2,980 research outputs found

    Speaker identification and clustering using convolutional neural networks

    Get PDF
    Deep learning, especially in the form of convolutional neural networks (CNNs), has triggered substantial improvements in computer vision and related fields in recent years. This progress is attributed to the shift from designing features and subsequent individual sub-systems towards learning features and recognition systems end to end from nearly unprocessed data. For speaker clustering, however, it is still common to use handcrafted processing chains such as MFCC features and GMM-based models. In this paper, we use simple spectrograms as input to a CNN and study the optimal design of those networks for speaker identification and clustering. Furthermore, we elaborate on the question how to transfer a network, trained for speaker identification, to speaker clustering. We demonstrate our approach on the well known TIMIT dataset, achieving results comparable with the state of the art – without the need for handcrafted features

    Learning embeddings for speaker clustering based on voice equality

    Get PDF
    Recent work has shown that convolutional neural networks (CNNs) trained in a supervised fashion for speaker identification are able to extract features from spectrograms which can be used for speaker clustering. These features are represented by the activations of a certain hidden layer and are called embeddings. However, previous approaches require plenty of additional speaker data to learn the embedding, and although the clustering results are then on par with more traditional approaches using MFCC features etc., room for improvements stems from the fact that these embeddings are trained with a surrogate task that is rather far away from segregating unknown voices - namely, identifying few specific speakers. We address both problems by training a CNN to extract embeddings that are similar for equal speakers (regardless of their specific identity) using weakly labeled data. We demonstrate our approach on the well-known TIMIT dataset that has often been used for speaker clustering experiments in the past. We exceed the clustering performance of all previous approaches, but require just 100 instead of 590 unrelated speakers to learn an embedding suited for clustering
    • …
    corecore