25,967 research outputs found

    Microelectronics Process Engineering at San Jose State University: A Manufacturing-Oriented Interdisciplinary Degree Program

    Get PDF
    San Jose State University\u27s new interdisciplinary curriculum in Microelectronics Process Engineering is described. This baccalaureate program emphasizes hands-on thin-film fabrication experience, manufacturing methods such as statistical process control, and fundamentals of materials science and semiconductor device physics. Each course of the core laboratory sequence integrates fabrication knowledge with process engineering and manufacturing methods. The curriculum development process relies on clearly defined and detailed program and course learning objectives. We also briefly discuss our strategy of making process engineering experiences accessible for all engineering students through both Lab Module and Statistics Module series

    Gradient metasurfaces: a review of fundamentals and applications

    Full text link
    In the wake of intense research on metamaterials the two-dimensional analogue, known as metasurfaces, has attracted progressively increasing attention in recent years due to the ease of fabrication and smaller insertion losses, while enabling an unprecedented control over spatial distributions of transmitted and reflected optical fields. Metasurfaces represent optically thin planar arrays of resonant subwavelength elements that can be arranged in a strictly or quasi periodic fashion, or even in an aperiodic manner, depending on targeted optical wavefronts to be molded with their help. This paper reviews a broad subclass of metasurfaces, viz. gradient metasurfaces, which are devised to exhibit spatially varying optical responses resulting in spatially varying amplitudes, phases and polarizations of scattered fields. Starting with introducing the concept of gradient metasurfaces, we present classification of different metasurfaces from the viewpoint of their responses, differentiating electrical-dipole, geometric, reflective and Huygens' metasurfaces. The fundamental building blocks essential for the realization of metasurfaces are then discussed in order to elucidate the underlying physics of various physical realizations of both plasmonic and purely dielectric metasurfaces. We then overview the main applications of gradient metasurfaces, including waveplates, flat lenses, spiral phase plates, broadband absorbers, color printing, holograms, polarimeters and surface wave couplers. The review is terminated with a short section on recently developed nonlinear metasurfaces, followed by the outlook presenting our view on possible future developments and perspectives for future applications.Comment: Accepted for publication in Reports on Progress in Physic

    Group-IV midinfrared plasmonics

    Get PDF
    The use of heavily doped semiconductors to achieve plasma frequencies in the mid-IR has been recently proposed as a promising way to obtain high-quality and tunable plasmonic materials. We introduce a plasmonic platform based on epitaxial n-type Ge grown on standard Si wafers by means of low-energy plasma-enhanced chemical vapor deposition. Due to the large carrier concentration achieved with P dopants and to the compatibility with the existing CMOS technology, SiGe plasmonics hold promises for mid-IR applications in optoelectronics, IR detection, sensing, and light harvesting. As a representative example, we show simulations of mid-IR plasmonic waveguides based on the experimentally retrieved dielectric constants of the grown materials

    Energy challenges for ICT

    Get PDF
    The energy consumption from the expanding use of information and communications technology (ICT) is unsustainable with present drivers, and it will impact heavily on the future climate change. However, ICT devices have the potential to contribute signi - cantly to the reduction of CO2 emission and enhance resource e ciency in other sectors, e.g., transportation (through intelligent transportation and advanced driver assistance systems and self-driving vehicles), heating (through smart building control), and manu- facturing (through digital automation based on smart autonomous sensors). To address the energy sustainability of ICT and capture the full potential of ICT in resource e - ciency, a multidisciplinary ICT-energy community needs to be brought together cover- ing devices, microarchitectures, ultra large-scale integration (ULSI), high-performance computing (HPC), energy harvesting, energy storage, system design, embedded sys- tems, e cient electronics, static analysis, and computation. In this chapter, we introduce challenges and opportunities in this emerging eld and a common framework to strive towards energy-sustainable ICT

    A review of High Performance Computing foundations for scientists

    Full text link
    The increase of existing computational capabilities has made simulation emerge as a third discipline of Science, lying midway between experimental and purely theoretical branches [1, 2]. Simulation enables the evaluation of quantities which otherwise would not be accessible, helps to improve experiments and provides new insights on systems which are analysed [3-6]. Knowing the fundamentals of computation can be very useful for scientists, for it can help them to improve the performance of their theoretical models and simulations. This review includes some technical essentials that can be useful to this end, and it is devised as a complement for researchers whose education is focused on scientific issues and not on technological respects. In this document we attempt to discuss the fundamentals of High Performance Computing (HPC) [7] in a way which is easy to understand without much previous background. We sketch the way standard computers and supercomputers work, as well as discuss distributed computing and discuss essential aspects to take into account when running scientific calculations in computers.Comment: 33 page

    Mechanically Flexible and Electrically Stable Organic Permeable Base Transistors

    Get PDF
    Organic transistors have attracted significant research interest in recent years due to their promises of mechanical flexibility and low-cost fabrication. Possible innovative applications include wearable electronic sensor systems, as well as mass-produced, inexpensive localization tags for logistics. However, the limited charge carrier mobility in organic semiconductor materials, contact resistance at the organic-metal interface and comparably long transistor channel lengths result low-speed organic transistors and low current densities compared with conventional inorganic transistors. The organic permeable base transistor (OPBT) is a disruptive transistor architecture that overcomes some of these drawbacks by providing a vertical transistor channel, which is much shorter than in lateral channel organic transistor devices. Consequently, it has been shown to be the fastest organic transistor to date with a transition frequency of 40 MHz, driving currents up to the kA/cm^2 regime. Nevertheless, the OPBT has not yet reached the application stage and its production has been limited to lab-scale devices deposited onto rigid glass substrates. Issues include low yield, large leakage currents, and unknown reliability of the devices. This work addresses these problems by transferring OPBTs to flexible polymer substrates and introducing a controlled and easily reproducible manufacturing technique for the crucial base oxide layer by electrochemical anodization. The anodization technique allows the creation of defined insulating layers, leading to devices with significantly reduced leakage currents and consequently very large transmission factors of 99.9996%. An investigation into the electrical stability of OPBTs shows that the devices are suitable as switching transistors in active matrix organic light emitting displays (AMOLED). In this application, the OPBT demonstrates its strengths particularly well, because fast operation and high current densities are needed. With this thesis a series of milestones on the path to commercial viability of the OPBT have been reached, making the device fit for large-scale production and integration into flexible electronic circuits, allowing it to drive the bendable organic displays of the future.:1 Introduction 2 Fundamentals 3 Experimental 4 Results – Flexible Devices 5 Results – Anodization of the Base Layer 6 Results – TEM Investigations 7 Results – Electrical Stress Measurements 8 Conclusion and OutlookDurch die Aussicht auf mechanische FlexibilitĂ€t und kostengĂŒnstige Herstellung haben Organische Transistoren in den vergangenen Jahren erhebliches Forschungsinteresse geweckt. Innovative Anwendungsideen umfassen tragbare elektronische Sensorsysteme und massenproduzierte, preiswerte Ortungsetiketten fĂŒr die Logistik. Leider fĂŒhren die geringe LadungstrĂ€germobilitĂ€t in organischen Halbleitermaterialien, KontaktwiderstĂ€nde am Organik-Metall-Übergang und vergleichsweise große KanallĂ€ngen der Transistoren dazu, dass organische Transistoren langsamer sind und geringere Stromdichten aufweisen als anorganische Transistoren. Der Organic Permeable Base Transistor (Organischer Transistor mit durchlĂ€ssiger Basis, OPBT) stellt eine bahnbrechende Transistorarchitektur dar, die mithilfe eines vertikalen Transistorkanals einige der vorgenannten Nachteile ĂŒberwindet. Dadurch ist die KanallĂ€nge deutlich kleiner, als das bei lateralen organischen Transistorbauteilen der Fall ist. Infolgedessen kann er sich als der bisher schnellste organische Transistor mit einer Transitfrequenz von 40 MHz behaupten und Stromdichten bis in den kA/cm^2 Bereich treiben. Nichtsdestotrotz hat der OPBT bislang keine Anwendungsreife erreicht und wird derzeit nur im Labormaßstab auf starren Glassubstraten hergestellt. Hindernisse sind die geringe Produktionsausbeute, große Leckströme und die unklare ZuverlĂ€ssigkeit der Bauteile. Diese Arbeit nimmt die eben genannten Herausforderungen in Angriff. Es werden OPBTs auf flexible Polymersubstrate ĂŒbertragen, sowie eine kontrollierte und einfach reproduzierbare Herstellungsmethode fĂŒr das wichtige Basisoxid durch elektrochemische Anodisierung eingefĂŒhrt. Die Anodisierungsmethode lĂ€sst definierte Isolationsschichten entstehen, was zu stark reduzierten Leckströmen und folglich zu sehr großen Transmissionsfaktoren von 99,9996% fĂŒhrt. Die Untersuchung der elektrischen StabilitĂ€t von OPBTs zeigt, dass die Bauteile als Schalttransistoren in organischen Aktiv-Matrix-Displays geeignet sind. FĂŒr diese Anwendung sind die StĂ€rken von OPBTs besonders relevant, weil kurze Schaltzeiten und hohe Stromdichten benötigt werden. Mit der vorliegenden Arbeit wird eine Reihe von Meilensteinen auf dem Weg zur kommerziellen Anwendbarkeit von OPBTs erreicht. Damit ist das Bauteil reif fĂŒr die großtechnische Produktion und die Integration in flexible elektronische Schaltkreise, die die biegsamen organischen Displays der Zukunft ansteuern werden.:1 Introduction 2 Fundamentals 3 Experimental 4 Results – Flexible Devices 5 Results – Anodization of the Base Layer 6 Results – TEM Investigations 7 Results – Electrical Stress Measurements 8 Conclusion and Outloo

    Recent Advancement on the Excitonic and Biexcitonic Properties of Low-Dimensional Semiconductors

    Get PDF
    Knowing excitonic and biexcitonic properties of low-dimensional semiconductors systems is extremely important for the discovery of new physical effects and for the development of novel optoelectronics applications. This review work furnishes an interdisciplinary analysis of the fundamental features of excitons and biexcitons in two-dimensional semiconductor structures, one-dimensional semiconductor structures, and zero-dimensional (0D) semiconductor structures. There is a focus on spectral and dynamical properties of excitons and biexcitons in quantum dots (QDs). A study of the recent advances in the field is given, emphasizing the latest theoretical results and latest experimental methods for probing exciton and biexciton dynamics. This review presents an outlook on future applications of engineered multiexcitonic states including the photovoltaics, lasing, and the utilization of QDs in quantum technologies
    • 

    corecore