9 research outputs found

    Deep Learning for Video Object Segmentation:A Review

    Get PDF
    As one of the fundamental problems in the field of video understanding, video object segmentation aims at segmenting objects of interest throughout the given video sequence. Recently, with the advancements of deep learning techniques, deep neural networks have shown outstanding performance improvements in many computer vision applications, with video object segmentation being one of the most advocated and intensively investigated. In this paper, we present a systematic review of the deep learning-based video segmentation literature, highlighting the pros and cons of each category of approaches. Concretely, we start by introducing the definition, background concepts and basic ideas of algorithms in this field. Subsequently, we summarise the datasets for training and testing a video object segmentation algorithm, as well as common challenges and evaluation metrics. Next, previous works are grouped and reviewed based on how they extract and use spatial and temporal features, where their architectures, contributions and the differences among each other are elaborated. At last, the quantitative and qualitative results of several representative methods on a dataset with many remaining challenges are provided and analysed, followed by further discussions on future research directions. This article is expected to serve as a tutorial and source of reference for learners intended to quickly grasp the current progress in this research area and practitioners interested in applying the video object segmentation methods to their problems. A public website is built to collect and track the related works in this field: https://github.com/gaomingqi/VOS-Review

    Video-efficient foundation models

    Get PDF
    The thesis strives to endow video-efficiency in video understanding by addressing the research question ''What enables video-efficient video foundation models?'' Video-efficiency encompasses developing video foundation models that are not only accurate but also exhibit label-efficiency i.e. require fewer labels, domain-efficiency i.e. applicable to a variety of video learning scenarios, and data-efficiency i.e. reduce the amount of video data needed for learning. The research question is addressed for RGB and non-RGB video modalities. In Chapter 2, we focus on improving the label- and domain-efficiency of non-RGB action recognition and detection. Chapter 3 introduces a new self-supervised approach for learning feature representations for 3D-skeleton video sequences. In Chapter 4, we conduct a large-scale study of existing RGB-based self-supervised video models to assess their performance across different facets of video-efficiency. Chapter 5 presents a new method for video self-supervision that explicitly aims to learn motion focused video-representations. To summarize, this thesis presents several novel approaches to improve the video-efficiency of video foundation models. Our research highlights the importance of transferring knowledge between RGB and non-RGB video modalities, exploring self-supervision for non-RGB video modeling, analyzing self-supervised models beyond canonical setups and carefully designing new self-supervised tasks to develop video foundation models that can exhibit different facets of video-efficiency. We hope that our work will inspire further research and development in this area, leading to even more video-efficient foundation models
    corecore