
    Though many safety-critical software systems use floating point to represent real-world input and output, programmers usually have idealized versions in mind that compute with real numbers. Significant deviations from the ideal can cause errors and jeopardize safety. Some programming systems implement exact real arithmetic, which resolves this matter but complicates others, such as decision making. In these systems, it is impossible to compute (total and deterministic) discrete decisions based on connected spaces such as R\mathbb{R}. We present programming-language semantics based on constructive topology with variants allowing nondeterminism and/or partiality. Either nondeterminism or partiality suffices to allow computable decision making on connected spaces such as R\mathbb{R}. We then introduce pattern matching on spaces, a language construct for creating programs on spaces, generalizing pattern matching in functional programming, where patterns need not represent decidable predicates and also may overlap or be inexhaustive, giving rise to nondeterminism or partiality, respectively. Nondeterminism and/or partiality also yield formal logics for constructing approximate decision procedures. We implemented these constructs in the Marshall language for exact real arithmetic.Comment: This is an extended version of a paper due to appear in the proceedings of the ACM/IEEE Symposium on Logic in Computer Science (LICS) in July 201
    • …
    corecore