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Chapter 1

Introduction

1.1 Continuity in Vision
Biological vision is the marvelous ability of an organism to be informed about its
surroundings with a high degree of spatial and temporal resolution [148]. Continuity
is the innate nature of biological vision because the real-world experience of an
organism is continuous. This property of visual perception determines that human
understanding of visual signals is based on continuity in space and time.

Continuity is ubiquitous in the visual world around us. Imagine an image is broken
up into hundreds of small pieces and mixed together, it becomes a Jigsaw puzzle. The
key cue for solving the puzzle is the spatial continuity in images. For example, in
Figure 1.1, one never puts piece B, that has a green color and a grass texture, on area X
on the dog. Otherwise, it may violate human common sense, as a dog’s fur is naturally
never covered with a green grass-like texture. Piece A, which holds the fur-texture
and a color that is consistent with the dog’s body, fits area X much better. Hence, the
continuity in space ensures the semantic coherence in an image, and consequently
human understanding of the puzzle image.

Compared to still images, videos, that record visual changes over time, are even
better portrayals of the real world. There is substantial evidence that the human

A

B X

FIGURE 1.1: Spatial continuity in images. Placing pieces on correct
areas according to pixel coherence in Jigsaw Puzzle.
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(a) Independent images

(b) Video clip
FIGURE 1.2: Spatio-temporal continuity in videos. (a) Independent
images without spatio-temporal continuity. One can only know the state
of characters at the current moment but not as part of a coherent story.
(b) Video clip with spatio-temporal continuity telling a continuous

story.

vision system leverages the continuity in perceivable spatio-temporal dimensions to
understand videos [80, 147, 168]. Starting between 1900 and 1910 when film editors
utilized editing techniques to create clear and coherent stories, continuity is the most
dominant theory throughout film history. In [80], Susan Hayward states that continuity
editing produces seamlessness that is used to refer to the Hollywood film style in
the name of realism. The spectator is presented with a narrative in such a way that
it appears to have no breaks, no disconcerting unexplained transitions in time and
space. As illustrated in Figure 1.2, (a) one knows the boy is smiling at this moment,
then a man suddenly occurs and a woman is scared in the next shot. It is difficult to
understand what happens between them because they are not related in either space or
time. By contrast, in Figure 1.2 (b), one clearly sees the boy is initially smiling but
later he is crying. The video clip, that is continuous in space and time, tells what is
happening. It is noted that temporal continuity makes a video different from a set of
independent images.

Akin to its importance for human vision, continuity is an indispensable attribute
in computer vision. Continuity has played a vital role since early computer vision
was developed, such as in low-level image and video processing. A good example
is image denoising [135, 30, 15], which leverages the continuity property of images
to suppress noise. Image segmentation [79, 27, 127], as a very basic and classical
vision task, relies on coherence of pixel brightness, colors and texture. Besides 2D
tasks, 3D reconstruction [146, 62] techniques like Structure from Motion [204]
and Simultaneous Localization and Mapping [49] heavily depend on successive
camera frames. Typically for videos, temporal continuity is commonly used in video
compression formats, for instance, H.262 [52] and MPEG-4 [180]. Additionally,
continuity is also the theoretical basis of machine learning models including the



1.2. Research Questions 3

Markov Chain [64], the Long Short-Term Memory [85] and the Recurrent Neural
Network [144], which are also widely used in computer vision.

Computers usually can not directly understand raw real-world data such as images,
videos, and sensor data. Therefore, features or representations are normally required
to learn for visual recognition. As a natural property of images and videos, continuity
has shown to be important for learning good representations for visual recognition.
For example, spatio-temporal continuity is utilized to achieve efficient and effective
representations for video object segmentation [12, 126, 90], tracking [77, 227] and
detection [212, 9] in autonomous driving, robot sensing, and augmented-reality. In
recent years, the rapid rise of deep learning [73] has reduced the gap between academic
research and industrial applications of computer vision considerably. Especially,
deep convolutional neural networks (ConvNets) [117] that learn deep representations
became omnipresent in almost all vision tasks. Despite ConvNets capturing local
continuity in images and videos to some extent, continuity is not fully explored for
visual representation. In this thesis, we focus on investigating the benefits of continuity
for learning better representations in visual recognition. We structure the thesis into
two parts, investigating spatial continuity on images and spatio-temporal continuity
on videos.

1.2 Research Questions
Images and videos are the two main modalities in visual recognition. An image
is not just a random collection of pixels. It relies on the spatial partitions of pixels
corresponding to coherent image properties such as brightness, color and texture [127].
To humans, meaningful regions and objects on images are essentially based on the
spatial continuity. And for videos, besides the spatial continuity, temporal coherence
is another critical factor. Considering the continuous nature of images and videos, in
this thesis, we ask as research question:

What is the benefit of continuity for image and video recognition?

Our research covers several fundamental research challenges in computer vision,
including image colorization [97, 236, 94], image classification [40, 117, 45], image
semantic segmentation [3, 70, 139], video action detection [18, 229, 198], action
recognition [209, 104, 181] and video object segmentation [13, 155, 222]. We observe
the continuity in image and video representations is still not fully explored for these
computer vision tasks. In this thesis, we dive into our research question by answering
a specific sub-question for each of the five chapters.

1.2.1 Part I: Learning Continuity for Image Recognition
Pixels with coherent brightness, color and texture constitute continuous regions or
objects that can be understood by humans [127]. An example is shown in Figure 1.3



4 Chapter 1. Introduction

(b) Randomly shuffle color(a) Coherent color 
FIGURE 1.3: Coherent color (a) provides a more realistic and un-
derstandable image, while randomly shuffling color (b) violates the

principle of human vision.

(a). If we violate the coherence of colors like in Figure 1.3 (b), the recognition accuracy
may significantly drop in computer vision systems [84]. Even a human being is unable
to distinguish whether the dog is sitting on ‘land’ or on ‘sand’. In Chapter 2, as a
starting point for our investigation into continuity, we research it on the pixel-level
image task of image colorization, and pose the following research question:

What is the benefit of spatial continuity for image colorization?

Image colorization requires to reasonably color each pixel in a given gray-scale
image. Previous approaches either directly regress color maps [94, 123] or classify
each pixel into a color bin [236] using deep ConvNets. Without considering spatial
continuity, these methods may suffer from context confusion and edge color bleeding.
Inspired by the way humans colorize an image, we propose a solution to produce
a more plausible pixel-level color by drawing support from semantic coherence.
Semantic coherence is build on the spatial continuity in images. It is explicitly shown
in image segmentation [79, 27, 56] and semantic segmentation [149, 60, 234]. The
intuition behind our proposal is that we usually assign colors to an object according to
what the object is. For instance, sky is normally blue and a dog is naturally not green.
The semantics help to discriminate continuous spatial regions of different objects or
scenes so that reasonable colors can be assigned to them. To achieve this, we adopt
an autoregressive model guided by semantic learning to generate more precise and
continuous color maps. An autogressive model predicts color for each pixel based on
all the previous seen pixels, which guarantees the spatial continuity from one side.
Secondly, simultaneously learning semantic segmentation endows pixel colors with
semantic coherence. In the end, our method effectively produces more realistic and
finer results showing image colorization profits from spatial continuity. This brings us
to the next research question:

How to endow a 2D-ConvNet with spatial continuity?

The ConvNet stacks many layers for large receptive fields. In order to reduce
the computation and improve the robustness, pooling is applied to downsize feature
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maps. However, downsampling is usually a lossy process and weakens the spatial
continuity of feature maps. It can be a more serious disadvantage in image-to-image
translation tasks, in which up-pooling is required for generating prediction maps with
the same size as the input image. The lost information in down-pooling can never be
recovered because most existing pooing methods are not invertible. Therefore, the
up-pooled feature maps may have many ‘holes’, which is particularly prevalent in
MaxUpPool [167, 7]. The discontinuous feature maps lack details for producing finer
results, for example, in semantic segmentation and image colorization. In Chapter
3, we propose an invertible pooling method for better maintaining spatial continuity.
Our down-pooling decomposes a feature map into various downsized sub-bands, each
of which contains information with different frequencies. Our up-pooling generates
more continuous upsampled feature map using these detail sub-bands. Experiments
support that our proposal performs well on both image classification and semantic
segmentation, and is also more robust to input corruptions and perturbations.

1.2.2 Part II: Learning Continuity for Video Recognition
In the previous two chapters, We have focused on spatial continuity in images. In Part
II, we move on to explore continuity for video understanding.

The continuity along the time dimension is the most salient character of videos
in vision. Therefore, modeling the temporal continuity is a fundamental question for
video understanding. In the computer vision literature, optical flow [86] is traditionally
used to represent the continuous change along the time dimension for video tasks.
Optical flow is defined as the velocities of movement of brightness patterns in a
video. It explicitly models temporal correlations between frames and is deemed useful
for continuity (motion) compensation [2]. As an explicit temporal representation,
optical flow is widely applied to many video tasks, such as video action detection [18,
229, 198] and video action recognition [209, 104, 181]. Learning only from a single
still frame without considering temporal continuity causes partial understanding of a
video [181]. Generally, besides training a network from RGB inputs, an additional
network is often independently trained on optical flow inputs. To incorporate temporal
information, results from the two streams are fused for the final decision. Two-stream
methods [181, 211, 154] are proven effective, but not efficient. We are encouraged to
the research question:

What is the benefit of temporal continuity for video understanding?

In Chapter 4, we start by exploring a typical video understanding task, spatio-
temporal action detection, which requires a system to output when, where and what
kind of action occurs during a video. We propose a method to efficiently and effectively
utilize optical flow for better action detection in space and time. Instead of training a
separate network based on optical flow, we propose a modulation method [39, 156]
which applies low-level optical flow features to affect RGB features. More specifically,
we learn a set of affine transformation parameters from optical flow features to
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transform RGB features. In this sense, actions and backgrounds on RGB frames are
more distinctive because motion on foreground and background are usually different.
This favors the localization of actions. Moreover, performing transformations in an
embedding space injects temporal information into the RGB features, which benefits
the recognition of action categories. Additionally, by omitting the need for training a
whole network on optical flow, our proposal is more efficient with less computation
and model parameters. We conclude that video action detection profits from learning
temporal continuity.

Apart form optical flow, 3D-ConvNets [104, 21, 55] enable modeling spatio-
temporal information in videos. Naturally, we further arrive at the following question:

How to endow a 3D-ConvNet with spatio-temporal continuity?

As we discussed in Chapter 4, the two-stream model for action analysis in video
is effective but not efficient due to its requirement to learn two separate networks.
3D-ConvNets are proposed to process videos by integrating spatio-temporal informa-
tion [104]. However, 3D convolutions aggregate information from the same spatial
locations in successive feature maps. Hence, it ignores the motion between successive
frames caused by changes in content and/or camera usage. In Chapter 5, we present
the aligned 3D convolution which learns spatial offsets from bilinear products of
successive temporal feature maps, to compensate for the spatio-temporal discontinuity.
The 3D convolution operates on the locations aligned by the learned offsets rather than
the original dislocated positions. Indeed, we find the learned offsets resemble feature-
level motion representations of the input frames. Without relying on pre-computed
optical flow, the aligned 3D convolutions are effective for action recognition and video
object segmentation.

Due to the locality of convolutional kernels, the 3D convolutions model the spatio-
temporal continuity locally. Referring to [213], capturing non-local dependencies
brings significant profits to image and video recognition. Thanks to the self-attention
mechanism, the transformer [206] is able to build global relations and has acquired
huge success on many vision tasks [20, 1, 45, 138, 248]. This leads us to the following
question:

How to endow a transformer with spatio-temporal continuity?

In Chapter 6, we aim for spatio-temporal action detection by designing a transformer-
based method, which is capable to handle long-range spatio-temporal information. The
task requires to detect action tubelets, each of which contains a sequence of bounding
boxes depicting positions of an actor per-frame in a video clip and the categories of the
occurring actions. In order to detect action tubelets, most existing methods [106, 240,
185, 131] independently regress each bounding box from the corresponding frame
feature, which weakens the temporal coherence between these boxes. We model the
tubelet-level action detection as a sequence-to-sequence(s) learning task. Intuitively,
we should treat an action tubelet with multiple boxes along time as a whole. Thus,
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instead of separately localizing each box, our proposal is able to jointly regress these
boxes from a single tubelet-level representation, while considering temporal correla-
tions along all the frames in an input video clip. In this sense, our model produces
more precise and longer action tubelets.

To summarize, this thesis aims at studying continuity for image and video recog-
nition. In depth, we start with the benefit of learning continuity for images or videos
in each part, and then respectively dig into technological innovations of exploiting
continuity in various network architectures. In breadth, the thesis explores spatial
continuity for images and spatio-temporal continuity for videos. Specifically, it covers
image colorization, image classification, semantic segmentation, video action detec-
tion, video action recognition, and video object segmentation. We hope our journey is
able to stimulate more research on image and video continuity.
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For each chapter of this thesis we here declare the authors’ contributions:
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Jiaojiao Zhao, Jungong Han, Ling Shao, Cees G.M. Snoek (2020). “Pixelated
Semantic Colorization”. In: International Journal of Computer Vision. [243]. A pre-
liminary version appeared in the British Machine Vision Conference 2018. [242].

• J. Zhao All aspects

• J. Han Technical support

• L. Shao Guidance and technical advice

• C.G.M. Snoek Insight and supervision
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• C.G.M. Snoek Insight and supervision
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• C.G.M. Snoek Insight and supervision
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• C.G.M. Snoek Insight and supervision
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Jiaojiao Zhao, Yanyi Zhang, Xinyu Li, Hao Chen, Bing Shuai, Mingze Xu, Kaustav
Kundu, Davide Modolo, Yuanjun Xiong, Ivan Marsic, Cees G.M. Snoek, Joseph Tighe
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Part I

Learning Continuity for Image
Recognition
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Chapter 2

Pixelated Semantic Colorization

2.1 Introduction
Color has been at the center stage of computer vision for decades, e.g. ([194, 31, 157,
109, 175, 141, 207]). Many vision challenges, including object detection and visual
tracking, benefit from color ([109, 110, 37, 207]). Consequently, color constancy
([66]) and color correction ([174]) methods may further enhance visual recognition
. Likewise, color is commonly added to gray-scale images to increase their visual
appeal and perceptually enhance their visual content, e.g. ([217, 94, 236, 169, 42]).
This chapter is about image colorization.

Human beings excel in assigning colors to gray-scale images since they can easily
recognize the objects and have gained knowledge about their colors. No one doubts
the sea is typically blue and a dog is never naturally green. Although many objects
have diverse colors, which makes their prediction quite subjective, humans can get
around this by simply applying a bit of creativity. However, it remains a significant
challenge for machines to acquire both the world knowledge and “imagination” that
humans possess.

Previous works in image colorization require reference images ([76, 137, 22])
or color scribbles ([128]) to guide the colorization. Recently, several automatic ap-
proaches ([94, 123, 236, 169, 75]) have been proposed based on deep convolutional
neural networks. Despite the improved colorization, there are still common pitfalls that
make the colorized images appear less realistic. We show some examples in Figure 2.1.
The cases in (a) without semantics suffer from incorrect semantic understanding. For
instance, the cow is assigned a blue color. The cases in (b) without semantics suffer
from color pollution. Our objective is to effectively address both problems to generate
better colorized images with high quality.

Both traditional ([29, 97]) and recent colorization solutions ([123, 94, 82, 236,
237]) have highlighted the importance of semantics. However, they only explore image-
level class semantics for colorization. As stated by [34], image-level classification
favors translation invariance. Obviously, colorization requires representations that are,
to a certain extent, translation-variant. From this perspective, semantic segmentation
([139, 23, 149]), which also requires translation-variant representations, provides
more reasonable semantic guidance for colorization. It predicts a class label for each
pixel. Similarly, according to ([236, 123]), colorization assigns each pixel a color
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(a) (b)  

 without
semantics

    with
semantics

 

without 
semantics 

with
semantics 

(a) (b)
FIGURE 2.1: Colorization without and with semantics generated
using the network from this chapter. We rescale all output images to
their original proportions. (a) The method without semantics assigns
unreasonable colors to objects, such as the colorful sky and the blue
cow. The method with semantics generates realistic colors for the sky
(first column), the man (second column) and the cow (third column).
(b) The method without semantics fails to capture long-range pixel

interactions ([169]). With semantics, the model performs better.

distribution. Both challenges can be viewed as an image-to-image prediction problem
and formulated as a pixel-wise prediction task. We show several colorized examples
after using pixelated semantic-guidance in Figure 2.1 (a) and (b). Besides providing
sharp boundaries which helps to prevent color bleeding, the color distributions of
specific object types enforce additional constraints, which helps to alleviate the
ambiguity in color recovery. Together, the fine-grained semantic information helps to
precisely colorize specific objects.

In this chapter, we study the relationship between colorization and semantic
segmentation. Our proposed network is able to be harmoniously trained for semantic
segmentation and colorization. By using such multi-task learning, we explore how
pixelated semantics affects colorization. Differing from the preliminary conference
version of this work ([242]), we view colorization here as a sequential pixel-wise color
distribution generation task, rather than a pixel-wise classification task. We design two
ways to exploit pixelated semantics for colorization, one by guiding a color embedding
function and the other by guiding a color generator. Using these strategies, our methods
produce diverse vibrant images on two datasets, Pascal VOC2012 ([50]) and COCO-
stuff ([17]). We further study how colorization can help semantic segmentation and
demonstrate that the two tasks benefit each other. We also propose a new quantitative
evaluation method using semantic segmentation accuracy.

The rest of the chapter is organized as follows. In Section 2, we introduce related
work. Following, in Section 3, we describe the details of our colorization network
using pixelated semantic guidance. Experiments and results are presented in Section
4. We conclude our work in section 5.
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2.2 Related Work

2.2.1 Colorization by Reference
Colorization using references was first proposed by [217], who transferred the colors
by matching the statistic within the pixel’s neighborhood. Rather than relying on
independent pixels, [97] transferred colors from a segmented example image based on
their observation that pixels with the same luminance value and similar neighborhood
statics may appear in different regions of the reference image, which may have
different semantics and colors. [196] and [29] also performed local color transfer by
segmentation. [16] and [76] proposed to transfer colors at pixel level and super-pixel
level. Generally, finding a good reference with similar semantics is key for this type
of methods. Previously, [137] and [29] relied on image retrieval methods to choose
good references. Recently, deep learning has supplied more automatic methods in
([28, 83]). In our approach, we use a deep network to learn the semantics from data,
rather than relying on a reference with similar semantics.

2.2.2 Colorization by Scribble
Another interactive way to colorize a gray-scale image is by placing scribbles. This
was first proposed by [128]. The authors assumed that pixels nearby in space-time,
which have similar gray levels, should have similar colors as well. Hence, they solved
an optimization problem to propagate sparse scribble colors. To reduce color bleeding
over object boundaries, [92] adopted an adaptive edge detection to extract reliable
edge information. [160] colorized manga images by propagating scribble colors within
the pattern-continuous regions. [226] developed a fast method to propagate scribble
colors based on color blending. [142], further extended [128] by grouping not only
neighboring pixels with similar intensity but also remote pixels with similar texture.
Several more current works ([237, 177]) used deep neural networks with scribbles
trained on a large dataset and achieved impressive colorization results. In all these
methods, which use hints like strokes or points, provide an important means for
segmenting an image into different color regions. We prefer to learn the segmentation
rather than manually labelling it.

2.2.3 Colorization by Deep Learning
The earliest work applying a deep neural network was proposed by [28]. They first
grouped images from a reference database into different clusters and then learned deep
neural networks for each cluster. Later, [94] pre-trained a network on ImageNet for a
classification task, which provided global semantic supervision. The authors leveraged
a large-scale scene classification database to train a model, exploiting the class-labels
of the dataset to learn the global priors. Both of these works treated colorization as
a regression problem. In order to generate more saturated results, [123] and [236]
modeled colorization as a classification problem. [236] applied cross-channel encoding
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FIGURE 2.2: Pixelated semantic colorization. The three colored
flows (arrows) represent three variations of our proposal. The purple
flow illustrates the basic pixelated colorization backbone (Section
3.1). The purple flow combined with the blue flow obtains a better
color embedding with more semantics (Section 3.2.1). The purple flow,
blue flow and green flow together define our final model, a pixelated
colorization model conditioned on gray-scale image and semantic
labels (Section 3.2.2). Here, f θ is a color embedding function, hφ is a
semantic segmentation head and gω is the autoregressive generation
model. There are three loss functions Lseg, Lemb and Lgen (Section 3.3).

as self-supervised feature learning with semantic interpretability. [123] claimed that
interpreting the semantic composition of the scene and localizing objects were key
to colorizing arbitrary images. Nevertheless, these works only explored image-level
classification semantics. Our method takes the semantics one step further and utilizes
finer pixelated semantics from segmentation.

Further, generative models have more recently been applied to produce diverse
colorization results. Currently, several works ([19, 98, 57]) have applied a generative
adversarial network (GAN) ([161]). They were able to produce sharp results but
were not as good as the approach proposed by [236]. Variational autoencoders (VAE)
([112]) have also been used to learn a color embedding ([42]). This method produced
results with large-scale spatial co-ordination but tonelessness. [169] and [75] applied
PixelCNN ([151, 173]) to generate better results. We use PixelCNN as the backbone
in this chapter.

2.3 Methodology
In this section, we will detail how pixelated semantics improves colorization. We will
first introduce our basic colorization backbone. Then, we will present two ways to
exploit object semantics for colorization. Our network structure is summarized in
Figure 5.1.
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2.3.1 Pixelated Colorization
To arrive at image colorization with pixelated semantics, we start from an autoregres-
sive model. It colorizes each pixel conditioned on the input gray image and previously
colored pixels. Specifically, a conditional PixelCNN ([151]) is utilized to generate
per-pixel color distributions, from which we sample diverse colorization results.

We rely on the CIE Lab color space to perform the colorization, since it was
designed to be perceptually uniform with respect to human color vision and only
two channels a and b need to be learned. An image with a height H and a width
W is defined as X ∈ RH×W×3. X contains n (= H × W) pixels. In raster scan
order: row by row and pixel by pixel within every row, the value of the i-th pixel
is denoted as Xi. The input gray-scale image, represented by light channel L, is
defined as XL ∈ RH×W×1. The objective of colorization is to predict the a and b
channels Ŷ ∈ RH×W×2. Different from the RGB color space, Lab has the range
[0; 100]× [−127; 128]× [−127; 128].

To reduce computation and memory requirements, we prefer to produce color
images with low resolution. This is reasonable since the human visual system resolves
color less precisely than intensity ([87]). As stated in ([169]), image compression
schemes, such as JPEG, or previously proposed techniques for automatic colorization
also apply chromatic subsampling. The output images can be easily converted back to
their original proportions. We can rescale the generated color channels and concatenate
them with the original gray channel to produce the final colorized images with their
original sizes.

By adopting PixelCNN for image colorization, a joint distribution with condition
is modelled as [151]:

p(Ŷ|XL) =
n

∏
i=1

p(Ŷi|Ŷ1, ..., Ŷi−1, XL). (2.1)

All the elementary per-pixel conditional distributions are modelled using a shared
convolutional neural network. As all variables in the factors are observed, training
can be executed in parallel.

Furthermore, XL can be replaced by a good embedding learned from a neural
network. Taking gω as the generator function and f θ as the embedding function, each
distribution in Equation (1) can be rewritten as:

p(Ŷi|Ŷ1, ..., Ŷi−1, XL) = gω
i (Ŷ1, ..., Ŷi−1, f θ(XL)). (2.2)

As the purple flow in Figure 5.1 shows, there are two components included in
our model. A deep convolutional neural network ( fθ) produces a good embedding
of the input gray-scale image. Then an autoregressive model uses the embedding to
generate a color distribution for each pixel. The final colorized results are sampled
from the distributions using a pixel-level sequential procedure. We first sample Ŷ1
from p(Ŷ1|XL), then sample Ŷi from p(Ŷi|Ŷ1, ..., Ŷi−1, XL) for all i in {2, ...n}.
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Color embedding f θ(XL)

Module Resolution Channels Dilation

convolution 3 × 3/1 128 64 -
Residual block ×2 128 64 -

convolution 3 × 3/2 64 128 -
Residual block ×2 64 128 -

convolution 3 × 3/2 32 256 -
Residual block ×2 32 256 -

convolution 3 × 3/1 32 512 -
Residual block ×3 32 512 2

convolution 3 × 3/1 32 512 -
Residual block ×3 32 512 4

convolution 3 × 3/1 32 160 -

TABLE 2.1: Color embedding branch structure. Feature spatial
resolution, number of channels and dilation rate are listed for each
module. The gray rows indicate the bottom layers are shared with the

semantic segmentation branch (detailed in Table B.2).

2.3.2 Pixelated Semantic Colorization
Intuitively, semantics is the key to colorizing objects and scenes. We will discuss how
to embed pixelated semantics in our colorization model for generating diverse colored
images.

Pixelated Semantic Embedding

Considering the conditional pixelCNN model introduced above, a good embedding of
the gray-scale image f θ(XL) greatly helps to generate the precise color distribution
of each pixel. We first incorporate semantic segmentation to improve the color em-
bedding. We use XS to denote the corresponding segmentation map. Then, we learn
an embedding of the gray-scale image conditioned on XS. We replace f θ(XL) with
f θ(XL|XS). Thus, the new model learns the distribution in Equation (2) as:

p(Ŷi|Ŷ1, ..., Ŷi−1, XL, XS)

= gω
i (Ŷ1, ..., Ŷi−1, f θ(XL|XS)).

(2.3)

Here, the semantics only directly affects the color embedding generated from the
gray-scale image, but not the autoregressive model.

Incorporating semantic segmentation can be straightforward, i.e., using segmen-
tation masks to guide the colorization learning procedure. Such a way enables the
training phase to directly obtain guidance from the segmentation masks, which clearly
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Semantic segmentation hφ(XL)

Module Resolution Channels Dilation

convolution 3 × 3/1 128 64 -
Residual block ×2 128 64 -

convolution 3 × 3/2 64 128 -
Residual block ×2 64 128 -

convolution 3 × 3/2 32 256 -
Residual block ×2 32 256 -

convolution 3 × 3/1 32 512 -
Residual block ×3 32 512 2

convolution 3 × 3/1 32 512 -
Residual block ×3 32 512 2

convolution 3 × 3/1 32 #class 6
convolution 3 × 3/1 32 #class 12
convolution 3 × 3/1 32 #class 18

add 32 #class -

TABLE 2.2: Semantic segmentation branch structure. Feature spa-
tial resolution, number of channels and dilation rate are listed for each
module. #class means the number of semantic categories. The gray
rows indicate the bottom layers are shared with the color embedding

branch (detailed in Table 4.1).

and correctly contain semantic information. However, it is not suitable for the test
phase as segmentation masks are needed. Naturally, we can rely on an off-the-shelf
segmentation model to gain segmentation masks for all the test images, but it is not
elegant. Instead, we believe it is best to simultaneously learn the semantic segmenta-
tion and the colorization, making the two tasks benefit each other, as we originally
proposed in ([242]).

Modern semantic segmentation can easily share low-level features with the color
embedding function. We simply need to plant an additional segmentation branch hφ

following a few bottom layers, like the blue flow shown in Figure 5.1. Specifically, we
adopt the semantic segmentation strategies from [23]. At the top layer, we apply atrous
spatial pyramid pooling, which expoits multiple scale features by employing multiple
parallel filters with different dilation rates. The final prediction (hφ(XL)) is the fusion
of the features from the different scales, which helps to improve segmentation. The
two tasks have different top layers for learning the high-level features. In this way,
semantics is injected into the color embedding function. By doing so, a better color
embedding with more semantic awareness is learned as input to the generator. This is
illustrated in Figure 5.1, by combining the purple flow and the blue flow.
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Pixelated Semantic Generator

A good color embedding with semantics aids the generator to produce more correct
color distributions. Furthermore, the generator is likely to be further improved with
semantic labels. Here, we propose to learn a distribution conditioned on previously
colorized pixels, a color embedding of gray-scale images with semantics ( f θ(XL|XS)),
and pixel-level semantic labels. We rewrite Equation (3) as:

p(Ŷi|Ŷ1, ..., Ŷi−1, XL, XS)

= gω
i (Ŷ1, ..., Ŷi−1, f θ(XL|XS), hφ(XL)).

(2.4)

Intuitively, this method is capable of using semantics to produce more correct
colors of objects and more continuous colors within one object. It is designed to
address the two issues mentioned in Figure 2.1. The whole idea is illustrated in
Figure 5.1 by combining the purple flow with the blue and green flows.

We consider two different ways to use pixelated semantic information to guide the
generator. The first way is to simply concatenate the color embedding f θ(XL) and the
segmentation prediction hφ(XL) along the channels and then input the fusion to the
generator. The second way is to apply a feature transformation introduced by [156]
and [214]. Specifically, we use convolutional layers to learn a pair of transformation
parameters from the segmentation predictions. Then, a transformation is applied to the
color embedding using these learned parameters. We find the first way works better.
Results will be shown in the Experiment section.

2.3.3 Networks
In this section, we provide the details of the network structure and the optimization
procedure.

Network structure. Following the scheme in Figure 5.1, three components are
included: the color embedding function f θ, the semantic segmentation head hφ and
the autoregressive model gω. Correspondingly, three loss functions are jointly learned,
which will be introduced later. The three flows represent the three different methods
introduced above. The purple flow illustrates the basic pixelated colorization. The
purple flow combined with the blue flow results in the pixelated semantic embedding.
The purple flow combined with the blue and green flows, results in the pixelated
semantic generator.

Inspired by the success of the residual block ([82, 23]) and following [169], we
apply gated residual blocks ([151, 173]), each of which has two convolutions with
3 × 3 kernels, a skip connection and a gating mechanism. We apply atrous (dilated)
convolutions to several layers to increase the network’s field-of-view without reducing
its spatial resolution. Table 4.1 and B.2 list the details of the color embedding branch
and the semantic segmentation branch, respectively. The gray rows are shared by the
two branches.
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(a)

(b)

FIGURE 2.3: Color images, gray-scale images and segmentation
maps from (a) Pascal VOC and (b) COCO-stuff. COCO-stuff has more

semantic categories than Pascal VOC.
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Loss functions. During the training phase, we train the colorization and seg-
mentation simultaneously. We try to minimize the negative log-likelihood of the
probabilities:

arg min
θ,φ,ω

∑− log p(Ŷ| f θ(XL), hφ(XL)). (2.5)

Specifically, we have three loss functions Lemb, Lseg and Lgen to train the color
embedding, the semantic segmentation and the generator, respectively. The final loss
function Lsum is the weighted sum of these loss functions:

Lsum = λ1 ∗ Lemb + λ2 ∗ Lseg + λ3 ∗ Lgen. (2.6)

Following [173], we use discretized mixture logistic distributions to approximate
the distribution in Equation (3) and Equation (4). A mixture of 10 logistic distributions
is applied. Thus, both Lemb and Lgen are discretized mixture logistic losses.

As for semantic segmentation, generally it should be performed in the RGB image
domain as colors are important for semantic understanding. However, the input of
our network is a gray-scale image which is more difficult to segment. Fortunately,
the network incorporating colorization learning supplies color information which in
turn strengthens the semantic segmentation for gray-scale images. The mutual benefit
among the three learning parts is the core of our network. It is also important to realize
that semantic segmentation, as a supplementary means for colorization, is not required
to be very precise. We use the cross entropy loss with the standard softmax function
for semantic segmentation ([23]).

2.4 Experiments

2.4.1 Experimental Settings
Datesets. We report our experiments on Pascal VOC2012 ([50]) and COCO-stuff
([17]). The former is a common semantic segmentation dataset with 20 object classes
and one background class. Our experiments are performed on the 10582 images
for training and the 1449 images in the validation set for testing. COCO-stuff is
a subset of the COCO dataset ([134]) generated for scene parsing, containing 182
object classes and one background class on 9000 training images and 1000 test
images. We train separate networks for Pascal VOC2012 and COCO-stuff. In order to
reduce the computation and memory requirements, we rescale each input gray-scale
image to 128 × 128 and produce the color maps with 32 × 32, as shown in Table 1.
The resolution of the color maps is 1/4 of the input image. Figure 2.3 shows some
examples with natural scenes, objects and artificial objects from the datasets.

Implementation. Commonly available pixel-level annotations intended for se-
mantic segmentation are sufficient for our colorization method. We do not need
new pixel-level annotations for colorization. We train our network with joint color
embedding loss, semantic segmentation loss and generating loss with the weights
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λ1 : λ2 : λ3 = 1 : 100 : 1, so that the three losses are similar in magnitude. Our
multi-task learning for simultaneously optimizing colorization and semantic segmen-
tation effectively avoids overfitting. The Adam optimizer ([111]) is adopted. We set
an initial learning rate equal to 0.001, momentum to 0.95 and second momentum to
0.9995. We apply Polyak parameter averaging ([159]).

2.4.2 Effect of segmentation on the embedding function f θ

We first study how semantic segmentation helps to improve the color embedding
function f θ. Following the method introduced in Section 3.2.1, we jointly train the

  

(a)

(b)

FIGURE 2.4: Colorizations from the embedding functions f θ us-
ing the purple flow and the purple-blue flow. (a) Colorization without
semantic-guidance (first row) and with semantic-guidance (second
row). With semantics, better colorizations are produced. (b) Visualiza-
tion of the predicted a and b color channels of the colorizations. The
top row shows the results without semantic-guidance and the bottom
row with semantic-guidance. With semantics, the predicted colors have

less noise and look more consistent.
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FIGURE 2.5: Colorization from the generators gω, when relying
on the purple flow and the purple-blue flow. Examples from (a) Pas-
cal VOC and (b) COCO-stuff are shown. For both datasets, the top
row shows results from the model without semantic-guidance and the
bottom row shows the ones with semantic-guidance. The results with
semantic-guidance have more reasonable colors and better object con-

sistency.

purple and blue flows shown in Figure 5.1. In this case, the semantic segmentation
branch only influences the color embedding function. To illustrate the effect of
pixelated semantics, we compare the color embeddings generated from the embedding
function f θ in Figure 2.4. Obviously, as can be seen, semantic-guidance enables better
color embeddings. For example, the sky in the first picture looks more consistent,
and the sheep are assigned reasonable colors. However, the results without semantic-
guidance appear less consistent. For instance, there is color pollution on the dogs and
the sheet in the second picture.

Further, in order to more clearly show the predicted color channels of the color
embeddings, we remove the light channel L and only visualize the chrominances a
and b in Figure 2.4 (b). Interestingly, without semantic-guidance, the predicted colors
are more noisy, as shown in the top row. However, with semantic-guidance, the colors
are more consistent and echo the objects well. From these results, one clearly sees
that colorization profits from semantic information. These comparisons support our
idea and illustrate that pixelated semantics is able to enhance semantic understanding,
leading to more consistent colorization.

In theory, we should obtain better colorization when a better color embedding is
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FIGURE 2.6: Incorporating pixelated semantics. Result comparisons
between using (a) concatenation and (b) feature transformation to
incorporate pixelated semantics. Concatenation generates more natural

color images.

input into the generator. In Figure 2.5, we show some final colorizations produced

  

FIGURE 2.7: Colorizations generated by the embedding functions
f θ , using three variants of our network. The top row shows the
results of the purple flow. The second row shows the results of the
purple-blue flow. The bottom row shows the results of the purple-
blue-green flow. Each colorization is followed by the corresponding
predicted chrominances. The purple-blue-green flow produces the best

colorization.
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by the generator gω. Our method using pixelated semantics works well on the two
datasets. The results look more realistic. For instance, the fifth example in the Pascal
VOC dataset is a very challenging case. The proposed method generates consistent
and reasonable color for the earth even with an occluded object. For the last example
in Pascal VOC, it is surprising that the horse bit is assigned a red color although
it is very tiny. The proposed method processes details well. We also show various
examples from COCO-stuff, including animals, humans, fruits, and natural scenes.
The model trained with semantics performs better. Humans are given normal skin
color in the third and fifth examples. The fruits have uniform colors and look fresh.

2.4.3 Effect of segmentation on the generator gω

In the next experiment, we add semantics to the generator as described in Section
3.2.2 (combining the purple flow with the blue and green flows). This means the
generator produces a current pixel color distribution conditioned not only on the
previous colorized pixels and the color embeddings from the gray image, but also
on the semantic labels. We apply two different ways to incorporate semantics as
introduced in section 3.2.2. Using concatenation generates more natural colorful
images than using feature transformation. Qualitative results are shown in Figure 2.6.
We prefer concatenation for the following experiments.

As we train the three loss functions Lemb, Lseg and Lgen simultaneously, we
want to know whether the color embeddings produced by the embedding function
are further improved. In Figure 2.7, we compare the color embeddings generated
by the embedding functions of the purple flow (shown in the top row), the purple-
blue flow (shown in the second row) and the purple-blue-green flow (shown in the
bottom row). Visualizations of color embeddings followed by the corresponding
predicted chrominances are given. As can be seen, the addition of the green flow
further improves the embedding function. From the predicted a and b visualizations,
we observe better cohesion of colors for the objects. Clearly, the colorization benefits
from the multi-task learning by jointly training the three different losses.

Indeed, using semantic labels as condition to train the generator results in better
color embeddings. Moreover, the final generated colorized results will also be better.
In Figure 2.8, we compare the results from the three methods: pixelated colorization
without semantic guidance (the purple flow), pixelated semantic color embedding (the
purple-blue flow), and pixelated semantic color embedding and generator (the purple-
blue-green flow). The purple flow does not always understand the object semantic
well, sometimes assigning unreasonable colors to objects, such as the cow in the third
example of Pascal VOC, the hands in the second example and the apples in the last
example of COCO-stuff. In addition, it also suffers from inconsistency and noise on
objects. Using pixelated semantics to guide the color embedding function reduces the
color noise and somewhat improves the results. Adding semantic labels to guide the
generator improves the results further. As shown in Figure 2.8, the purple-blue-green
flow produces the most realistic and plausible results. Note that it is particularly apt at
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         (b)

FIGURE 2.8: Colorizations produced by the generators gω, using
three variants of our network on (a) Pascal VOC and (b) COCO-
stuff: the purple flow (first row), the purple-blue flow (second row) and
the purple-blue-green flow (third row). Using pixel-level semantics
to guide the generator in addition to the color embedding function

achieves the most realistic results.

processing the details and tiny objects. For instance, the tongue of the dog is red and
the lip and skin of the baby have very natural colors.
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0.0 0.2 0.4 0.6 0.8 1.0
mean-IoU

gray-scale images

colorized images

original images

0.669

0.703

0.721

FIGURE 2.9: Segmentation results in terms of mean-IoU on gray-
scale images, proposed colorized images and original color images, on
the Pascal VOC2012 validation dataset. Color aids semantic segmenta-

tion.

To conclude, these experiments demonstrate our strategies using pixelated seman-
tics for colorization are effective.

2.4.4 Effect of colorization on the segmentation
From the previous discussion, it is concluded that semantic segmentation aids in
training the color embedding function and the generator. The color embedding function
and the generator also help each other. As stated in Section 3, the three learnings could
benefit each other. Thus, we study whether colorization is able to improve semantic
segmentation.

Color is important for semantic segmentation. As we observed in ([242]),
color is quite critical for semantic segmentation since it captures some semantics. A
simple experiment is performed to stress this point. We apply the Deeplab-ResNet101
model ([23]) without conditional random field as post-processing, trained on the
Pascal VOC2012 training set for semantic segmentation. We test three versions of
the validation images, including gray-scale images, original color images and our
colorized images. The mean intersection over union (mean-IoU) is adopted to evaluate
the segmentation results. As seen in Figure 2.9, with the original color information,
the accuracy of 72.1% is much better than the 66.9% accuracy of the gray images.
The accuracy obtained using our proposed colorized images is only 1.8% lower than
using the original RGB images. This again demonstrates that our colorized images
are realistic. More importantly, the proposed colorized images outperform the gray-
scale images by 3.4%, which further supports the importance of color for semantic
understanding.

Colorization helps semantic segmentation. In order to illustrate how colorization
influences semantic segmentation, we train three semantic segmentation models
on gray-scale images using our network structure: (1) We jointly train semantic



2.4. Experiments 29

0 10 20 30 40 50 60
Epoch

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Va
lid

at
in

g 
Lo

ss

Joint Training
Training from Colorization Model
Training from Scratch

FIGURE 2.10: Semantic segmentation validating loss comparisons.
Three models are trained for 50 epochs. Training from a pre-trained
colorization model is better than training from scratch. Jointly training
obtains the lowest validating loss, which demonstrates colorization

helps to improve semantic segmentation.

segmentation and colorization; (2) we only train semantic segmentation from a pre-
trained colorization model; (3) we only train semantic segmentation from scratch. We
train all models on the training set of Pascal VOC 2012 and test them on the validation
set. As validating loss reflects the semantic segmentation accuracy on the validation
set, we compare the validating loss of the three models.

As seen in Figure 2.10, the model trained on a pre-trained colorization model
converges first. The loss is stable from the 18-th epoch and the stable loss value is
about 0.043. The model trained from scratch has the lowest starting loss but converges
very slowly. Starting from the 55-th epoch, the loss plateaus at 0.060. As expected, the
pre-trained colorization model makes semantic segmentation achieve better accuracy.
We believe the colorization model has already learned some semantic information
from the colors, as also observed by [236]. Further, our multi-task model jointly
trained with semantic segmentation and colorization obtains the lowest validating loss
of 0.030, around the 25-th epoch. This supports our statement that the two tasks with
the three loss functions are able to be learned harmoniously and benefit each other.

2.4.5 Sample Diversity
As our model is capable of producing diverse colorization results for one gray-scale
input, it is of interest to know whether or not pixelated semantics reduces the sample
diversity. Following [75], we compare two outputs from the same gray-scale image
with multiscale structural similarity (SSIM) ([215]). We draw the distribution of SSIM
scores for all the compared pairs on the Pascal VOC validation dataset. As shown in
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FIGURE 2.11: Samples diversity. Histogram of SSIM scores on the
Pascal VOC validation dataset shows the diversity of the multiple
colorized results. Some examples with their specific SSIM scores
are also shown. Our model is able to produce appealing and diverse

colorizations.

mean-IoU (%) PSNR(dB) RMSE

Iizuka et al. [94] 67.6 24.20 10.66
Larsson et al. [123] 68.8 24.56 10.26
Zhang et al. [236] 68.1 22.81 12.37
Ours 70.3 23.15 11.43

Ground-truth (color) 72.1 NA NA

TABLE 2.3: Quantitative evaluation. Comparisons of semantic seg-
mentation accuracies, and PSNRs and RMSEs between colorized re-
sults and the ground-truth, on the Pascal VOC validation set. Our

method performs better according to the mean-IoU value.

Figure 2.11, most of the output pairs have an SSIM score between 0.8 ∼ 0.95. The
examples shown in the figure demonstrate the pairs have the same content but different
colors for details, such as the eyes of the bird and the pants of the lady. Usually, the
large backgrounds or objects with different colors in a pair of outputs cause lower
SSIM scores. For instance, the backgrounds and birds in the first example. We believe
pixelated semantics does not destroy the sample diversity. We will show more diverse
colorization results in the next section.
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FIGURE 2.12: Comparisons with single colorization state-of-the-
art. Our results look more saturated and realistic.

2.4.6 Comparisons with State-of-the-art
Generally, we want to produce visually compelling colorization results, which can
fool a human observer, rather than recover the ground-truth. As discussed previously,
colorization is a subjective challenge. Thus, both qualitative and quantitative evalua-
tions are difficult. As for quantitative evaluation, some papers ([236, 94]) apply Top-5
and/or Top-1 classification accuracies after colorization to assess the performance
of the methods. Other papers ([83, 123]) use the peak signal-to-noise ratio (PSNR),
although it is not a suitable criteria for colorization, especially not for a method like
ours, which produces multiple results. Also, color fidelity is suitable to be used for
evaluating methods generating a single colorization result, which share a common
goal to provide a color image closer to the original one. In ([41, 123]), the authors
apply root mean squared error (RMSE) of the 2-channel images compared to the
ground-truth to evaluate color fidelity. For qualitative evaluation, human observation
is mostly used ([236, 94, 83, 169, 19]).
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Naturalness (%)

Single colorization
Iizuka et al. [94] 88.61
Larsson et al. [123] 86.99
Zhang et al. [236] 88.66

Diverse colorization
Deshpande et al. [42] 75.30
Cao et al. [19] 80.00
Royer et al. [169] 89.89
Ours 94.65

Ground-truth 99.58

TABLE 2.4: Qualitative evaluation. Comparisons of the naturalness.
Our colorizations are more natural than others.

In this chapter, we propose a new evaluation method. We use semantic segmenta-
tion accuracy to assess the performance of each method, since we know semantics
is key to colorization. This is more strict than classification accuracies. Specifically,
we calculate the mean-IoU for semantic segmentation results from the colorized
images. We use this procedure to compare our method with single colorization meth-
ods. For qualitative evaluation, we use the method from our previous work ([242]).
We ask 20 human observers, including research students and people without any
image processing knowledge, to do a test on a combined dataset including the Pascal
VOC2012 validation and the COCO-stuff subset. Given a colorized image or the real
ground-truth image, the observers should decide whether it looks natural or not.

Single Colorization State-of-the-art

We compare the proposed method with the single colorization state-of-the-art ([236,
94, 123]). In addition to the proposed semantic segmentation accuracy evaluation, we
also report PSNR. We report RMSE of the 2 color channels a and b compared to the
ground truth. We use the Deeplab-ResNet101 model again for semantic segmentation.
In this case, we only sample one result for each input, using our method.

Result comparisons are shown in Table 2.3. Our method has a lower PSNR than
[94] and [123]. The comparisons of RMSE are similar with that of PSNR. Both
depend on the ground-truth and over-penalize semantically plausible results with
a colorization that differs from the ground-truth ([83]). Both [94] and [123] obtain
lower RMSEs because their objective is to minimize the distance between their
outputs and ground-truth. However, our method outperforms all the others in semantic
segmentation accuracy. This demonstrates that our colorizations are more realistic
and contain more perceptual semantics.
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FIGURE 2.13: Comparisons with diverse colorization state-of-the-
art. The diverse results generated by our method look fairly good.

For qualitative comparison, we report the naturalness of each method according
to 20 human observations in Table 2.4. Three of the single colorization methods
perform comparatively. Our results are more natural. Selected examples are shown
in Figure 2.12. The method by [94] produces good results, but sometimes assigns
unsuitable colors to objects, like the earth in the fourth example. The results from
[123] look somewhat grayish. [236]’s method can generate saturated results but suffers
from color pollution. Compared to these, our colorizations are spatially coherent and
visually appealing. For instance, the color of the bird in the third example and the skin
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FIGURE 2.14: Results on legacy black and white photos. The model
also works well on old black and white photos.

of the human in the last example, both look very natural.

Diverse Colorization State-of-the-art

We also compare our method with the diverse colorization state-of-the art ([169, 19,
42]). All of these are based on a generative model. We only qualitatively compare
these by human observation. We use each model to produce three colorized samples.
We report the results in Table 2.4. [169] apply PixelCNN to get natural images. Our
results are even more natural. Several examples are shown in Figure 2.13. [42], using
a VAE, generate sepia toned results. [19], applying a GAN, output plausible results
but with mixed colors. [169] also produces saturated results but with color pollution.
Our generated colored images have fine-grained and vibrant colors and look realistic.

Results on Legacy Black and White Photographs

We also colorize some legacy black and white photographs from renowned photog-
raphers Henri Cartier-Bresson and Ansel Adams, along with Thylacine which went
extinct in 1936. Results are shown in Figure 14. The model also works well on old
black and white photos.

2.4.7 Result Analysis
To further analyze the effect of object semantics on colorization, we quantify the
colorization performance for each object class in the Pascal VOC validation set. We
report RMSEs per object in Figure 15. Naturally, RMSE is highest on background as
no specific object semantics is utilized for this class when we train our model. A person
is the most difficult object to colorize as the colors of clothing are so diversiform.
Low RMSEs for other objects, like bicycle and sheep, illustrate that incorporating
semantics helps to precisely assign reasonable colors to objects.
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FIGURE 2.15: Failure cases. Food, tiny objects and artificial objects
are still very challenging.

2.4.8 Failure Cases
Our method is able to output realistic colorized images but it is not perfect. There
are still some failure cases encountered by the proposed approach as well as other
automatic systems. We provide a few failure cases in Figure 2.15. Usually, it is highly
challenging to colorize different kinds of food. They are artificial and variable. It is
also difficult to learn the semantics of images containing several tiny and occluded
objects. Moreover, our method cannot handle the objects with unclear semantics.
Although we exploit semantics for improving colorization, we do not have very many
categories. We believe a finer semantic segmentation with more class labels will
further enhance the results.

2.5 Conclusion
We propose pixelated semantic colorization to address a limitation of automatic col-
orization: object color inconsistency due to limited semantic understanding. We study
how to effectively use pixelated semantics to achieve good colorization. Specifically,
we design a pixelated semantic color embedding and a pixelated semantic generator.
Both of these strengthen semantic understanding so that content confusion can be
reduced. We train our network to jointly optimize colorization and semantic segmen-
tation. The final colorized results on two datasets demonstrate the proposed strategies
generate plausible, realistic and diverse colored images. Although we have achieved
good results, our system is not perfect yet and has some challenges remaining. For
instance, it cannot well process images with artificial objects, like food, or tiny objects.
More learning examples and finer semantic segmentation may further improve the
colorization results in the future.
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FIGURE 2.16: Colorization results of per object class on the Pascal
VOC validation set using RMSE. Without considering background,
the model performs worse for persons as the clothing has too much
diversity in color. The RMSEs are lower for all other objects. Our

model helps to assign reasonable colors to objects.
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Chapter 3

LiftPool: Bidirectional ConvNet
Pooling

3.1 Introduction
Spatial pooling has been a critical ConvNet operation since its inception [59, 124, 117,
82, 24]. It is crucial that a pooling layer maintains the most important activations for
the network’s discriminability [170, 11]. Several simple operations, such as average
pooling or max pooling, have been explored for aggregating features in a local area.
[188] employ a convolutional layer with an increased stride to replace a pooling
layer, which is equivalent to downsampling. While effective and efficient, simply
using the average or maximum activation may ignore local structures. In addition, as
these functions are not invertible, upsampling the downscaled feature maps can not
recover the lost information. Different from existing pooling operations, we propose
in this chapter a bidirectional pooling called LiftPool, including LiftDownPool which
preserves details when downsizing the feature maps, and LiftUpPool for generating
finer upsampled feature maps.

LiftPool is inspired by the classical Lifting Scheme [195] from signal processing,
which is commonly used for information compression [158], reconstruction [44],
and denoising [220]. The perfect invertibility of the Lifting Scheme stimulates some
works on invertible networks [43, 100, 5, 99] . The Lifting Scheme decomposes
an input signal into various sub-bands with downscaled size and this process is
perfectly invertible. Applying the idea of Lifting Scheme, LiftDownPool factorizes an
input feature map into several downsized spatial sub-bands with different correlation
structures. As shown in Figure 3.1, for an image feature map, the LL sub-band is
an approximation removing several details. The LH, HL and HH represent details
along horizontal, vertical and diagonal directions. LiftDownPool respects preserving
any sub-band(s) as the pooled result. Moreover, due to the invertibility of the pooling
function, LiftUpPool is introduced for upsampling feature maps. Upsampling a feature
map is more challenging as seen for the MaxUpPool [7], which generates an output
with many ‘holes’ (shown in Figure 3.1). LiftUpPool utilizes the recorded details to
recover a refined output by performing LiftDownPool backwards.

We analyze the proposed LiftPool from several viewpoints. LiftDownPool allows
a flexible choice for any sub-band(s) as the pooled result. It outperforms baselines on
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FIGURE 3.1: Illustration of the proposed LiftDownPool and Lif-
tUpPool vs. MaxPool and MaxUpPool on an image from CIFAR-100.
Where MaxPool takes the maximum activations from the input, Lift-
DownPool decomposes the input into four sub-bands: LL, LH, HL
and HH. LL contains low-pass coefficients. It better reduces alias-
ing compared to MaxPool. LH, HL and HH represent details along
horizontal, vertical and diagonal directions. For simplicity, we just
upsample the down-pooled results for illustrating the up-pooling. Max-
UpPool generates a sparse map with lost details. LiftUpPool produces
a refined output from the recorded details by performing LiftDownPool

backwards.

image classification with various ConvNet backbones. LiftDownPool also presents
better stability to corruptions and perturbations of inputs. By performing LiftDown-
Pool backwards, LiftUpPool generates a refined upsampling feature map for semantic
segmentation.

3.2 Methods
The down-pooling operator is formulated as minimizing the information loss caused
by downsizing feature maps, as in image downscaling by [170, 114]. The Lifting
Scheme [195] naturally matches the problem. The Lifting Scheme was originally
designed to exploit the correlated structures present in signals to build a downsized
approximation and several detail sub-bands in the spatial domain [38]. The inverse
transform is realizable and always provides a perfect reconstruction of the input.
LiftPool is derived from the Lifting Scheme for bidirectional pooling layers.
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FIGURE 3.2: LiftDownPool and LiftUpPool implementations. (a)
LiftDownPool-1D. x is split into xe and xo. The Predictor and Updater
generate details d and an approximation s. (b) LiftUpPool-1D. By
running LiftDownPool backwards, xe and xo are generated from s and

d, and then merged into x.

3.2.1 LiftDownPool
Taking a one-dimension (1D) signal as an example, LiftDownPool decomposes a
given signal x=[x1, x2, x3, ..., xn], xn ∈ R into a downscaled approximation signal s
and a difference signal d by,

s, d = F(x). (3.1)

where F(·)= fupdate ◦ fpredict ◦ fsplit(·), consisting of three functions: split (downsam-
ple), predict and update. Here ◦ indicates the function composition operator. The
LiftDownPool-1D is illustrated in Figure 3.2(a). Specifically,

Split fsplit : x 7→ (xe, xo). The given signal x is split into two disjoint sets
xe=[x2, x4, ..., x2k] with even indices and xo=[x1, x3, ..., x2k+1] with odd indices.
The two sets are typically closely correlated.

Predict fpredict : (xe, xo) 7→ d. Given one set e.g. xe, another set xo is able to
be predicted by a predictor P(·). The predictor is not required to be precise, so the
difference with the high-pass coefficients d is defined as:

d = xo −P(xe). (3.2)

Update fupdate : (xe, d) 7→ s. Taking xe as an approximation of x causes a serious
aliasing because xe is simply downsampled from x. Particularly, the running average
of xe is not the same as that of x. To correct it, a smoothed version s is generated by
adding U (d) to xe:

s = xe + U (d). (3.3)

The update procedure is equivalent to applying a low-pass filter to x. Thus, s with
low-pass coefficients is taken as an approximation of the original signal.
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The classific Lifting Scheme method applies pre-defined low-pass filters and high-
pass filters to decompose an image into four sub-bands. However, pre-designing filters
in P(·) and U (·) is difficult [246]. Earlier, [246] proposed to optimize these filters by
a back-propagation network. All functions in LiftDownPool are differentiable. P(·)
and U (·) are able to be simply implemented by convolution operators followed by
non-linear activation functions [72]. Specifically, we design P(·) and U (·) as:

P(·) = Tanh() ◦ Conv(k=1,s=1,g=G2) ◦ ReLU() ◦ Conv(k=K,s=1,g=G1), (3.4)

U (·) = Tanh() ◦ Conv(k=1,s=1,g=G2) ◦ ReLU() ◦ Conv(k=K,s=1,g=G1). (3.5)

Here K is the kernel size and G1 and G2 are the number of groups. We prefer to
learn the filters in P(·) and U (·) with deep neural networks in an end-to-end fashion.
To that end, two constraints need to be added to the final loss function. Recall, s
is the downsized approximation of x. As s is updated from xe according to Eq 3.3,
s is essentially close to xe. Thus, s is naturally required to be close to xo as well.
Therefore, one constraint term cu is for minimising the L2-norm distance between s
and xo. With Eq 3.3,

cu = ∥s − xo∥2

= ∥U (d) + xe − xo∥2.
(3.6)

The other constraint term cp is for minimising the detail d, with Eq 3.2,

cp = ∥xo −P(xe)∥2. (3.7)

The total loss is:
L = Ltask + λucu + λpcp, (3.8)

where Ltask is the loss for a specific task, like a classification or semantic segmentation
loss. We set λu=0.01 and λp=0.1. Our experiments show the two terms bring good
regularization to the model.

LiftDownPool-2D is easily decomposed into several 1D LiftDownPool opera-
tors. Following the standard Lifting Scheme, we first perform a LiftDownPool-1D
along the horizontal direction to obtain an approximation part s (low frequency in
the horizontal direction) and a difference part d (high frequency in the horizontal
direction). Then, for each of the two parts, we apply the same LiftDownPool-1D along
the vertical direction. By doing so, s is further decomposed into LL (low frequency in
vertical and horizontal directions) and LH (low frequency in the vertical direction and
high frequency in the horizontal direction). d is further decomposed into HL (high
frequency in the vertical direction and low frequency in the horizontal direction) and
HH (high frequency in vertical and horizontal directions). We can flexibly choose sub-
band(s) for down-pooling and keep the other sub-band(s) for reversing the operation.
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Naturally, LiftDownPool-1D can be generalized further for any n-dimensional signal.
In Figure 3.3, we show several feature maps from the first LiftDownPool layer based
on VGG13. LL has smoothed features with less details. LH, HL and HH capture the
details along horizontal, vertical and diagonal directions.

Discussion MaxPool is usually formulated as first performing Max and then down-
sampling: MaxPoolk,s=downsamples ◦ Maxk [235]. By contrast, LiftDownPool is:
LiftDownPoolk,s=updatek ◦ predictk ◦ downsamples. First downsampling and then
performing two lifting steps (prediction and updating) helps anti-aliasing. A simple
analysis is provided in the Appendix. As shown in Figure 3.1, LiftDownPool keeps
more structured information and better reduces aliasing then MaxPool.

3.2.2 LiftUpPool
LiftPool inherits the invertibility of the Lifting Scheme. Taking the 1D signal as an
example, LiftUpPool generates an upsampled signal x from s, d by:

x = G(s, d). (3.9)

where G(·)= fmerge ◦ fpredict ◦ fupdate(·), including the functions: update, predict and
merge. Specifically, s, d 7→ xe, d 7→ xe, xo 7→ x are realized by:

xe = s −U (d), (3.10)

xo = d + P(xe), (3.11)

x = fmerge(xe, xo). (3.12)

We simply get the even part xe and odd part xo from s and d, and then merge xe and
xo into x. In this way, we generate upsampled feature maps with rich information.

Discussion Up-pooling has been used in image-to-image translation tasks such as
semantic segmentation [23], super-resolution [179], and image colorization [243]. It
is generally used in encoder-decoder networks such as SegNet [7] and UNet [167].
However, most existing pooling functions are not invertible. Taking MaxPool as
the baseline, it is required to record the maximum indices during max pooling. For
simplicity, we use the down-pooled results as inputs to the up-pooling in Figure 3.1.
When performing MaxUpPool, the values of the input feature maps are directly
filled on the corresponding maximum indices of the output and other indices will be
given zeros. By doing so, the output looks sparse and loses much of the structured
information, which is harmful for generating good-resolution outputs. LiftUpPool
performing an inverse transformation of LiftDownPool, is able to produce finer outputs
by using the multiphase sub-bands.
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LL LH HL HH

FIGURE 3.3: LiftDownPool visualization. Selected feature maps of
an image in CIFAR-100, from the first LiftDownPool layer in VGG13.
LL represents smoothed feature maps with less details. LH, HL and
HH represent detailed features along horizontal, vertical and diagonal
directions. Each sub-bands contains different correlation structures.

3.3 Related Work
Taking the average over a feature map region was the pooling mechanism of choice
in the Neocognitron [59, 58] and LeNet [124]. Average pooling is equivalent to
blurred-downsampling. Max pooling later proved even more effective [178] and
became popular in deep ConvNets. Yet, averaging activations or picking the maximum
activations causes loss of details. [232] and [233] introduced a stochastic process
to pooling and downsampling, respectively, for a better regularization. [125] mixed
AveragePool and MaxPool by a gated mask to adapt to complex and variable input
patterns. [170] introduced detail-preserving pooling (DPP) for maintaining structured
details. By contrast, [235] proposed a BlurPool by applying a low-pass filter, which
removes details. Interestingly, both methods improved image classification, indicating
that (empirically) determining the best pooling strategy is beneficial [170]. [218]
introduced the wavelet transform into pooling for reducing jagged edges and other
artifacts. [164] suggested pooling in the frequency domain, which enabled flexibility
in the choice of the pooling output dimensionality. Pooling based on a probabilistic
model was proposed in [114] and [115]. [114] first used a Gaussian distribution to
model the local activations and then aggregates the activations into the two statistics
of mean and standard deviation. [115] estimated parameters from global statistics
in the input feature map, to flexibly represent various pooling types. Our proposed
LiftDownPool decomposes the input feature map into a downsized approximation and
several details. It is flexible to choose any sub-band(s) as pooled result.

While existing pooling functions are not invertible, our proposed LiftPool is
able to perform both down-pooling and up-pooling. Previously, MaxUpPool [7] was
introduced for semantic segmentation. As the max pooling function is not invertible,
the lost details can not be recovered during up-pooling. Hence, the output suffers
from aliasing. Although adding a BlurPool to MaxUpPool may help to reduce the
aliasing [235], several details are still lost. LiftUpPool, performing the LiftDownPool
functions backwards, is capable of producing a refined high-resolution output with
the help of the details sub-bands.
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Earlier, [246] introduce back-propagation for the Lifting Scheme to perform
nonlinear wavelet decomposition. They propose an update-first Lifting Scheme and
use back-propagation to replace the Updater and Predictor in the Lifting Scheme. In
this way, they realize a back-propagation neural network in lifting steps for signal
processing. There is no pooling layer used. We develop down-pooling and up-pooling
layers by leveraging the idea of the Lifting Scheme for image processing. We utilize
convolution layers and ReLU layers to implement the Updater and Predictor, which
are optimized end-to-end with the deep neural network. Our pooling layers are easily
plugged into various backbones. Recently, [165] introduce the Lifting Scheme for
multiresolution analysis in a network. Specifically, they develop an adaptive wavelet
network by stacking several convolution layers and Lifting Scheme layers. They
focus on an interpretable network by integrating multiresolution analysis, rather than
pooling. This chapter aims at developing a pooling layer by utilizing the lifting
steps. We develop a down-pooling that constructs various sub-bands with different
information, and an up-pooling which generates refined upsampled feature maps.

3.4 Experiments

3.4.1 ConvNet Testbeds
Image Classification We first verify the proposed LiftDownPool for image clas-
sification on CIFAR-100 [116] with 32×32 low-resolution images. CIFAR-100 has
100 classes with 600 images each. There are 500 training images and 100 testing
images per class. A VGG13 [182] network is trained on this dataset. For experiments
conducted on CIFAR-100, we repeat each experiment three times with different initial
random seeds during training and report the averaged error rate with the standard
deviation. We also report results on ImageNet [40] with 1.2M training and 5000
validation images for 1000 classes. We plug the LiftDownPool into several popular
ConvNet backbones to verify its generalizability for image classification. We replace
the local pooling layers by LiftDownPool in all the networks. Error rate is utilized as
the evaluation metric. All training settings are provided in the Appendix.

Semantic Segmentation We also test the LiftDownPool and LiftUpPool for se-
mantic segmentation on PASCAL-VOC12 [50], which contains 20 foreground object
classes and one background class. An augmented version with 10582 training im-
ages and 1449 validation images is used. We consider SegNet [7] with VGG13 and
DeeplabV3Plus [24] with ResNet50 as ConvNets for semantic segmentation. The per-
formance is measured in terms of pixel mean-intersection-over-union (mIoU) across
the 21 classes. Code is available at https://github.com/jiaozizhao/LiftPool/.

https://github.com/jiaozizhao/LiftPool/
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Top-1

LL 25.64 ± 0.04

LH 25.71 ± 0.04

HL 24.88 ± 0.05

HH 25.18 ± 0.08

LL+LH+HL+HH (w/o cu and cp) 26.43 ± 0.07

LL+LH+HL+HH (w/ cu and cp) 24.35 ± 0.11

TABLE 3.1: Flexibility. Top-1 image classification error rate with
varying sub-bands on CIFAR-100. Mixing low-pass and high-pass

obtains the best result. Adding cu and cp helps improve the result.

Kernel Top-1

2 25.53 ± 0.13

3 25.06 ± 0.22

4 24.89 ± 0.07

5 24.35 ± 0.11

7 24.40 ± 0.08

TABLE 3.2: Effec-
tiveness. Top-1 image
classification error rate
with varying kernel size
on CIFAR-100. Kernel
size 5 achieves better

result.

Top-1

Skip 27.09 ± 0.11

MaxPool 25.71 ± 0.13

AveragePool 25.87 ± 0.03

LiftDownPool 24.35 ± 0.11

TABLE 3.3: Effec-
tiveness. Top-1 image
classification error rate
with various pooling
methods on CIFAR-
100. LiftDownPool
outperforms baselines.

3.4.2 Ablation Study
Flexibility We first test VGG13 on CIFAR-100. Different from previous pooling
methods, LiftDownPool generates four sub-bands, each of which contains a different
type of information. LiftDownPool allows to flexibly choose which sub-band(s) to
keep as the final pooled results. In Table 3.1, we show the Top-1 error rate for the
classification based on different sub-bands. Interestingly, it is observed that vertical
details contribute more for image classification. Low-pass coefficients and high-pass
coefficients along horizontal direction get similar error rate. Whether the two spatial
dimensions should be treated equally we leave for our future work. To realize a less
lossy pooling, we combine all the sub-bands by summing them up with almost no
additional compute cost. Such a pooling significantly improves the results. In addition,
the constrains cu and cp help to decrease the error rate. Moreover, seen from Table 3.1
and Table 3.3, we further conclude LiftDownPool outperforms other baselines even
based on any single sub-band. We believe the learned LiftDownPool provides an
effective regularization to the model.
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ResNet18 ResNet50 MobileNet-V2

Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

Skip [188] 30.22 10.23 24.31 7.34 28.66 9.70
MaxPool 28.60 9.77 24.26 7.22 28.65 9.82
AveragePool 28.03 9.55 24.40 7.35 28.32 9.72

S3Pool [233] 33.91 13.09 27.98 9.34 40.56 17.91
WaveletPool [218] 30.33 10.82 24.43 7.36 29.27 10.26
BlurPool⋆ [235] 29.88 10.58 24.60 7.73 30.58 11.26
DPP⋆ [170] 29.12 10.21 24.62 7.49 29.85 10.53
SpectralPool [164] 28.69 9.87 24.81 7.57 33.38 12.56
GatedPool [125] 27.78 9.44 23.79 7.06 28.94 9.90
MixedPool [125] 27.76 9.50 24.08 7.32 29.00 9.97
GFGP⋆ [115] 26.88 8.66 22.76 6.34 28.42 9.59
GaussPool⋆ [114] 26.58 8.86 22.95 6.30 27.13 8.92

LiftDownPool 25.80 8.14 22.36 6.11 26.09 8.22

TABLE 3.4: Generalizability of LiftDownPool on ImageNet. Lift-
DownPool outperforms alternative pooling methods, no matter what
ConvNet backbone is used. ⋆ means the numbers are based on run-
ning the code provided by authors. Others are based on our re-

implementation.

Effectiveness Table 3.2 ablates the performance when varying kernel sizes for
the filters in P(·) and U (·). A larger kernel size, covering more local information,
performs slightly better. When kernel size equals 7, it brings more computations
but no performance gain. Unless specified otherwise, we use for all experiments
from now on a kernel size of 5 and we sum up all the sub-bands. We also compare
our LiftDownPool with the commonly-used MaxPool, AveragePool, as well as the
convolutional layer with stride 2 [188], which is called Skip by [114]. Seen from
Table 3.3, LiftDownPool outperforms other pooling methods on CIFAR-100.

Generalizability We apply LiftDownPool to several backbones including ResNet18,
ResNet50 [82] and MobileNet-V2 [176] on ImageNet. In Table 4.3, LiftDownPool
has 2% lower Top-1 error rate than MaxPool and AveragePool. While combining
MaxPool and AveragePool in a Gated [125] or Mixed [125] fashion, still has a 1% gap
with LiftDownPool. Gauss [114] and GFGP [115] are comparable to LiftDownPool
with ResNet50, but not with lighter networks. Compared to Spectral pooling [164] and
Wavelet pooling [218], which are applied in the frequency or space-frequency domain,
LiftDownPool offers an advantage by learning correlated structures and details in the
spatial domain. Compared to DPP [170], which preserves details, and BlurPool [235],
smoothing feature maps by a low-pass filter, our LiftDownPool retains all sub-bands
which proves to be more powerful for image classification. Stochastic approaches like
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Normalized Unnormalized

ImageNet-C ImageNet-P ImageNet-C ImageNet-P

mCE mPR mCE mPR

Skip 72.71 61.75 57.05 7.56
MaxPool 73.09 62.64 57.40 7.57
AveragePool 72.09 56.23 56.56 6.90

BlurPool [235] 72.14 56.54 56.58 6.90
DPP [170] 72.12 62.30 56.67 7.62
GatedPool [125] 72.58 58.05 57.00 7.23
GaussPool [114] 69.27 54.83 54.40 6.76

LiftDownPool 68.45 52.91 53.80 6.55

TABLE 3.5: Out-of-distribution robustness of LiftDownPool on
ImageNet-C and ImageNet-P. LiftDownPool is more robust to cor-

ruptions and perturbations compared to baselines.

S3Pool obtain poor results on the large-scale dataset because randomness in pooling
hampers network training, as earlier observed by [115]. To conclude, LiftDownPool
performs better no matter what backbone is used.

Parameter Efficiency. For all pooling layers in one network, we use the same kernel
size in LiftPool. For the trainable parameters, recall P or U has a 1D convolution, so
each has C/G1×C×K+G2 parameters. C is the number of the input channels and G2
equals the number of internal channels. A 2D LiftDownPool shares these parameters
three times without extra parameters. We compare our LiftDownPool (with 25.58 M)
to two other parameterized pooling methods using ResNet50 on ImageNet: GFGP
(31.08 M) and GaussPool (33.85 M). We achieve a lower error rate compared to GFGP
and GaussPool with less parameters. Our performance boost is due to the LiftPool
scheme, not the added capacity.

3.4.3 Stability Analysis
Out-of-distribution Robustness A good down-pooling method is expected to be
stable to perturbations and noise. Following [235], we test the robustness of LiftDown-
Pool to corruptions on ImageNet-C and stability to perturbations on ImageNet-P
using ResNet50. Both datasets come from [84]. We report the mean Corruption Error
(mCE) and mean Flip Rate (mFR) for the two tasks, with both unnormalized raw
values and normalized values by AlexNet’s mCE and mFR, following [84].

From Table 5.8, LiftDownPool effectively reduces raw mCE compared to the
baselines. We show CE for each corruption type for further analysis in Figure A.4 in
the Appendix. LiftDownPool enables robustness to both “high-frequency” corruptions,
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FIGURE 3.4: Shift Robustness comparisons between various pooling
methods including MaxPool, Skip, AveragePool and the proposed
LiftDownPool. LiftDownPool improves classification consistency and

meanwhile boosts the accuracy, independent of the backbone used.

such as noise or spatter, and “low-frequency” corruptions, like blur and jpeg compres-
sion. We believe LiftDownPool benefits from the mechanism that all sub-bands are
used. A similar conclusion is obtained for robustness to perturbations on ImageNet-P
from Table 5.8 and Figure A.4 in the Appendix. ImageNet-P contains short video clips
of a single image with small perturbations added. Such perturbations are generated
by several types of noise, blur, geometric changes, and simulated weather conditions.
The metric FR measures how often the Top-1 classification changes in consecutive
frames. It is designed for testing a model’s stability under small deformations. Again,
LiftDownPool achieves lower FR for most perturbations.

Shift Robustness We then test the shift-invariance of our model. Following [235],
we use classification consistency to measure the shift-invariance. It represents how
often the network outputs the same classification, given the same image with two
different shifts. We test the models with varying backbones trained on ImageNet.
In Figure 3.4, LiftDownPool boosts classification accuracy as well as consistency
no matter which backbone is used. Besides, we have other interesting findings. The
deeper ResNet50 network has more stable shift-invariance. Various pooling methods
including MaxPool, Skip, AveragePool, do not make significant difference on consis-
tency. However, a lighter ResNet18 network is influenced much by the pooling method.
LiftDownPool brings more than 10% improvement on consistency using ResNet18.
We leave for future work how the depth of the network affects the shift-invariance of
the network itself.
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mIoU
MaxUpPool 62.7
MaxUpPool + BlurPool 64.0

LiftUpPool 68.9

TABLE 3.6: LiftUp-
Pool for Semantic
Segmentation on
PASCAL-VOC12
based on SegNet with
varying up-pooling

methods.

mIoU
Skip 76.1
MaxPool 76.2
AveragePool 76.4
Gauss [114] 77.4

LiftDownPool 78.7

TABLE 3.7: Semantic
Segmentation with
DeepLabV3Plus on
PASCAL-VOC12 with
various pooling meth-
ods. LiftDownPool

performs best.

3.4.4 Results for Semantic Segmentation
LiftUpPool for Semantic Segmentation LiftDownPool functions are invertible as
described in Eq 3.10 and Eq 3.11. It naturally benefits a corresponding up-pooling
operation, which is popularly used in Encoder-Decoder networks for image-to-image
translation tasks. Usually, the Encoder downsizes feature maps layer by layer to
generate a high-level embedding for understanding the image. Then the Decoder
needs to translate the embedding with a tiny spatial size to a required map with
the same spatial size as the original input image. Interpreting details is pivotal for
producing high-resolution outputs. We replace all down-pooling and up-pooling layers
with LiftDownPool and LiftUpPool in SegNet for semantic segmentation on PASCAL-
VOC12. For LiftDownPool we only keep the LL sub-band. For LiftUpPool, the detail-
preserving sub-bands LH, HL and HH are used for generating upsampled feature
maps. MaxUpPool is taken as the baseline. We also test MaxUpPool followed by a
BlurPool [235], which is expected to help anti-aliasing. Table 3.6 reveals LiftUpPool
improves over the baselines with a considerable margin. As illustrated in Figure 3.1,
MaxUpPool is unable to compensate for the lost details. Although BlurPool helps
smoothing local areas, it can only provide a small improvement. As LiftUpPool is
capable of refining the feature map by fusing it with details, it is beneficial for per-
pixel prediction tasks like semantic segmentation. We show several examples for
semantic segmentation in Figure 3.5. LiftUpPool is more precise on details and edges.
We also show the feature maps per predicted class in the Appendix.

Semantic Segmentation with DeepLabV3Plus As discussed, LiftDownPool helps
to lift ConvNets on accuracy and stability for image classification. ImageNet-trained
ConvNets often serve as the backbones for downstream tuning. It is expected to trans-
fer the nature of LiftDownPool to other tasks. We still consider semantic segmentation
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MaxUpPool MaxUpPool+BlurPool LiftUpPool Ground-truthImage

FIGURE 3.5: LiftUpPool for Semantic Segmentation. Visualization
of semantic segmentation maps on PASCAL-VOC12 based on SegNet
with varying up-pooling methods. LiftUpPool presents more com-

pleted, precise segmentation maps with smooth edges.

as our example. We leverage the state-of-the-art DeeplabV3Plus-ResNet50 [24]. The
input image has size 512×512. The output feature map of the encoder is 32×32.
The decoder upsamples the feature map to 128×128 and concatenates them with
the low-level feature map for the final pixel-level classification. As before, all local
pooling layers are replaced by LiftDownPool. We use the pre-trained weights for
image classification to initialize the corresponding model. As shown in Table 3.7,
LiftDownPool outperforms all the baselines with considerable gaps.

3.5 Conclusion
Applying classical signal processing theory to modern deep neural networks, we
propose a novel pooling method: LiftPool. LiftPool is able to perform both down-
pooling and up-pooling. LiftDownPool improves both accuracy and robustness for
image classification. LiftUpPool, generating refined upsampling feature maps, outper-
forms MaxUpPool by a considerable margin on semantic segmentation. Future work
may focus on applying LiftPool to fine-grained image classification, super-resolution
challenges or other tasks with high demands for detail preservation.
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Part II

Learning Continuity for Video
Recognition
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Chapter 4

Dance with Flow: Two-in-One Stream
Action Detection

4.1 Introduction
This chapter strives for the spatio-temporal detection of human actions in video, which
is a crucial ability for self-driving cars, autonomous care robots, and advanced video
search engines. The leading approach for this challenging problem relies on fast
detectors at the frame level [154, 184], which are then linked [71, 184, 8] or tracked
[216] over time. Kalogeiton et al. [106] and Singh et al. [183] further showed it is
advantageous to stack the features from subsequent frames before predicting action
class scores and determining the enclosing tube. Most of the state-of-the-art action
detectors exploit a two-stream architecture [181], one for RGB and one for optical-
flow, which are individually trained before fusion. However, the double computation
and parameter demand of two-stream methods does not lead to double accuracy
compared to a single stream. We propose to embed RGB and optical-flow into a single
stream for action detection.

We are inspired by progress on feature normalization, especially conditional
normalization [96, 48, 65], which has been successfully employed to visual ques-
tion answering [39], visual reasoning [156], image style transfer [91] and super-
resolution [214]. Peretz et al. [156] propose a feature-wise linear modulation layer
which enables a recurrent neural network over an input question to influence con-
volutional neural network computation over an image. It demonstrates that features
are capable to be modulated via a simple feature-wise affine transformation based on
conditioning information. However, as their modulation layer is agnostic to spatial
location, it is unsuited for action detection. In [214], Wang et al. developed a spatial
feature transform layer, which is conditioned on categorical semantic probability maps,
to modulate a super-resolution network. Encouraged by these works, we propose a
motion condition layer and a motion modulation layer to adjust an RGB-stream for
spatio-temporal action detection.

We make the following contributions in this chapter. We propose to embed RGB
and optical-flow into a single stream for spatio-temporal action detection. It reduces
the computational costs of conventional two-stream detection networks by half while
maintaining its high accuracy. We introduce the two-in-one stream with motion
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FIGURE 4.1: Two-in-one stream. We propose to embed RGB and
optical-flow into a single stream for spatio-temporal action detection.
Besides efficiency gains, it helps recognizing whether the dancer in the
current frame is standing up or sitting down without considering the
future. By utilizing information from flow images, the dancer is given

a moving direction, up or down, better indicating the action.

condition layer and motion modulation layer, which learns video representations of
appearance-stream features conditioned on optical-flow. As shown in Figure 4.1, the
motion condition will guide the model to pay more attention on what moves, rather
than the static background. The method is easily embedded in existing appearance-
or two-stream action detection networks, and trained end-to-end, leading to new
state-of-the-art on UCF101-24, UCFSports and J-HMDB.

4.2 Related Work
The spatio-temporal detection of human actions in video has a long tradition in com-
puter vision, e.g. [36, 113, 18]. Early success came from detection based on exhaustive
cuboid search, efficient feature representations, and SVM-based learning, [229, 199,
198]. This was later extended with more flexible sequences of bounding boxes [121,
200, 228], or spatio-temporal proposals [205, 102], together with engineered appear-
ance and motion features, most notably the dense trajectories [150]. The past few
years, architectures integrating detection and deep representation learning have been
leading [191, 67, 225, 88, 129, 221, 47], typically combining appearance and flow
streams [184, 106, 74, 81]. We follow this tradition.

The two-stream network was first introduced by Simonyan and Zisserman in [181].
Their convolutional architecture included a separate RGB-stream and a flow-stream,
which were combined by late fusion, for SVM-based action classification. In [54],
Feichtenhofer et al. investigated a number of ways to fuse the RGB and flow streams
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in order to best take advantage of their fused representation for action classification.
While we concentrate on action detection in the chapter, we are interested in RGB
and flow as well, but rather than combining the two streams in a late fusion, we prefer
a single stream.

Gkioxari and Malik [71] introduced a two-stream architecture with R-CNN detec-
tors in action detection. They fused features from the last layer of an RGB- and a flow-
stream, and then trained action specific SVM classifiers. A Viterbi algorithm [189] was
adopted to link the detection boxes per frame into a tube. Weinzaepfel et al. [216] also
used a two-stream R-CNN detector but replaced the linking by a tracking-by-detection
method. Both methods are not end-to-end trainable and restricted to trimmed videos.

End-to-end two-stream detectors based on faster-RCNN were proposed in [154,
172]. In [154], Peng and Schmid performed region of interest pooling and score fusion
to incorporate an RGB-stream and a flow-stream. In [88], Hou et al. extended 2D
region of interest pooling to 3D tube-of-interest pooling with 3D convolutions, which
directly generate tubelets for action detection. Singh et al. adopted a two-stream single-
shot-multibox detector (SSD)[136] for realizing real time detection in [184]. Singh et
al. [183] also introduced a transition matrix to generate a set of action proposals on
pairs of frames. Kalogeiton et al. [106] proposed to exploit temporal continuity by
taking as much as six frames as input for their single-shot multibox detector, leading
to state-of-the-art results. In this chapter, we take the single-shot multibox detector
network as our backbone, using single [184] or multiple [106] frames as input, but
rather than separating the streams for RGB and flow we introduce a single two-in-one
stream.

Li et al. [132] proposed an action detector using an LSTM architecture with
motion-based attention. Our two-in-one stream not only takes motion as attention,
which helps to locate actions, but also uses motion to modulate RGB features which
helps to better classify actions. Moreover, our method is easily embedded in existing
appearance- or two-stream action detection and classification networks.

4.3 Two-in-One Network
We define the RGB-stream network Drgb

θ trained on single frame for spatio-temporal
action detection as:

(Lrgb, Srgb) = Drgb
θ (Irgb) (4.1)

where Irgb ∈ RH×W×3 is a single RGB frame of height H and width W which is the
input for the network Drgb

θ . Lrgb ∈ RQ×4 and Srgb ∈ RQ×(P+1) are Q box locations
and corresponding box classification scores for P action classes and a background
class. θ represents the parameters of the learned network. Similarly, we define a
flow-stream network on single frame for spatio-temporal action detection as:

(Lo f , So f ) = Do f
θ (Io f ) (4.2)
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FIGURE 4.2: Two-in-one network architecture. The motion condi-
tion layer (pink cube) maps flow images to prior condition information.
The condition inputs to the motion modulation layer (purple cube) to
generate transformation parameters which are used to modulate RGB
features (Frgb). The network has half the computation and parameters
of a two-stream equivalent, while obtaining better action detection

accuracy.

Io f ∈ RH×W×2 is a single optical flow image with x and y components of the
velocity respectively in two channels. The two-stream method includes training the
two networks Drgb

θ and Do f
θ independently, and fuses the results (Lrgb, Srgb) and

(Lo f , So f ).
Motion condition layer. In our method, Io f is regarded as a motion map with

the same resolution as the corresponding RGB image Irgb. We take Io f as prior
information Ψ when applying an RGB-stream network Drgb

θ to estimate where and
what actions may occur. Then we formulate our two-in-one network as a condition
network:

(L↠, S↠) = D↠
θ (Irgb|Ψ)

= D↠
θ (Irgb|MC(Io f ))

(4.3)

Ψ = MC(Io f ) = MC((Io fx , Io fy)) (4.4)

↠ means two-in-one stream, MC(·) is a mapping function to generate simple fea-
tures from the flow images. So the two-in-one stream D↠

θ learns a model conditioned
on motion information by a motion condition layer.

Motion modulation layer. We introduce a motion modulation (M2) layer to
modify the features learned from RGB images. An M2 layer is able to influence the
appearance network by incorporating motion and weighting the action area. We first
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learn a pair of affine transformation parameters (β, γ) from the prior flow condition
Ψ by a function F : Ψ 7−→ (β, γ). Concretely, the two-in-one network is further
expressed as:

(β, γ) = F (Ψ),

(L↠, S↠) = D↠
θ (Irgb|β, γ)

(4.5)

In order to modulate the appearance network, we apply a transform function M2(·)
with the learned transformation parameters (β, γ) to the RGB features Frgb.

M2(Frgb) = β ⊙ Frgb + γ (4.6)

⊙ is an element-wise multiplication operation. The RGB feature maps Frgb has
the same dimensions with parameters β and γ. The flow information represented
by (β, γ) influences the appearance network by both feature-wise and spatial-wise
manipulations. The complete network with the motion condition layer and the motion
modulation layer is shown in Figure 4.2.

Network architecture. Due to sparsity of flow images, we adopt simple convolu-
tional layers to extract low-level motion condition information. 1 × 1 convolutional
layers attempt to keep the spatial pixel-wise motion vectors. The motion condition
then inputs to a motion modulation (M2) layer in which it is separately mapped
to a pair of transformation parameters β and γ. Two groups of 1 × 1 convolutional
layers are independently adopted for generating each of the parameters β and γ. The
low-level RGB features from the appearance network are adjusted by β and γ. The
motion modulation layer is capable to be added to any bottom layer of the appearance
network, including conv1, conv2, conv3 and conv4. All of them share the motion
condition layer. The whole network is end-to-end trainable.

Feature visualization. In order to intuitively understand the method, we show
the generated feature maps from the appearance network before and after modulation
by motion condition in Figure 4.3. We randomly select some feature maps from
the motion condition layer in the first row. The features are low-level and sparse,
which are taken as prior conditions. From the second row to the last row, we show
the corresponding scale (β) and shift (γ) maps generated from conditions, RGB
features without modulation and features modulated by β and γ. It is interesting to
see the difference between the features without and with modulation in Figure 4.3.
For example the modified features of the actor areas in feature maps 0 and 43, after
modulation, especially for the female ice skater, which is blended into the background
on the regular RGB stream. On the 28-th feature map, a feature response is even hard
to see on both actors before modulation. Feature maps 10 and 127 show the change in
x-direction features and y-direction features. The flow condition pushes the model to
focus on moving actors.

Training loss. In order to demonstrate the generalization and flexibility of the
proposed method, we embed the motion condition layer and the motion modulation
layer in a single-frame appearance stream and a multi-frame appearance stream. The
basic loss function is derived from the one for object detection [136, 162]. Defining
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FIGURE 4.3: Feature maps. Visualization of the motion condition
maps, scale maps, shift maps, RGB features without modulation and
features with modulation. The modulated features focus more on mov-

ing actors.

xp
ij = {1, 0} as an indicator for matching the i-th default box to the j-th ground truth

box of action category p. The overall loss function contains the localization (loc) loss
and the confidence (con f ) loss:

L(x, c, l, g) =
1
N
(Lloc(x, l, g) + Lcon f (x, c)) (4.7)

with N representing the number of matched default boxes. c represents multiple
classes confidences. l and g are the predicted box and the ground truth box.
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The confidence loss applies the softmax loss as below:

Lcon f (x, c) = −
N

∑
i∈Pos

xp
ijlog(ĉp

i )− ∑
i∈Neg

log(ĉ0
i )

ĉp
i =

exp(cp
i )

∑p exp(cp
i )

(4.8)

The localization loss applies a smooth L1 loss [69] between the predicted box and
the ground truth box. The network regresses to offsets for the center (cx, cy) of the
default box(d) and for its width (w) and height (h).

Lloc(x, l, g) =
N

∑
i∈Pos

∑
m∈{cx,cy,w,h}

xk
ijsmoothL1(lm
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(4.9)

For the multi-frame appearance stream, we follow Kalogeiton et al. [106] to train the
network.

Two-in-one two-stream. Our method emphasizes to utilize RGB and optical flow
information in one stream. Furthermore, it is possible to follow the standard practice
of two-stream action detection. We train a two-in-one detector conditioned on flow
images, and a separate flow detector which only takes as input the flow images. For
a single-frame two-in-one two-stream, we use average fusion method to merge the
results from each stream following [184]. And for multi-frame two-stream, the late
fusion [54] is a better choice [106].

Linking. Once the frame-level detections or tubelet detections are achieved, we
link them to build action tubes. We adopt the linking method described in [184] for
frame-level detections and the method in [106] for tubelet detections.

Code is available at https://github.com/jiaozizhao/Two-in-One-ActionDetection.

4.4 Experiments

4.4.1 Datasets, Metrics & Implementation
Datasets. We perform experiments on three action detection datasets. UCF101-
24 [187] is a subset of UCF101. It contains 24 sport classes in 3207 untrimmed
videos. Each video contains a single action category. Multiple action instances with
the same class, but different spatial and temporal boundaries may occur. We use the
revised annotations for UCF101-24 from [184]. UCF-Sports [166] contains 10 sport
classes in 150 trimmed videos. We follow [121] to divide the training and test splits.

https://github.com/jiaozizhao/Two-in-One-ActionDetection
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Action Detection Action Classification
Method mAP Efficiency Top1 Accuracy Efficiency

% sec/frame # param. (M) % sec/frame # param. (M)

flow-stream 11.60 0.04 26.82 81.65 1.10 58.35
RGB-stream 18.49 0.04 26.82 84.99 1.10 58.35
two-stream 19.79 0.09 53.64 91.14 2.10 116.70

two-in-one stream 20.15 0.04 26.93 86.94 1.15 58.48
two-in-one two stream 22.02 0.09 53.75 92.00 2.13 116.83

TABLE 4.1: Two-in-one vs. baselines for action detection on UCF101-
24 and action classification on UCF101. Two-in-one with motion mod-
ulation works well for both action detection and action classification.

J-HMDB [103] contains 21 action categories in 928 trimmed videos. We report the
average results on three splits.

Metrics. Following [186, 216, 172], we utilize video mean Average Precision
(mAP) to evaluate action detection accuracy. We calculate an average of per-frame
Intersection-over-Union (IoU) across time between tubes. A detection is correct if
it’s IoU with the ground truth tube is greater than a threshold and its action label is
correctly assigned. We compute the average precision for each class and report the
average over all classes.

Implementation. We adopt a real-time single shot multibox detector (SSD) net-
work [136] as the backbone. We insert the developed motion layers into two state-
of-the-art appearance SSD networks, one based on single frame [184] and the other
based on multiple frames [106]. We use VGG-16 pre-trained weights on ImageNet
as model initialization. The input size is 300x300 for both of them. We follow [106]
to use 6 continuous frames as input to the multi-frame SSD. The initial learning rate
is set to 0.001 for the single-frame network and 0.0001 for the multi-frame network
on all the three datasets and changed by applying step decay strategy. We trained a
flow-stream, an RGB-stream and our two-in-one stream for 13.2, 13.2 and 15.5 hours,
respectively.

Alternatively, we considered to use appearance information to modulate flow
stream. However, it does not work well. It appears difficult to modulate features from
flow images which are sparse, using RGB images which are more dense.

4.4.2 Ablation Study
All the ablation studies are performed on UCF101-24. We only report mAP at the
most challenging high IoU thresholds 0.5:0.95 (with step 0.05). Initially, in order to
maintain the spatial pixel-wise motion vectors, we apply 1x1 convolution kernels to
all layers in the motion condition layer and the motion modulation layer. We use layer
parameter stride to control the size of β and γ. Then the motion modulation layer is
applied to conv1 of SSD. Flow images are generated using the method in [14], which
we refer to as BroxFlow.
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FIGURE 4.4: Where to add the modulation layer? Accuracy on
UCF101-24 and # param. with varying: (a) single modulated layer, and
(b) multiple modulated layers. A single modulation layer at conv1 gets

the best result.

Two-in-one vs. baselines. We compare the two-in-one stream to its corresponding
RGB-stream, flow-stream and two-stream in Table 4.1. Runtime and # param. are
also reported for comparing the efficiency. Our single two-in-one stream exceeds a
single RGB-stream by 1.5%. Notably, two-in-one even outperforms the corresponding
two-stream with only half the computation cost and # param..

We also consider action classification, on UCF101. We follow [211], with ResNet152
as backbone. The Top 1 accuracy and efficiency shown in Table 4.1 illustrate our
strategy also works for action classification and generalizes beyond SSD with VGG16.
For training, our two-in-one stream converges at the 100-th epoch, but the RGB- and
flow-stream converge at 200-th and 300-th epoch, respectively. Our motion modulation
strategy works better for the detection task, which needs localization representations
that are translation-variant, compared to the classification task which favors translation
invariance.

Where to add the modulation layer? The motion condition layer is leveraged to
generate low-level motion features as flow images are more sparse. We add the motion
modulation layer to the bottom convolutional layers with low-level RGB features.
We conduct two experiments on which layer to add the modulation. We compare
the accuracy and # param. after applying a modulation layer to conv1, conv2, conv3
and conv4 in Figure 4.4 (a). Accuracy decreases and # param. increases slightly for
deeper layers. Next we add the modulation layers to multiple convolutional layers
simultaneously in Figure 4.4 (b). Applying multiple modulation layers does not change
the results much. Thus, we prefer to use a single modulation layer. Note that accuracy
drops for deeper layers as we use 1x1 convolution kernels to process flow images,
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of the motion condition layer. The 3x3 conv performs better.

RGB image Brox-flow Flownet RealTimeFlowRGB image BroxFlow FlowNet RealTimeFlow
FIGURE 4.6: What flow? Examples of flow images generated by

different flow methods.

leading to smaller receptive field for deeper layers.
How to design the condition layer? To further improve the method, we consider

whether the 1x1 convolution kernel for the motion condition layer is the best choice.
Besides keeping the spatial pixel-wise motion, it may need to consider some context
of motion to better fit the RGB features. We adopt the 3x3 convolution kernels to the
last layer of the condition network. Figure 4.5 demonstrates that considering motion
context boosts the accuracy for all layers. As a bigger receptive field is used, the
conv2 model achieves the best results, about 1.5% improvement compared to 1x1
convolution kernels. The run time hardly increases for deeper layers, and is still 0.04
sec per frame. The # param. are 26.85, 26.92, 27.01 and 27.19 M respectively of
conv1, conv2, conv3 and conv4. Considering the trade-off between the results and
parameters, we believe conv2 provides the best accuracy/efficiency trade-off.

What flow? As we leverage flow information as prior conditions, we wonder how
the model is influenced by flow images. Here we adopt flow images generated by
three different methods (seen in Figure 4.6) and evaluate how our strategies work.
We use BroxFlow [14] (accurate flow method), Flownet [46] (deep network method)
and a real-time but less accurate optical flow method [118] (RealTimeFlow). From
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BroxFlow FlowNet RealTimeFlow

flow-stream 11.60 7.13 3.58
RGB-stream 18.49 18.49 18.49
two-stream 19.79 19.75 18.53
two-in-one stream 21.51 19.97 19.16

TABLE 4.2: What flow? No matter what flow images are applied on
UCF101-24, our two-in-one stream outperforms the corresponding
flow-, RGB- and two-stream. We obtain the best result with BroxFlow.

  

0 5 10 15 20
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FIGURE 4.7: Generalization ability. Accuracy comparison on: (a)
UCF101-24, (b) UCFSports, (c) J-HMDB, with different methods.
Two-in-one stream even outperforms two-stream on UCF101-24 and
UCFSports. Two-in-one stream fused with a flow-stream obtains the

best accuracy on all three datasets.

Table 5.4, it is concluded that no matter which kind of flow images are applied,
our two-in-one stream outperforms RGB-streams and corresponding two-streams.
We also note that the more accurate the flow images, the more improvement the
two-in-one stream obtains. Even when using the somewhat noisy RealTimeFlow
images, the two-in-one stream still improves the RGB-stream. However, a two-stream
based on RealTimeFlow obtains almost the same accuracy as the RGB-stream, which
illustrates that two-stream depends on the the quality of flow images. Our two-in-one
stream is more robust to the quality of flow images. Moreover, we report the flow
computation in seconds/frame for the three kinds of flow methods: BroxFlow (0.098),
FlowNet (0.183) and RealTimeFlow (0.014). RealTimeFlow only needs 0.014 seconds
to generate one flow image, at the expense of a slightly lower mAP.

Generalization ability. To stress the generalization ability of our proposal, we
compare the results on three different datasets. Following the conclusions of our
ablation so far, we use the BroxFlow image for generating condition and apply a 3x3
kernel to the last layer of the motion condition layer. The motion modulation layer
is only leveraged for the conv2 layer of the appearance stream. We report results in
Figure 4.7.

Obviously, the proposed two-in-one stream performs better than other one-stream
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networks. It is noteworthy that our two-in-one stream even outperforms traditional two-
stream networks on UCF101-24 and UCFSport by 2% with only half the parameters
of a two-stream network. On J-HMDB, two-in-one is 3% higher than RGB-stream but
3% lower than two-stream. We look into J-HMDB and find that most videos in the
dataset have neighbouring repeated frames. For fair comparison, we just download
the BroxFlow images used in [184, 106]. However, the provided BroxFlow image
between the two repeated RGB frames is not 0, as it should be, but similar to the
last flow frame. The issue affects our two-in-one stream due to the fact that we need
correct flow image as the condition of the corresponding RGB frame. We expect that
two-in-one will present better results on J-HMDB after correcting the flow images.
As expected, adding a separate flow-stream to our two-in-one stream gives the best
accuracy on all datasets.

4.4.3 Qualitative Analysis
The motion condition layer and the motion modulation layer are beneficial to generate
better video representations for spatio-temporal action detection. But how do the
layers make a difference to the appearance network? To understand this behavior, we
visualize in Figure 4.8, the detection results of an RGB-stream network and a two-in-
one network. Also, we visualize the gradient-weighted class activation heatmaps [247]
for better understanding how the motion conditions influence the behavior of the
appearance network. We choose a challenging case of cliff diving here. The image
resolution is low and the actor is quite tiny. The cluttered background obviously
increases the difficulty to detect actions. We manually overlay green dashed boxes
to indicate the locations of the actor and zoom in to highlight where the action is
happening. The second row shows that the RGB-stream fails to detect any actions.
From the corresponding heatmaps, it is apparent that the appearance network pays
more attention to the background than to the actions. There are only weak responses on
the action positions. We manually overlay red dashed boxes to highlight the position
of the actor on the heatmaps. From the heatmaps for the two-in-one network in the last
row, we clearly see it is capable to balance the activation on actions and background.
The responses on action positions are strengthened. As expected, the two-in-one
stream performs better than the RGB-stream. It outputs correct detections for cliff
diving on all the frames (forth row ).

4.4.4 Comparison to the State-of-the-art
Accuracy. For fair comparisons, we just use the original images as in all the state-of-
the-arts, without camera motion removal. We compare the mAP at variable IoU
thresholds in Table 4.3. Considering the most challenging high IoU thresholds
0.5:0.95, we observe that for the single-frame setting, our two-in-one stream achieves
even better results than existing two-stream methods on UCF101-24 and UCFSports.
For instance, two-in-one stream outperforms Singh et al. [184] with the same SSD
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CliffDiving 0.785 CliffDiving 0.716 CliffDiving 0.711

(a) RGBstream  Results: no detections (confidence scores < 0.5)

 

(b) RGBstream  Heatmaps: low activation on actor

(c) Twoinone   Results: correct detections (cliff diving scores > 0.5)
         

(d) Twoinone   Heatmaps: high activation on actor

FIGURE 4.8: Visualization of detection and heatmaps on conv4
layers from RGB-stream network in (a) (b) and two-in-one stream
network in (c) (d). We add the green dashed boxes to indicate the action.
The two-in-one stream has higher activation on actions, resulting in

correct detection.

detector by more than 1% and Peng and Schmid [154] with a Faster-RCNN detector
by an absolute 12% on UCF101-24. As analyzed previously, two-in-one stream per-
forms modest on J-HMDB because of the data issue of the provided BroxFlow images.
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FIGURE 4.9: Efficiency comparison to the state-of-the-art. Accu-
racy vs. (a) inference time (second per frame) and (b) # param. (M)
on UCF101-24. Our two-in-one stream best balances accuracy and

efficiency.

When we combine two-in-one into a regular two-stream network by fusing with a
flow-stream, it produces good results on all three datasets. Compared to two-in-one
stream, it gets about 5% improvement on J-HMDB. Moreover, when feeding our two-
in-one network variants with multiple frames, as suggested by Kalogeiton et al. [106],
our two-in-one stream outperforms the two-stream [106] a little on UCF101-24 and
UCFSports with only half computation and the number of parameters. Our two-in-one
stream fused with a flow stream further boosts the results, outperforming the very
recent work of Singh et al. [183].

Efficiency. Besides good detection accuracy, our method has the advantage of a
reduced inference time and less # param.. Here we compare our methods from the
efficiency aspect to the state-of-the-art on UCF101-24. We test our models on one
NVIDIA GTX 1080 GPU. The trade-off between accuracy and inference time, as
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well as parameters are visualized in Figure 4.9. Among the single-frame methods,
our two-in-one stream has the fastest run time with 0.04s per frame, two times faster
than [8] and [184] and much faster than [172] and [154] (about 0.5s per frame).
Moreover, the # param. of our two-in-one stream is smallest, about 26.93 M. While
our two-in-one accuracy is even better than the two-stream methods by [8, 172, 154,
184]. Combining our two-in-one stream with a standard flow-stream gains an accuracy
improvement at the expense of more computation and parameters. Our two-in-one
alternative even outperforms [106] a little in accuracy with only half the parameters.
The two-in-one two stream further improves the result with almost similar inference
time, but slightly more parameters. We conclude that two-in-one stream networks
provide a good accuracy/efficiency trade-off.

4.5 Conclusion
We propose an effective and efficient two-in-one stream network for spatio-temporal
action detection. It takes flow images as prior motion condition when training an
RGB-stream network. The network’s motion condition layer and motion modulation
layer address two issues in action detection: frame-level RGB images lack motion
information and (static) background-context may dominant the learned representation.
Our two-in-one stream achieves state-of-the-art accuracy at high IoU thresholds,
using only half of the parameters and computation of two-stream alternatives. Besides
motion, we believe that other information such as depth-maps or infrared images may
help locate the actors, and can be exploited as additional prior conditions for training
two-in-one streams.
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Chapter 5

Go with the Flow: Aligned 3D
Convolutions for Action Recognition

5.1 Introduction
Models for video tasks such as action classification and detection, need to learn how
to represent space and time. The classical two-stream regime [181, 54] achieves good
accuracy at the expense of optical flow pre-computation, a duplicated learning effort,
and double memory consumption. Instead, the 3D convolution [104, 202] is a compact
design for considering the time dimension. However, without considering the object
dislocations between successive frames, it gathers the information from the same
spatial locations along the time dimension. As shown in Figure 5.1 (a), the existing
3D convolution may not integrate valuable information from the moving parts. In this
chapter, we propose aligned 3D convolutions (Figure 5.1 (b-d)) to address the issue by
calibrating feature points and collecting motion information for action classification.

We are inspired by the idea of dense trajectories [209] that are local space-time
features for action recognition. Specifically, the idea is to densely sample feature
points in each frame, which are described by multiple hand-crafted features including
HOG [35], HOF [122] and MBH [36], and track them in a video using optical
flow. Thanks to the big success of deep convolutions, Wang et al. [210] improve
the method by extracting deep features instead of hand-crafted features. Recently,
Zhao et al. [245] propose a 1D trajectory convolution to aggregate the features
from 2D convolutions along the trajectories represented by optical flow. All these
existing methods require pre-computed dense trajectories and/or optical flow. We
propose aligned 3D convolutions, which learn spatial offsets to match feature points
between successive frames, only driven by the action classification task. Furthermore,
stimulated by merits of the deformable convolution [33] for static images, we develop a
generalized point-to-point aligned convolution with enhanced transformation abilities
capable to learn finer motion representations from videos.

We make the following contributions in this chapter. We design three variants of
aligned 3D convolutions for generating motion representations. The patch-to-patch
convolution is able to maintain local consistency. The patch-to-point convolution is
lighter and requires less computation. The point-to-point convolution is capable to
handle the geometric transformation of moving objects. We rethink how the length
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Vanilla 3D convolution

Point-to-Point Aligned 
3D convolution

(a) (b)

(c) (d)

Patch-to-Point Aligned 
3D convolution

Patch-to-Patch Aligned 
3D convolution

FIGURE 5.1: Aligned 3D convolutions. (a) Vanilla 3D convolution
has a receptive field corresponding to a regular cubic grid. (b) Patch-to-
patch aligned 3D convolution calibrates the centers of spatial receptive
windows between successive frames. (c) Patch-to-point aligned 3D
convolution has independent offsets for each spatial location in the
local window. (d) Point-to-point aligned 3D convolution tracks the
deformed features on each successive frame. Different filling colors of
the points represent different spatial positions and edge colors of the

points represent different temporal positions.

and sampling rate of inputs to a 3D network affect the action classification accuracy.
The proposed aligned convolutions maintain good performance on low-frame-rate
videos. We observe the learned offsets contain motion information, which makes us
develop a dual learning strategy to mimic the two-stream regime without the need to
pre-compute optical flow. The aligned 3D convolution blocks are easy to embed into
many existing backbones.

5.2 Related Work
Action recognition using 3D convolution variants. The 3D convolution [6, 104]
is a natural solution for action analysis as it is able to model appearance and motion
information simultaneously. Tran et al. [202] proposed the C3D network to learn
spatio-temporal features on large-scale training datasets and revealed 3D ConvNet
outperformed 2D ConvNet. Carreira and Zisserman [21] introduced I3D based on
2D ConvNet inflation to copy the success of ImageNet training. Following these,
both [201] and [221] observed factorizing the 3D convolutional filters into a 2D
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spatial convolution and a 1D temporal convolution yielded significant gains in ac-
curacy. For efficient action recognition, Zolfaghari et al. [249] proposed to employ
3D convolutions on top layers only and Lin et al. [133] developed a temporal shift
module inserted to 2D convolutions to mimic 3D convolutions. We develop aligned
3D convolutions to learn more precise motion information.

Action recognition using trajectories. As a powerful motion modeling, trajectory
was leveraged to improve action recognition in many previous works [145, 192, 209,
208, 210, 245]. Sun et al. [192] modeled the spatio-temporal context information
residing with the SIFT-based trajectories of sparse salient points. Wang et al. [209]
extracted hand-crafted features aligned with the trajectories to characterize shape,
appearance and motion. They stated dense trajectories guaranteed better performance
than sparse sampling. Furthermore, in [208] the authors further improved the dense
trajectories by taking into account camera-motion compensation. In [210], Wang et al.
utilized trajectories to pool and integrate off-the-shelf deep features.

In order to learn better representations in conjunction with feature tracking, Zhao et
al. [245] proposed a trajectory convolution to trace the features extracted from 2D con-
volutions along the trajectories represented by pre-computed optical flow. They also
combined a dense flow prediction network jointed trained with the action classification.
Compared to the previous trajectory-based methods, it built an end-to-end learning.
There are still two limitations: It required supervision from optical flow; Both forward-
and backward-optical flow needs to be computed. Thus, all the trajectories-based
methods suffer from a heavy computation and memory requirement. Our aligned
convolutions automatically learn offsets between successive frames. It is driven only
by the classification task, without the need for any pre-computed optical flow or
optical flow supervision.

Action recognition without optical flow. Optical flow is helpful for action anal-
ysis, as demonstrated by the successful two-stream regime [181, 211, 240]. How-
ever, the requirement of optical flow pre-computation makes action recognition less
practical. Some works [213, 26, 231, 93] focus on learning to capture long range
dependencies from RGB inputs only. Both [190] and [32] train a network from RGB
inputs, while distilling knowledge from a network that recognized actions from optical
flow. In this way, inference only needs RGB inputs, but training still requires optical
flow. Feichtenhofer et al. [55] observed the 3D convolution focused more on spatial
semantics than temporal information on low frame-rate videos. Hence, they proposed
two separate pathways for semantic and temporal information. We prefer to redesign
the 3D convolution to address the inability of 3D convolutions to capture motion
changes.

5.3 Aligned 3D Convolution Blocks
We consider a 3D convolution with temporal kernel size equaling 3 and an arbitrary
spatial kernel size. We define F (∈ RC×T×H×W) as input feature maps with temporal
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dimension T. C denotes the number of channels, and H and W denote the spatial di-
mensions. An aligned 3D convolution block contains two modules. First, it utilizes the
correlation between successive temporal feature maps to learn robust displacements of
the feature points. Second, it applies the displacements to rectify the spatial locations
for convolution. Intuitively, the aligned 3D convolution block is able to better utilize
the inherent motion in videos. The details of the building block are visualized in
Figure 5.1 and discussed next.

5.3.1 Generating Offsets
The key idea of the aligned 3D convolution block is to automatically generate feature
offsets for each spatial position between successive temporal feature maps. As shown
in Figure 5.1, we take a 3D convolution kernel with size of 3 × 3 × 3 as an example.
Ft, Ft−1 and Ft+1 (∈ RC×H×W) are feature slices in F at the t-th, t− 1-th and t+ 1-th
time steps.

Concatenation features. In Figure 5.1 (a), we naively concatenate the three
successive feature slices along the time dimension and then use a 2D convolution to
produce the spatial offsets among them. The generated offsets ∆ includes backward
offsets ∆t,t−1 ∈ R2×H×W between Ft, Ft−1 and forward offsets ∆t,t+1 ∈ R2×H×W

between Ft, Ft+1. Intuitively, this way is insufficient to explore relationships between
successive temporal features due to absence of frame interactions. Instead, we use
correlation features [46], which were previously successful for tracking [10] and
optical flow estimation [95].

Correlation features. Inspired by [46], correlation operations are used to match
feature points between successive frames. Taking the forward process as an example,
we calculate the correlation features between Ft and Ft+1. The forward offsets are
produced from the concatenation of the correlation features and Ft. In a similar fashion
we obtain the backward offsets between Ft and Ft−1. The aligned 3D convolution
block based on correlation features is illustrated in Figure 5.1 (b). Specifically, the
correlation operation performs point-wise feature comparisons of two feature maps.
Considering that the displacements between two frames are not too large, we restrict
the correlation in a local square window [−d, d]. Compared to considering all possible
circular shifts in a feature map, this reduces the computation and output dimensionality.
It also avoids matching features at large distance. Equation 5.1 shows a correlation of
two feature maps Ft and Ft+1 with largest displacement d.

Fcorr
t,t+1(i, j, p, q) = ⟨Ft(i, j), Ft+1(i + p, j + q)⟩ (5.1)

Where −d < p < d and −d < q < d. Each location (i, j) on Ft will be
compared to all locations in a neighborhood [−d, d] centered at (i, j) on Ft+1. Thus,
the correlation feature has (2d + 1)× (2d + 1) channels.
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5.3.2 Aligning Features
After acquiring the offsets between successive temporal feature maps, we use them to
rectify the locations before a convolutional operation. The vanilla 3D convolution with
kernel size (2τ + 1)× (2ρ + 1)× (2σ + 1) calculates the feature on each spacetime
position (t, x, y) ∈ [0, T)× [0, H)× [0, W) as:

Ot,x,y =
τ

∑
dt=−τ

ρ

∑
dx=−ρ

σ

∑
dy=−σ

wdt,dx,dy · Fdt,dx,dy
t,x,y . (5.2)

where wdt,dx,dy are the 3D convolution weights. As shown in Figure 5.1 (a), the
information is integrated from the same spatial locations on the successive feature
maps. In order to gather information from related locations on the successive feature
maps, we introduce the aligned convolutions with a general expression as:

Ot,x,y =
τ

∑
dt=−τ

ρ

∑
dx=−ρ

σ

∑
dy=−σ

wdt,dx,dy · Fdt,dx+∆x,dy+∆y

t,x,y . (5.3)

Where ∆x and ∆y are spatial offsets between Ft and Ft+dt along the x−direction
and y−direction. They have variable expressions for different version of the aligned
convolution.

Patch-to-patch aligned convolution. We first define a patch-to-patch aligned 3D
convolution. The ∆x and ∆y in Equation 5.3 are:

∆x = ∆t,t+dt(x), ∆y = ∆t,t+dt(y). (5.4)

For dt = 0, ∆t,t means the offsets between Ft and Ft, are zeros. As shown in Figure 5.1
(b), the receptive fields of a (2ρ + 1) × (2σ + 1) spatial kernel share the same
offsets produced on center position (x, y). As the learned offsets are real-values,
we apply bilinear interpolation to calculate the features on the fractional location
(x, y) +∆t,t+dt(x, y) of Ft+dt. The patch-to-patch aligned convolution helps maintain
local structures but at the expense of additional computation. It needs to perform
(2ρ + 1)× (2σ + 1) bilinear interpolations for each position (x, y).

Patch-to-point aligned convolution. In order to reduce the computation of the
patch-to-patch aligned convolution, we propose a patch-to-point aligned convolution
by replacing ∆x and ∆y in Equation 5.3 as:

∆x = ∆t,t+dt(dx), ∆y = ∆t,t+dt(dy). (5.5)

In this way, each position in the spatial window (2ρ + 1)× (2σ + 1) can use its own
offsets recorded in ∆ when the 3D convolution is performed on (x, y). It is reasonable,
as the local structures do not change much between two neighboring frames. As a
result, it only needs one bilinear interpolation on (x, y). Hence, there is a 88.8%
computation reduction compared to the patch-to-patch aligned convolution. We show
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patch-to-point aligned convolution in Figure 5.1 (c) and Figure 5.1 (c).
Relation with existing work. It is of interest to note the implementation of our

aligned convolution can be partially borrowed from the 2D deformable convolu-
tion [33], even though the two methods have different motivation. The 2D deformable
convolution was designed to enhance the transformation modeling capacity of a con-
volution operation. However, the 3D aligned convolution focuses on tracking temporal
information in videos. Specifically, the 2D deformable convolution yields the output
features on spatial location (x, y):

Ox,y =
ρ

∑
dx=−ρ

σ

∑
dy=−σ

wdx,dy · Fdx+∆2D(dx),dy+∆2D(dy)
x,y . (5.6)

Where ∆2D ∈ R2×(2ρ+1)×(2σ+1)×H×W are the generated offsets used to augment a
regular grid covered by a normal 2D convolution.

Furthermore, a 3D deformable convolution can be extended from Equation 5.6.
However, it was found to be ineffective for action recognition in [245]. Instead, they
use a 2D normal convolution plus a 1D trajectory convolution to process videos:

1D : Ot,x,y =
τ

∑
dt=−τ

wdt · F
dt,dx+∆′

t,t+dt(x),dy+∆′
t,t+dt(y)

t,x,y (5.7)

Where ∆′
t,t+dt are the spatial offsets represented by optical flow. For each frame, both

forward and backward optical flow are needed, which requires heavy pre-computation.
Our aligned convolution automatically learn the offsets from the task objective, e.g.
action classification, without any optical flow supervision. Besides, from all the
equations above, one can clearly see the difference between our methods and the
existing work.

Point-to-point aligned convolution. Enlightened from the deformable spirit, we
further propose a point-to-point aligned convolution. The deformed features of the
successive frames are calibrated by the aligned convolution (as shown in Figure 5.1
(d)). Specifically, ∆x and ∆y in Equation 5.3 are expressed as:

∆x = ∆t(dx) + ∆t,t+dt(dx)
∆y = ∆t(dy) + ∆t,t+dt(dy).

(5.8)

Where ∆t are the irregular sampling locations on Ft. It is a generalized case of
the patch-to-point aligned convolution, where all ∆t are zeros. With the enhanced
transformation ability, the point-to-point aligned convolution is able to gather finer
motion information.



76 Chapter 5. Go with the Flow: Aligned 3D Convolutions for Action Recognition

fc fcac

aligned 3D-Resnet18

fc
∆

aligned 3D-Resnet18

ac

ac

res resres
fc

aligned convolution
residual Layer
fc Layer

P# $#

$%

(a) (b)

FIGURE 5.2: Dual learning. (a) The normal learning structure only
provides predictions from the main branch. (b) The dual learning

structure also provides predictions from the offset branch.

5.3.3 Dual Learning with Offsets
It is known that motion is important for action classification. Most previous works [211,
54] utilize pre-computed optical flow in a two-stream training regime [181]. Our
learned offsets between successive feature maps capture motion information as shown
in Figure 5.5 (e). We explore how much the learned offsets can contribute to action
classification. Besides the normal learning shown in Figure 5.2 (a), we also introduce a
dual learning strategy as shown in Figure 5.2 (b) to learn the same action classification
task simultaneously. One learning takes the predictions P1 from the main branch and
the other takes the predictions P2 from the offset branch. The total loss is:

Ltotal = L1(P1, Y) + L2(P2, Y). (5.9)

where L1(·) and L2(·) represent the softmax Cross Entropy Loss. Y denotes the
label.

5.4 Experiments

5.4.1 Implementation
Datasets. We perform our experiments on three action classification datasets. UCF101
[187] includes 13,320 videos in 101 classes and has three train/test splits. We report
on split1 for our ablation studies. HMDB51 [119] contains 6,766 video clips from
51 action categories. Three train/test splits are provided. Kinetics400 [107] consists
of 400 categories. Because of the expiration of some YouTube links, we can only
download 234,4910 out of 246,535 videos for training and 19,328 for validation. The
top-1 and top-5 accuracy are reported.
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top-1 top-5

3D baseline 47.59 69.59
Trajectory convolution [245] 49.60 73.29

Patch-to-patch aligned convolution 49.76 75.99
Patch-to-point aligned convolution 48.76 72.26
Point-to-point aligned convolution 51.37 74.83

TABLE 5.2: Aligned vs. Vanilla 3D convolution. The aligned convolu-
tions perform better than the vanilla 3D convolution on UCF101. Note
that the trajectory convolution requires pre-computed optical flow for

its alignment.

Training and testing. In order to demonstrate the effectiveness of our strategies,
we chose a simple and light 3D-Resnet18 [82] backbone, without any bells and whis-
tles. When training, we perform a 112 × 112 multi-scale crop for each frame [211].
We apply the same training and testing regimes as in [78]. For ablation studies on
UCF101 split1, the network is trained from scratch with an initial learning rate of 0.1,
which is reduced by 0.1 after the validation loss saturates. On Kinetics400, the training
process takes 150 epochs with the initial learning rate of 0.01 and batch size of 64.
For HMDB51, the network is initialized by a pre-trained mondel on Kinetics400. For
testing, the frames are rescaled and then center cropped to 112 × 112. We take every
16 frames as an input sequence and average the scores of all short sequences to get
the final score for one video. The code and models will be released.

5.4.2 Ablation Studies
Aligned vs. Vanilla 3D convolution. We replace the normal 3D convolutions in the
first residual block, res2, with the aligned 3D convolution blocks using correlation
features. Input length is 16. We also compare with the trajectory convolution proposed
in [245]. For the trajectory convolution, we pre-compute forward and backward
optical flow using FlowNet2 [95] and take them as the offsets between successive
frames. The results are shown in Table C.1. All the aligned convolution variants
perform better than the vanilla 3D convolution. The patch-to-patch and point-to-point
aligned convolution are even better than the trajectory convolution. Due to their
mechanism of automatically learning offsets, aligned convolution blocks, without
using pre-computed optical flow, are more effective and practical.

Correlation vs. Concatenation. Intuitively, learning more precise offsets between
successive frames improves the alignment. In Figure 5.3, we compare two ways to
generate the offsets. Aligned convolutions are applied to the first residual block res2
and input length is 32. All aligned convolution methods outperform the baseline.
Using correlation features to produce offsets improves the accuracy more than using
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FIGURE 5.3: Correlation vs. Concatenation. For aligned convolution
blocks generating offsets from correlation features is more effective

than concatenation features on UCF101.

FIGURE 5.4: Where to apply aligned convolution? Adding the
aligned convolution blocks to bottom layers gives better performance

on UCF101.

concatenation features. It is predicable as the correlation operation models the rela-
tionship between successive frames better. Unless specified, otherwise, correlation
features are utilized in all the following experiments.

Where to apply aligned convolution? We plug aligned convolution blocks into
different residual layers res2, res3 and res4. Each residual layer has two blocks. We
conduct experiments using the patch-to-point aligned convolution which is the lightest
version and the point-to-point aligned convolution which is the generalized version.
Clips length is 32. Seen from Figure 5.4, res2 is the best layer to add the patch-to-
point aligned convolution. It is reasonable as finer matching is performed on bottom
layers. The point-to-point aligned convolution gets highest top-1 accuracy at the layer
res3. Applying the aligned convolution to top layer decreases the improvement. We
recommend to add the aligned convolution to res2.

Impact of input length and sampling rate. The input length and video sampling
rate decide how much temporal information in one training sample is seen by a
network, which affects action classification accuracy. Intuitively, the longer and
denser the input is, the better the performance may be. However, a network can only
process limited data per iteration. Thus, it is interesting to seek a balance between the
input length and sampling rate. In Table B.2, we present results of using inputs with
different length × sampling rate. For example, 16 × 2 means the input length is 16
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(a) Vanilla 3D: Res2.0.conv1 (b) Patch-to-point: Res2.0.conv1

(e) Input sequence

(c) Vanilla 3D: Res2.0.conv2

(f) Patch-to-point: Res2.0.conv2.offsets

(d) Patch-to-point: Res2.0.conv2

FIGURE 5.5: Feature visualization. The feature maps of res2.0.conv1
and res2.0.conv2 are compared between the vanilla 3D convolution
((a) and (c)) and the patch-to-point aligned 3D convolution ((b) and
(d)). (e) shows the input sequence. The learned offsets are shown in (f).
The patch-to-point aligned convolution makes the model focus more

on actions.

but it covers 32 frames in the raw view. Besides, a random sampling from [249] is
also applied. In this way, the video is split into N subsections of equal length. And
in each subsection, exactly one frame is sampled randomly. As a result, totally N
frames are taken as input. We use N-rand to represent this sampling. Here, just the
patch-to-point aligned convolution is compared.

From Table B.2, it is concluded that: (1) With the same sampling rate, a longer
input performs better for both the normal 3D convolution and the aligned 3D con-
volution. It is not surprising as longer input brings more temporal information. (2)
However, with a same input length, a bigger sampling rate may not be beneficial
to normal 3D convolution although it also covers a longer temporal view. For in-
stance, inputs 16 × 2 and 16 × 4 for normal 3D convolution network obtain worse
results than 16 × 1. We suppose there are two reasons. A big sampling rate not only
means a longer temporal window but also losing details as the displacements between
successive frames are larger. The normal 3D convolution is unable to handle them
well. In contrast, due to the function of matching features, the aligned convolution
suffers less from these issues. The patch-to-point aligned convolution achieves a
top-1 accuracy of 48.76%, 49.05% and 50.09% respectively when input are 16 × 1,
16 × 2 and 16 × 4. (3) With the same temporal view, a bigger sampling rate reduces
the accuracy of both the two convolutions. It is expected as temporal information
becomes sparse and displacements becomes larger. For the patch-to-point aligned
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Resnet18 Resnet50 I3D

3D baseline 56.11 62.72 79.96
Patch-to-point 58.34 65.07 81.36

TABLE 5.4: Generalization on backbones. top-1 accuracy compar-
isons using different backbones. All models are trained from Ima-
geNet pretrained models. The aligned convolutions performs better on

UCF101.

convolution, it is influenced more than the normal 3D convolutions. For example, for
inputs 64 × 1 and 32 × 2, there is 8.54% decrease of top-1 accuracy using the aligned
convolution compared to 4.39% decrease using normal convolution. We infer that
the aligned convolution has a tolerance of the dislocations between two frames. (4)
Another interesting point is that input with 32-rand outperforms 32 × 1 and 32 × 2. It
is because this random sampling covers a whole video even with uncertain displace-
ments between successive frames. It can be concluded that the length of temporal
information is more important than the density of temporal information for action
classification. Moreover, N-rand sampling leads to much faster testing. (6) Whatever
the input, the patch-to-point aligned convolution leads to obvious improvements from
what is shown in the last row. Taking input 64 × 1, it even increases 11.87% with
regard to top-1 accuracy. We believe the proposed aligned convolution is capable to
capture long-range dependencies.

Generalization on backbones. The aligned convolution blocks are easy to plug
into many existing backbones. We report the top-1 accuracy on UCF101 split1 using
Resnet18, Resnet50 and I3D [21] in Table 5.4. Resnet18 takes as input 16 frames
and the two others take as input 32 frames. All the model weights are initialized with
ImageNet [40] pre-trained models in the way introduced in [21]. Seen from Table 5.4,
the patch-to-point aligned convolution works better than vanilla 3D convolution in
any backbone.

5.4.3 Analysis
Feature visualization. By visualizing the feature maps from the learned models, it
is clear to see how the aligned convolution influences the behavior of the network.
One example of ’boxing speed bag’ is shown in Figure 5.5, where (e) presents the
input sequences and (a) and (c) respectively show the feature maps of the layer
res2.0.conv1 and res2.0.conv2 of the vanilla 3D network. There is high activation
on the background. When replacing a normal 3D convolution by the patch-to-point
aligned convolution for res2.0.conv2, the network focuses more on the moving objects,
which is shown in (d). Moreover, this effect will improves the whole network and
implies the network learns better features, like feature maps of res2.0.conv1 in (b).
We also visualize the learned offsets in (f). Different with optical flow, the offset is a
feature-level representation. We can see the activation for moving objects, especially
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top-1 top-5

normal learning
3D baseline (P1) 48.57 71.87
Patch-to-point (P1) 52.25 74.17

dual learning
Patch-to-point (P1) 52.91 76.06
Patch-to-point (P2) 50.45 76.10
Patch-to-point (P1 + P2) 54.63 78.16

TABLE 5.6: Learning from offsets. Result comparisons of normal
learning and the dual learning. Dual learning helps to further improve

the performance on UCF101.

for the edges of the objects. We utilize the offsets in a dual learning to further improve
action classification.

Result analysis. For further evaluation, the top-1 accuracies for each class of
UCF101 are considered. In Figure 5.5, we show how much the aligned convolution
improves per class compared to the normal 3D convolution. The input length is 64.
The largest improvement happening on ‘pull up’ is even about 60%. For some speedy
actions like ‘juggling balls’ and ‘boxing speed bag’, which have large movements,
the aligned convolution aids recognition. For the actions with modest motion such as
‘playing piano’ and ‘cutting in kitchen’, the aligned convolution performs on par with
the vanilla 3D convolution. If the actors are tiny, like in ‘cricket bowling’ and ‘field
hockey penalty’ shown in the figure, the aligned convolution may not work well. It is
observed that the aligned convolution obtains improvements for about 73% of 101
classes, equal performance on very few classes and worse performance on 20% of the
classes. Its gains on fast actions profit from the function of tracing changes.

5.4.4 Learning from Offsets
From the offset feature maps shown in Figure 5.5 (e), it is expected the offsets resemble
a feature-level motion representations. Hence, the offsets could help to further improve
action classification. As described in Section 3.3, we train a network taking as input
32 frames using our dual learning strategy. The results are illustrated in Table 5.6. It is
interesting that dual learning even improves the predictions P1 from the main branch,
with 0.66% of top-1 and 1.99% of top-5 gains. We guess the dual learning helps to
learn more precise offsets. The predictions P2 from the offset branch obtains good
results, even better than the 3D baseline. It supports our statement that the learned
offsets contain valuable information. Moreover, combining P1 and P2 brings further
improvements. It illustrates that the offset branch learns additional motion information
which are not captured by the main branch.
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Kinetics400 UCF101 HMDB51

top-1 top-5 top-1 top-5 top-1 top-5

Hara et al. [78] 54.2 78.1 84.4 - 56.4 -
3D baseline 62.2 84.2 88.0 98.6 63.3 90.2
Patch-to-point 64.2 87.3 90.8 99.3 65.7 91.9

TABLE 5.7: Action classification on Kinetics400, UCF101 and
HMDB51. The models for UCF101 and HMDB51 are initialized by a
pre-trained model on Kinetics. The patch-to-point aligned convolution

achieves better results.

5.4.5 Do We Have the State-of-the-art?
Action classification. Recently, pursuing the state-of-the-art on a huge video dataset
like Kinetics400, has become a battle of computation power. It all depends on the
availability of multiple GPUs, deeper networks, bigger input length, larger batch size,
and pre-computed optical flow. Limited by GPU usage, we only adopt a lighter network
Resnet18 with the patch-to-point aligned convolution on res2 for fast training. The
input is 16× 112× 112 and batch size is set to 64. For fair apple-to-apple comparisons,
the results of [78] with the identical settings are reported in Table 5.7. Only RGB
images are used. We are well aware that some recent works [21, 213, 55, 32, 105, 143,
245] achieved higher accuracy in the range of 72.0%-78.0% on the Kinetics validation
set. However, all of them adopted deeper networks e.g. Resnet50 or Resnet101. They
used 32× 224× 224 or 64× 224× 224 as input and larger batch sizes. Our objective
is to show that the aligned convolution improves the vanilla 3D convolution for
action recognition. In Table 5.7, UCF101 and HMDB51 are trained from the Kinetics
pre-trained model. For all datasets the patch-to-point convolution improves over the
baseline. In Table 5.4, we already showed the improvement generalizes over deep
backbones as well. We believe it has achieved an improvement over the commonly
used 3D convolution, that is of community interest.

Moving object segmentation. We also investigate the patch-to-point aligned con-
volution block on moving object segmentation in videos. We build a 3D convolution
network based on the DeepLab [23] model with Resnet18 as an encoder. The details of
the network are provided in the supplementary material. We evaluate on DAVIS2016
(Densely Annotated Video Segmentation 2016) following [155]. Region similarity
J and contour accuracy F are reported in Table 5.8. The aligned convolution also
improves the performance of moving object segmentation in videos. We present the
qualitative results on three video sequences in Figure 5.6. The patch-to-point aligned
convolution is more robust to crowded background and occlusion cases.
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J F
Mean↑ Recall↑ Mean↑ Recall↑

3D baseline 67.5 82.0 63.0 73.4
Patch-to-point 69.1 83.0 65.0 74.4

TABLE 5.8: Moving object segmentation on DAVIS2016. Region
similarity J and contour accuracy F are reported. Higher values are
better. The aligned convolution outperforms the normal 3D convolution

in this setting.

(a) 3D baseline

(b) patch-to-point aligned 3D
FIGURE 5.6: Moving object segmentation visualizations. The
aligned convolution leads to less wrong detection and better contours

for crowded background and occlusion cases.

5.5 Conclusion
In this chapter, we propose aligned 3D convolutions for video action recognition. It
generates offsets to align the feature points between successive frames. The mecha-
nism allows to trace the motion changes and conduct convolution operators on rectified
locations of successive features. The aligned convolution makes it possible to exploit
motion information using RGB inputs only for action recognition, without the need
to pre-compute any forward or backward optical flow. Moreover, due to its ability
to track motion at feature level, it performs well on variable frame-rate videos. The
aligned convolution also presents a better ability on another video challenge, namely
moving object segmentation. We expect the aligned 3D convolution is useful for other
tasks as well, most notably action detection, which we aim to address in future work.





87

Chapter 6

TubeR: Tubelet Transformer for Video
Action Detection

6.1 Introduction
This chapter tackles the problem of spatio-temporal action detection in videos [18,
199, 101], which plays a central role in advanced video search engines, robotics,
and self-driving cars. Action detection is a compound task, requiring the localization
of per-frame person instances, the linking of these detected person instances into
action tubes and the prediction of their action class labels. Two approaches for spatio-
temporal action detection are prevalent in the literature: frame-level detection and
tubelet-level detection. Frame-level detection approaches detect and classify the action
independently on each frame[71, 154, 184], and then link per-frame detections together
into coherent action tubes. To compensate for the lack of temporal information, several
methods simply repeat 2D proposals [74, 191, 67] or offline person detections [55,
219, 197, 152] over time to obtain spatio-temporal features (Figure 6.1 top left).
Alternatively, tubelet-level detection approaches [88, 106, 240, 185, 224, 131], directly
generate spatio-temporal volumes from a video clip to capture the coherence and
dynamic nature of actions. They typically predict action localization and classification
jointly over spatial-temporal hypotheses, like 3D cuboid proposals [88, 106] (Figure
6.1 top right). Unfortunately, these 3D cuboids can only capture a short period of time
as the spatial location of a person changes as soon as they move, or due to camera
motion. Ideally, this family of models would use flexible spatial-temporal tubelets
that can track the person over a longer time, but the large configuration space of such
a parameterization has restricted previous methods to short cuboids. In this work we
present a tubelet-level detection approach that is able to simultaneously localize and
recognize action tubelets in a flexible manner, which allows tubelets to change in size
and location over time (Figure 6.1 bottom). This allows our system to leverage longer
tubelets, which aggregate visual information of a person and their actions over longer
periods of time.

We draw inspiration from sequence-to-sequence modelling in Natural Language
Processing, particularly machine translation [206, 130, 193, 108], and its application
to object detection, DETR [20]. Being a detection framework, DETR can be applied
as a frame-level action detection approach trivially, but the power of the transformer
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FIGURE 6.1: TubeR takes as input a video clip and directly outputs
tubelets: sequences of bounding boxes and their action labels. TubeR

runs end-to-end without person detectors, anchors or proposals.

framework, on which DETR is built, is its ability to generate complex structured
outputs over sequences. In NLP, this typically takes the form of sentences but in this
work we use the notion of decoder queries to represent people and their actions over
video sequences, without having to restrict tubelets to fixed cuboids.

We propose a tubelet-transformer, we call TubeR, for localizing and recognizing
actions from a single representation. Building on the DETR framework [20], TubeR
learns a set of tubelet queries to pull action-specific tubelet-level features from a
spatio-temporal video representation. Our TubeR design includes a specialized spatial
and temporal tubelet attention to allow our tubelets to be unrestricted in their spatial lo-
cation and scale over time, thus overcoming previous limitations of methods restricted
to cuboids. TubeR regresses bounding boxes within a tubelet jointly across time, con-
sidering temporal correlations between tubelets, and aggregates visual features over
the tubelet to classify actions. This core design already performs well, outperforming
many previous model designs, but still does not improve upon frame-level approaches
using offline person detectors. We hypothesize that this is partially due to the lack
of more global context in our query based feature as it is hard to classify actions
referring to relationships such as ‘listening-to‘ and ‘talking-to‘ by only looking at
one person. To this end we introduce a context aware classification head that, along
with the tubelet feature, takes the full clip feature from which our classification head
can draw contextual information. This design allows the network to effectively relate
a person tubelet to the full scene context where the tubelet appears and is shown
to be effective on its own in our results section. One limitation of this design is the
context feature is only drawn from the same clip our tubelet occupies. It has been
shown [219] to be important to also include long term contextual features for the
final action classification. Thus, we introduce a memory system inspired by [223] to
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compress and store contextual features from video content around the tubelet. We feed
this long term contextual memory to our classification head using the same feature
injection strategy and again show this gives an important improvement over the short
term context alone. We test our full system on three popular action detection datasets
(AVA [74], UCF101-24 [187] and JHMDB51-21 [103]) and show our method can
outperform other state-of-the-art results.

In summary our contributions are as follows:

1. We propose TubeR: a tubelet-level transformer framework for action detection.
2. Our tubelet query and attention based formulation is able to generate tubelets

of arbitrary location and scale.
3. Our context aware classification head is able to aggregate short-term and long-

term contextual information.
4. We present state-of-the-art results on three challenging action detection datasets.

6.2 Related Work
Frame-level action detection. Spatio-temporal action detection in video has a long
tradition, e.g. [18, 199, 101, 216, 154, 74, 197, 152]. Inspired by object detection using
deep convolution neural networks, action detection in video has been considerably
improved by frame-level methods [216, 154, 172, 184]. These methods perform
localization and recognition per-frame and then link frame-wise predictions to action
tubes. Specifically, they apply 2D positional hypotheses (anchors) or an offline person
detector on a keyframe for localizing actors, and then focus more on improving
action recognition. They incorporate temporal patterns by an extra stream utilizing
optical flow. Others [74, 67, 191] apply 3D convolution networks to capture temporal
information for recognizing actions. Feichtenhofer et al. [55] present a slowfast
network to even better capture spatio-temporal information. Both Tang et al. [197]
and Pan et al. [152] propose to explicitly model relations between actors and objects.
Recently, Chen et al. [25] propose to train actor localization and action classification
end-to-end from a single backbone. Different from these frame-level approaches,
we target on tubelet-level video action detection, with an unified configuration to
simultaneously perform localization and recognition.
Tubelet-level action detection. Detecting actions by taking a tubelet as a representa-
tion unit [129, 240, 185, 224, 131] has been popular since it was proposed by Jain et
al. [101]. Kalogeiton et al. [106] repeat 2D anchors on per-frame for pooling ROI
features and then stack the frame-wise features for predicting action labels. Hou et al.
[88] and Yang et al. [224] depend on carefully-designed 3D cuboid proposals. The
former directly detects tubelets and the later progressively refines 3D cuboid proposals
across time. Besides using these box/cuboid anchors, Li et al. [131] detect tubelet
instances relying on center position hypotheses. Hypotheses-based methods have
difficulties to process long video clips, as discussed in the Introduction. We add to the
tubelet tradition by learning a small set of tubelet queries to represent the dynamic
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FIGURE 6.2: The overall structure of TubeR. Both encoder and de-
coder contain n stacked modules. We only show the key components in
the encoder and decoder modules. Encoder models the spatio-temporal
features from the backbone by self-attention layers. The decoder trans-
forms a set of tubelet queries and finally predicts action tubelets (see
Section 6.3.1). We utilize tubelet-attention layers (see Section 6.3.2) to
model the relations between box query embeddings within a tubelet.
Finally, we apply the context aware classification head and action
switch regression head to predict tubelet labels and coordinates (see

Section 6.3.3).

nature of tubelets. We reformulate the action detection task as a sequence-to-sequence
learning problem and explicitly model the temporal correlations within a tubelet. Our
method is capable to handle long video clips.
Transformer-based action detection. Vaswani et al. [206] proposed the transformer
for machine translation, and soon after it became the most popular backbone on
sequence-to-sequence tasks, e.g., [130, 193, 108]. Recently, it has also demonstrated
impressive advances in object detection [20, 248], image classification [45, 230]
and video recognition [61, 239, 51]. Girdhar et al. [68] propose a video action
transformer network for detecting actions. They apply a region-proposal-network for
localization. The transformer is utilized for further improving action recognition by
aggregating features from the spatio-temporal context around actors. We propose an
unified solution to simultaneously localize and recognize actions.

6.3 Action Detection by TubeR
In this section, we present our TubeR that takes as input a video clip and directly
outputs a tubelet: a sequence of bounding boxes and the action label. The TubeR design
takes inspiration from the image-based DETR [20] but reformulates the transformer
architecture for sequence-to-sequence(s) modeling in video (Figure 6.2).
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Given a video clip I ∈ RTin×H×W×C where Tin, H, W, C denote the number of
frames, height, width, and colour channels, TubeR first applies a 3D backbone to
extract video features Fb ∈ RT′×H′×W ′×C′

, where T′ is the temporal dimension and C′

is the feature dimension. A transformer encoder-decoder is then utilized to transform
the video features into a set of tubelet-specific features Ftub ∈ RN×Tout×C′

, with Tout
the output temporal dimension and N the number of tubelets. In order to process
long video clips, we use temporal down-sampling to make Tout < T′ < Tin, which
reduces our memory requirement. In this case, TubeR generates sparse tubelets. For
short video clips we remove the temporal down-sampling to make sure Tout=T′=Tin,
which results in dense tubelets. Tubelet regression and associated action classification
can be achieved simultaneously with separated task heads as:

ycoor = f (Ftub); yclass = g(Ftub). (6.1)

where f denotes the tubelet regression head and ycoor ∈ RN×Tout×4 stands for the
coordinates of N tubelets, each of which is across Tout frames (or Tout sampled frames
for long video clips). g denotes the action classification head, and yclass ∈ RN×L

stands for the action classification for N tubelets with L possible labels.

6.3.1 TubeR Encoder-Decoder
Encoder. Different from the vanilla transformer encoder, the TubeR encoder is de-
signed for processing information in the 3D spatio-temporal space. Each encoder
layer is made up of a self-attention layer (SA), two normalization layers and a feed
forward network (FFN), following [206]. We only put the core attention layers in all
equations below.

Fen = Encoder(Fb), (6.2)

SA(Fb) = softmax(
σq(Fb)× σk(Fb)

T
√

C′
)× σv(Fb), (6.3)

σ(∗) = Linear(∗) + Embpos. (6.4)

where Fb is the backbone feature and Fen ∈ RT′H′W ′×C′
denotes the C′ dimensional

encoded feature embedding. The σ(∗) is the linear transformation plus positional
embedding. Embpos is the 3D positional embedding [239]. The optional temporal
down-sampling can be applied to the backbone feature to shrink the input sequence
length to the transformer for better memory efficiency.
Decoder. After having the encoded feature embedding Fen, the decoder with tubelet-
attention (TA) and cross-attention (CA) layers is used to decode tubelet-specific
features Ftub from Fen given a set of tubelet query Q:

Ftub = Decoder(Fq, Fen), (6.5)
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CA(Fq, Fen) = softmax(
Fq × σk(Fen)T

√
C′

)× σv(Fen), (6.6)

Fq = TA(Q). (6.7)

where TA is the tubelet-attention for modeling relations between tubelet queries Q
and outputs query features Fq ∈ RN×Tout×C′

, which will be described in section 6.3.2.
Ftub ∈ RN×Tout×C′

is the tubelet specific feature. Note that with temporal pooling,
Tout < Tin, TubeR produces sparse tubelets; For Tout=Tin, TubeR produces dense
tubelets.

6.3.2 Tubelet Modeling
In order to model tubelets, we propose tubelet queries which are used to query
tubelet-specific features from encoded features Fen, and a tubelet attention module for
reasoning over relations between boxes within a tubelet.
Tubelet query. Directly detecting tubelets is quite challenging based on anchor
hypotheses. The tubelet space along the spatio-temporal dimension is huge compared
to the single-frame bounding box space. Consider for example Faster-rcnn [162] for
object detection, which requires for each position in a feature map with spatial size
H′×W ′, K(=9) anchors. There are in total KH′W ′ anchors. For a tubelet across
Tout frames, it would require (KH′W ′)Tout anchors to maintain the same sampling
in space-time. To reduce the tubelet space, several methods [88, 224] adopt 3D
cuboids to approximate tubelets by ignoring the spatial action displacements in a
short video clip. However, the longer the video clip is, the less accurately a 3D cuboid
hypotheses represents a tubelet. We propose to learn a small set of tubelet queries
Q={Q1, ..., QN} driven by the video data. N is the number of queries. The i-th
tubelet query Qi={qi,1, ..., qi,Tout} contains Tout box query embeddings qi,t ∈ RC′

across Tout frames. We learn a tubelet query to represent the dynamics of a tubelet,
instead of hand-designing 3D anchors. We initialize the box embeddings identically
for a tubelet query.
Tubelet attention. In order to model relations in the tubelet queries, we propose
a tubelet attention module which contains two self-attention layers (shown in Fig-
ure 6.2). First we have a spatial self-attention layer that processes the spatial relations
between box query embeddings within a frame i.e. {q1,t, ..., qN,t}, t={1, ..., Tout}.
The intuition of this layer is that recognizing actions benefits from the interactions
between actors, or between actors and objects in the same frame. Next we have
our temporal self-attention layer that models the correlations between box query
embeddings across time within the same tubelet, i.e. {qi,1, ..., qi,Tout}, i={1, ..., N}.
This layer facilitates a TubeR query to track actors and generate action tubelets that
focus on single actors instead of a fixed area in the frame. TubeR applies the tubelet
attention module to tubelet queries Q for generating tubelet query features Fq.
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6.3.3 Task-Specific Heads
The bounding boxes and action classification for each tubelet can be done simulta-
neously with independent task-specific heads. Such design maximally reduces the
computational overheads and makes our system expandable.
Context aware classification head. The classification is achieved with a simple linear
projection.

yclass = Linearc(Ftub). (6.8)

where yclass ∈ RN×L denotes the classification score on L possible labels, one for
each tubelet.

It is known that context is important for understanding sequences [206]. We
propose to leverage spatio-temporal context from the backbone features to further
help video sequence understanding. Furthermore, inspired by [213, 239, 219] which
explore long-range temporal information for video understanding, we propose to pull
features with long-term context for classifying actions.

Short-term context head. We first propose to query the action specific feature from
the context in the backbone features Fb to strengthen our tubelet-level features Ftub:

Fc = CA(Poolt(Ftub), SA(Fb)) + Poolt(Ftub). (6.9)

A self-attention layer is first applied to the backbone feature Fb, then a cross-attention
layer utilizes tubelet-level features Ftub to query from Fb. Fc ∈ RN×C′

is the final
feature for action classification. A linear layer follows to predict action class scores.

Long-term context head. To utilize long-range temporal information but under cer-
tain memory budget, we adopt a two-stage decoder for long-term context compression
as described in [223]:

Emblong = Decoder(Emnn1, Decoder(Embn0, Flong). (6.10)

The long-term context Flong ∈ R(2w+1)T′×H′W ′×C′
is a buffer that contains backbone

features extracted from a long 2w adjacent clips concatenated along time. In order to
compress the long-term context, we apply two stacked decoders with two token em-
bedding Emnn0 and Emnn1 following [223]. In this sense, the long-term context Flong
with original temporal dimension (2w + 1)T′ is firstly compressed to an intermediate
feature with a temporal dimension n0, and further to the final compressed feature
Emblong with a lower temporal dimension n1. Then we adopt a cross-attention layer
to Fb and Emblong to generate a long-term context feature Flt ∈ RT′×H′×W ′×C′

as:

Flt = CA(Fb, Emblong). (6.11)

Finally, we query the action specific features from Flt instead of Fb to get the final
feature for classification using Eq. 6.9.
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Action switch regression head. The Tout bounding boxes in a tubelet are simultane-
ously regressed with an FC layer as:

ycoor = Linearb(Ftub). (6.12)

where ycoor ∈ RN×Tout×4, N is the number of action tubelets, and Tout is the temporal
length of an action tubelet. To remove non-action boxes in a tubelet, we further include
an FC layer for deciding whether a box prediction depicts the actor performing the
action(s) of the tubelet, we call action switch. The action switch allows our method to
generate action tubelets with a more precise temporal extent. The probabilities of the
Tout predicted boxes in a tubelet being visible are:

yswitch = Linears(Ftub). (6.13)

where yswitch ∈ RN×Tout . For each predicted tubelet, each of its Tout bounding boxes
obtain an action switch score.

6.3.4 Losses
The total loss is a linear combination of four losses:

L = λ1Lswitch(yswitch, Yswitch) + λ2Lclass(yclass, Yclass)

+λ3Lbox(ycoor, Ycoor) + λ4Liou(ycoor, Ycoor).
(6.14)

where y is the model output and Y denotes the ground truth. The action switch loss
Lswitch is a binary cross entropy loss. The classification loss Lclass is a cross entropy
loss. The Lbox and Liou denotes the per-frame bounding box matching error. It is noted
when Tout < Tin, the tubelet is sparse and the coordinate ground truth Ycoor are from
the corresponding temporally down-sampled frame sequence. We used the Hungarian
matching similar to [20] and more details can be found in the supplementary. We
empirically set the scale parameter as λ1=1, λ2=5, λ3=2, λ4=2.

6.4 Experiments

6.4.1 Experimental Setup
Datasets. We report experiments on three commonly used video datasets for action
detection. UCF101-24 [187] is a subset of UCF101. It contains 24 sport classes in
3207 untrimmed videos. Each video contains a single action class. Multiple instances
of the same class can occur in a single video but with different spatial and temporal
boundaries. We use the revised annotations for UCF101-24 from [184] and report
the performance on split-1. JHMDB51-21 [103] contains 21 action categories in
928 trimmed videos. We report the average results over all three splits. AVA [74] is
larger-scale and includes 299 15-minute movies, 235 for training, and the remaining
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UCF101-24 AVA

single query 48.8 26.2
tubelet query set 52.9 27.4

(A) Analysis on tubelet query. Our tubelet
query set design allows for each query to
focus on the spatial location of the action on

a specific frame.

UCF101-24 AVA

self-attention 52.9 27.4
tubelet attention 53.8 27.7

(B) Effect of tubelet attention. With tubelet
attention reasoning about the relations be-
tween bounding boxes within a tubelet and

across tubelets improves.

UCF101-24 AVA

w/o switch 53.8 27.7
w/ switch 57.7 27.7

(C) Benefit of action switch. Action switch
produces a more precise temporal extent,
which can only be shown by video-mAP.

UCF101-24 AVA

FC head 57.8 23.4
+ short-term context 58.4 27.7
+ long-term context - 28.8

(D) Effectiveness of short- and long-term con-
text. The short-term context and long-term con-
text helps with performance, more noticeable on

AVA.

UCF101-24 AVA

8 53.9 24.4
16 58.2 26.9
32 58.4 27.7

(E) Length of input clip. Longer input
video leads to a better performance on both

UCF101-24 and AVA.

w # of clips duration (s) mAP

- 1 2.1 27.7
2 5 10.6 28.4
3 7 14.9 28.8
5 11 23.5 28.6

(F) Long-term context length analysis on
AVA. The right amount of long-term context

helps improve frame-mAP on AVA.

TABLE 6.1: Ablation studies on UCF101-24 and AVA 2.1. The pro-
posed tubelet query, tubelet attention, the action switch and context-
aware generally helps with the model performance. The proposed
TubeR works well on long clips with shot changes. We report video-
mAP@IoU=0.5 for UCF101-24 and frame-mAP@IoU=0.5 for AVA.

64 for validating. Box and label annotations are provided on per-second sampled
keyframes. We evaluate on AVA with both annotation versions v2.1 and v2.2.
Evaluation criteria. We report the video-mAP at different IoUs on UCF101-24 and
JHMDB51-21. As AVA only has keyframe annotations, we report frame-mAP@IoU=0.5
following [74] using a single, center-crop inference protocol.
Implementation details. We pre-train the backbone on Kinetics-400 [107]. The
encoder and decoder contain 6 blocks on AVA. For the smaller UCF101-24 and
JHMDB51-21, we reduce the numbers of blocks to 3 to avoid overfitting. We empir-
ically set the number of tubelet query N equaling 15. During training, we use the
bipartite matching [63] based on the Hungarian algorithm [120] between predictions
and the ground truth. We use the AdamW [140] optimizer with an initial learning
rate 1e−5 for the backbone and 1e−4 for the transformers. We decrease the learning
rate 10× when the validation loss saturates. We set 1e−4 as the weight decay. Scale
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jittering in the range of (288, 320) and color jittering are used for data augmentation.
During inference, we always resize the short edge to 256 and use a single center-crop
(1-view). We also tested the horizontal flip trick to create 2-view inference. For fair
comparisons with previous methods on UCF101-24 and JHMDB51-21, we also test a
two-stream setting with optical flow following [240].

6.4.2 Ablations
We perform our ablations on both UCF101-24 and AVA 2.1 to demonstrate the
effectiveness of our designs on different evaluation protocols. Only RGB inputs are
considered. For UCF101-24 with per-frame annotations, we report video-mAP at
IoU=0.5. A standard backbone I3D-VGG [74] is utilized and the input length is set
to 7 frames if not specified. For AVA 2.1 with 1-fps annotation, we only take the
model prediction on keyframes and report frame-mAP at IoU=0.5. We use a CSN-50
backbone [203] with a single view evaluation protocol if not specified.
Benefit of tubelet queries. We first show the benefit of the proposed tubelet query
sets. Each query set is composed of Tout per-frame query embeddings (see section
6.3.2), which predict the spatial location of the action on their respective frames.
We compare this to using a single query embedding that represents a whole tubelet
and must regress Tout box location for all frames in the clip. Our results are shown
in Table 6.1a. Compared to using a single query embedding, our tubelets query set
improves performance by +4.1% video mAP on UCF101-24, showing that modeling
action detection as a sequence-to-sequence task effectively leverages the capabilities
of transformer architectures.
Effect of tubelet attention. In Table 6.1b, we show using our tubelet attention
module helps improve video-mAP on UCF101-24 by 0.9%, 0.3% on AVA. The
tubelet attention saves about 10% memory (4,414 MB) than the typical self-attention
implementation (5,026 MB) during training (16 frames input with batch size of 1).
Benefit of action switch. We report the effectiveness of our action switch head in
Table 6.1c. On UCF101-24 the action switch increases the video-mAP from 53.8%
to 57.7% by precisely determine the starting and ending point of actions temporally.
Without action switch, TubeR mis-classifies transitional states as actions, like an
example shown in Figure 6.3 (bottom row). As only the frame-level evaluation can
be done on AVA, the advantage of the action switch is not shown by the frame-mAP.
Instead, we demonstrate its effect in Figure 6.4 and Figure 6.5. The action switch
produces tubelets with precise temporal extent for videos with shot changes.
Effect of short and long term context head. We report the impact of our context
aware classification head with both short and long-term features in Table 6.1d. The
context head brings a decent performance gain (+4.3%) on AVA. This is probably
because the movie clips in AVA contain shot changes and so the network benefits
from seeing the full context of the clip. On UCF101-24, the videos are usually short
and without shot changes. The context does not bring a significant improvement on
UCF101-24.
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Basketball

Basketball
(a) with action switch

(b) without action switch    

Basketball Basketball

Basketball Basketball
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transitional states action

FIGURE 6.3: Visualizations of action switch on UCF101-24. Best
view in color. The red box and label represent the ground truth. Yellow
are for the detected tubelets. With the action switch (top row), TubeR

avoids mis-classification for the transitional states.

Length of input clip. We report results with variable input lengths in Table 6.1e.
We compare with input length of 8, 16 and 32 on both UCF101-24 and AVA with
CSN-152 as backbone. TubeR is able to handle long video clips as expected. We
notice that our performance on UCF101-24 saturates faster than on AVA, probably
because the UCF101-24 does not contain shot changes that requires longer temporal
context for classification.
Length of long-term context. This ablation is only conducted on AVA as videos on
UCF101-24 are too short to use long-term context. (Table 6.1f). It shows that the right
amount of long-term context helps performance, but overwhelming the amount of
long-term context harms performance. This is probably because the long-term feature
contains both useful information and noise. The experiments show that about 15s
context serves best. Note that the context length varies for datasets, but can be easily
determined empirically.

6.4.3 Frame-level State-of-the-Art
AVA 2.1 Comparison. We first compare our results with previously proposed methods
on AVA 2.1 in Table 6.2. Compared to previous end-to-end models, with comparable
backbone (I3D-Res50) and the same inference protocol, the proposed TubeR outper-
forms all. TubeR outperforms the most recent end-to-end works WOO [25] by 0.9%
and VTr [68] by 1.2%. This demonstrates the effectiveness of our designs.

Compared to previous work using an offline person detector, the proposed TubeR
is also more effective under the same inference protocols. This is because TubeR
generates tubelet-specific features without assumptions on location, while the two-
stage methods have to assume the actions occur at a fixed location. It is also worth
mentioning that the TubeR with CSN backbones outperforms the two-stage model
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Model Detector Input Backbone Pre-train Inference GFLOPs mAP
Comparison to end-to-end models
I3D [74] ✗ 32 × 2 I3D-VGG K400 1 view NA 14.5
ACRN [191] ✗ 32 × 2 S3D-G K400 1 view NA 17.4
STEP [224] ✗ 32 × 2 I3D-VGG K400 1 view NA 18.6
VTr [68] ✗ 64 × 1 I3D-VGG K400 1 view NA 24.9
WOO [25] ✗ 8 × 8 SF-50 K400 1 view 142 25.2
TubeR ✗ 16 × 4 I3D-Res50 K400 1 view 132 26.1
TubeR ✗ 16 × 4 I3D-Res101 K400 1 view 246 28.6
Comparison to two-stage models
Slowfast-50 [55] F-RCNN 16 × 4 SF-50 K400 1 view 308 24.2
X3D-XL [53] F-RCNN 16 × 5 X3D-XL k400 1 view 290 26.1
CSN-152* F-RCNN 32 × 2 CSN-152 IG + K400 1 views 342 27.3
LFB [219] F-RCNN 32 × 2 I3D-101-NL k400 18 views NA 27.7
ACAR-NET [152] F-RCNN 32 × 2 SF-50 K400 6 views NA 28.3
TubeR ✗ 32 × 2 CSN-50 K400 1 view 78 28.8
TubeR ✗ 32 × 2 CSN-152 IG + K400 1 view 120 31.7
Comparison to best reported results
WOO [25] ✗ 8 × 8 SF-101 K400+K600 1 view 246 28.0
SF-101-NL [55] F-RCNN 32 × 2 SF-101+NL K400+K600 6 views 962 28.2
ACAR-NET [152] F-RCNN 32 × 2 SF-101 K400+K600 6 views NA 30.0
AIA [197] F-RCNN 32 × 2 SF-101 K400+K700 18 views NA 31.2
TubeR ✗ 32 × 2 CSN-152 IG + K400 2 view 240 32.0

TABLE 6.2: Comparison on AVA v2.1 validation set. Detector shows
if additional detector is required; * denotes the results we tested. IG
denotes the IG-65M dataset, SF denotes the slowfast network. The
FLOPs for two-stage models are the sum of Faster RCNN-R101-FPN
FLOPs (246 GFLOPs [20]) plus classifier FLOPs multiplied by view

number. TubeR performs more effectively and efficiently.

with the same backbone by +4.4%, demonstrating that the gain is not from the
backbone but our TubeR design. TubeR even outperforms the methods with multi-
view augmentations (horizontal flip, multiple spatio crop and multi-scale). TubeR is
also significantly faster than previous models, we have attempted to collect the reported
FLOPs from previous works (Table 6.2). Our TubeR has 8% fewer FLOPs than the
most recently published end-to-end model [25] with higher accuracy. Tuber is also
4× more efficient than the two-stage model [55] with noticeable better performance.
Thanks to our sequence-to-sequence design, the heavy backbone is shared and we do
not need temporal iteration for tubelet regression.

We finally present the highest number reported in the literature, regardless of
the inference protocol, pre-training dataset and additional information used. TubeR
still achieves the best performance, even better than the model using additional
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Model backbone pre-train inference mAP

Single-view
X3D-XL [53] X3D-XL K600+ K400 1 view 27.4
CSN-152 [238] CSN-152 IG + K400 1 view 27.9
WOO [25] SF-101 K600+ K400 1 view 28.3
M-ViT-B-24 [51] MViT-B-24 K600+ K400 1 view 28.7
TubeR CSN-152 IG + K400 1 view 33.4

Multi-view
SlowFast-101 [55] SF-101 K600+ K400 6 views 29.8
ACAR-Net [152] SF-101 K700+ K400 6 views 33.3
AIA (obj) [197] SF-101 K700+ K400 18 views 32.2
TubeR CSN-152 IG + K400 2 views 33.6

TABLE 6.3: Comparison on AVA v2.2 validation set. IG denotes the
IG-65M dataset, SF denotes the slowfast network. TubeR achieves the

best result.

object bounding-boxes as input [197].The results show that the proposed sequence-
to-sequence model with tubelet specific feature is a promising direction for action
detection.
AVA 2.2 Comparison. The results are shown in Table 6.3. Under the same single-view
protocol, TubeR is significantly better than previous methods, including the most
recent work with an end-to-end design (WOO [25] +5.1%) and the two-stage work
with strong backbones (MViT [51] +4.7%). A fair comparison between TubeR and a
two-stage model [238] with the same backbone CSN-152, shows TubeR gains +5.5%
frame-mAP. It demonstrates TubeR’s superior performance comes from our design
rather than the backbone.
UCF101-24 Comparison. We also compare TubeR with the state-of-the-art using
frame-mAP@IoU=0.5 on the UCF101-24 dataset (see the first column with numbers
in Table 6.4). Compared to existing methods, TubeR acquires better results with
comparable backbones, for both RGB-stream and two-stream settings. Further with a
CSN-152 backbone, TubeR get 83.2 frame-mAP, even better than two-stream methods.
Though TubeR targets on tubelet-level detection, it performs well on frame-level
evaluation on both AVA and UCF101-24.

6.4.4 Video-level State-of-the-Art

6.4.5 Visualization
We also compare TubeR with various settings to state-of-the-art reporting video-mAP
on UCF101-24 and JHMDB51-21 in Table 6.4. TubeR acquires better results with
and without optical flow as inputs. For fair comparisons, TubeR with a 2D backbone
gains +4.4% video-mAP@IoU=0.5 compared to the recent start-of-the-art [131] on
UCF101-24 without using optical flow, which demonstrates that TubeR learning
tubelet queries is more effective compared to using positional hypotheses. Compared
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UCF101-24 JHMDB51-21

Backbone f-mAP 0.20 0.50 0.50:0.95 0.20 0.50

RGB-stream
MOC [131] DLA34 72.1 78.2 50.7 26.2 - -
TubeR Res50 79.5 81.2 55.1 28.1 - -
T-CNN [88] C3D 41.4 47.1 - - 78.4 76.9
TubeR I3D 80.1 82.8 57.7 28.6 79.7 78.3
TubeR CSN-152 83.2 83.3 58.4 28.9 - -

Two-stream
TacNet [185] VGG 72.1 77.5 52.9 24.1 - -
2in1 [240] VGG 78.5 50.3 24.5 - 74.7
ACT [106] VGG 67.1 77.2 51.4 25.0 74.2 73.7
MOC [131] DLA34 78.0 82.8 53.8 28.3 77.3 77.2
STEP [224] I3D 75.0 76.6 - - - -
I3D [74] I3D 76.3 - 59.9 - - 78.6
TubeR I3D 81.3 85.3 60.2 29.7 81.8 80.7

TABLE 6.4: Comparison on UCF101-24 and JHMDB51-21 with
video-mAP. TubeR achieves better results under both settings with and
without optical flow inputs. f-mAP denotes the frame mAP@IoU=0.5.

to TacNet [185] which proposes a transition-aware context network to distinguish
transitional states, TubeR with action switch performs better even with a one-stream
setting. We further conduct an experiment with CSN-152 backbone. The results show
that the TubeR generalizes well by using different backbones. When incorporating
optical flow inputs, the TubeR further boosts the video-level results and achieves the
best among the two-stream approaches. The result illustrates our design is effective
for video-level action detection.

We first provide visualizations (Figure 6.4) of the tubelet-specific features by
overlaying the tubelet-specific feature activation over the input frames using attention
rollout [1]. The example in Figure 6.4 is challenging as it contains multiple people
and concurrent actions. The visualization show that: 1. Our proposed TubeR is able to
generate highly discriminative tubelet-specific features. Different actions in this case
are clearly separated in different tubelets. 2. Our action switch works as expected and
initiates/cuts the tubelets when the action starts/stops. 3. Our TubeR generalizes well
to scale changes (the brown tubelet). 4. The generated tubelets are tightly associated
with tubelet specific feature as expected.

We further show our TubeR performs well in various scenarios. TubeR works well
on videos with shot changes (Figure 6.5 top); TubeR is able to detect an actor moving
with distance (Figure 6.5 middle); and TubeR is robust to action detection even for
small people (Figure 6.5 bottom).
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6.5 Discussion and Conclusion
Limitations. Although proposed for long videos, we noticed two potential limitations
that stop us from feeding in very long videos in one shot.
1. We observe that 90% of computation (FLOPs) and 67% of memory usage was
used by our 3D backbone. This heavy backbone restricts us from applying TubeR
on long videos. Recent works show that transformer encoders can be used for video
embedding [239, 51, 4] and are less memory and computationally hungry. We will
explore these transformer based embeddings in future work.
2. If we were to process a long video in one pass we’d need enough queries to cover
the maximum number of different actions per-person in that video. This would likely
require a large number of queries which would cause memeory issues in our self
attention layers. A possible solution is to generate person tubelets, instead of action
tubelets, so that we do not need to split tubelets when a new action happens. Then we
would only need a query for each person instance.
Potential negative impact. There are real-world applications of action detection tech-
nology such as patient or elderly health monitoring, public safety, Augmented/Virtual
Reality, and collaborative robots. However, there could be unintended usages and we
advocate responsible usage and complying with applicable laws and regulations.
Conclusion. This chapter introduces TubeR, a unified solution for spatio-temporal
video action detection in a sequence-to-sequence manner. Our design of tubelet-
specific features allows TubeR to generate tubelets (a set of linked bounding boxes)
with action predictions for each of the tubelets. TubeR does not rely on positional
hypotheses and therefore scales well to longer video clips. TubeR achieves state-of-
the-art performance and better efficiency compared with previous works.
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Tubelet 5: walk

Tubelet 1: stand; listen to (a person); watch (a person)

Tubelet 2: stand; listen to (a person); watch (a person)

Input frames

Tubelet 3: sit; listen to (a person); watch (a person)

Tubelet 4: stand; talk to (e.g., a group); watch (a person)

Results

FIGURE 6.4: Visualization of tubelet specific feature with attention
rollout. Best view in color. Each tubelet covers a separated action

instance.
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sit,
talk to
watch 

sit
sit,
carry/hold
listen to

stand,
talk to,
watch

stand,
listen to 
watch 

walk,
watch

walk walk stand,
talk

walk walk

FIGURE 6.5: Results visualization. Best view in color. We use dif-
ferent colors to label different tubelets. Each action tubelet contains
its action labels and boxes on each frame. We only show the action
labels on the first frame of an action tubelet. Some challenging cases
are shown. Top: shot changes; Middle: actors moving with distance;

Bottom: multiple actors with small and large scales.
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Appendix A

Supplementary Materials for LiftPool

We show additional analysis and results for robustness and semantic segmentation in
this Appendix.

LiftDownPool vs. MaxPool We provide a schematic diagram in Figure A.1 to
further illustrate the difference between MaxPool and LiftDownPool, MaxUpPool
and LiftUpPool. Taking kernel size 2, stride 2 as an example, MaxPool selects the
maximum activations in a local neighbourhood. Hence, it looses 75% information.
The lost details could be important for image recognition. LiftDownPool decomposes
a feature map into LL, LH, HL and HH. LL containing low-pass coefficients is
an approximation of the input. It is designed for capturing correlated structures of
the input. Other sub-bands contain detail coefficients along different directions. The
pooling is implemented by summing up all the sub-bands. The final pooled result
containing both the approximation and details is expected to be more effective for
image classification.

LiftUpPool vs. MaxUpPool The pooling function in MaxPool is not invertible.
MaxPool records the maximum indices for performing the corresponding MaxUpPool.
MaxUpPool takes the activations at the corresponding positions for the recorded
maximum indices on the output. For other indices, there will be zeros. The final up-
sampled output has many ‘holes’. By contrast, the pooling functions in LiftDownPool
are invertible. Leveraging the property by performing a LiftDownPool backwards,
LiftUpPool is able to generate a refined output from an input, including the recorded
details.

Experiment Settings The VGG13 [182] network trained on CIFAR-100 is opti-
mized by SGD with a batch size of 100, weight decay of 0.0005, momentum of 0.9.
The learning rate starts from 0.1 and is reduced by multiplying 0.1 after 80 and 120
epochs for a total of 160 epochs. We train ResNets for 100 epochs and MobileNet
for 150 epochs on ImageNet, following the standard training recipe from the public
PyTorch [153] repository.
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Details

a’ h’
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FIGURE A.1: Comparisons between MaxPool and LiftDownPool,
MaxUpPool and LiftUpPool. MaxPool looses details. With the
recorded maximum indices, MaxUpPool generates a very sparse output.
LiftDownPool decomposes the input into an approximation and several
details sub-bands. It realizes a pooling by summing up all sub-bands.
LiftUpPool produces a refined output by performing LiftDownPool

backwards.

High-resolution Feature Maps Visualization By using ResNet50 with input size
224×224, we extract the feature maps of an image from the first pooling layer. We
show the high-resolution feature maps in Figure A.2. We only show the LL sub-band
from LiftDownPool. Compared to MaxPool, LiftDownPool better maintains the local
structure.

Anti-aliasing LiftDownPool effectively reduces aliasing following the Lifting
Scheme [195] compared to naive downsizing. Figure A.3(b) provides a simple illus-
tration of LiftDownPool. The dashed line is an original signal x. According to Eq 3.1,

Input image MaxPool LiftDownPool
FIGURE A.2: High-resolution feature maps visualization. LiftDown-

Pool better maintains local structure.
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(a) downsizing
2" − 2 2" − 1 2" 2" + 1 2" + 2 2" + 3 2" + 4 2" + 5

2" − 3 2" − 2 2" − 1 2" 2" + 1 2" + 2 2" + 4 2" + 5

)*
)*
4

2" + 3
(b) LiftDownPool

(a) Downsizing

FIGURE A.3: Illustration how LiftDownPool reduces aliasing com-
pared to downsizing [195]. Dashed line means original signal. (a)
solid line is after downsizing. (b) solid line is after LiftDownPool. The

solid and dashed lines cover the same area in (b).

the predictor P(·) for the odd part x2k+1 could easily take the average of its two even
neighbors:

dk = x2k+1 − (x2k + x2k+2)/2 (A.1)

Thus, if x is linear in a local area, the detail dk is zero. The prediction step takes care
of some of the spatial correlation. If an approximation s of the original signal x is
simply taken from the even part xe, it is really downsizing the signal shaped in the red
line. There is serious aliasing. The running average of xe is not the same as that of
the original signal x. The updater U (·) in Eq 3.3 corrects this by replacing xe with
smoothed values s. Specifically, U (·) restores the correct running average and thus
reduces aliasing:

sk = x2k + (dk−1 + dk)/4 (A.2)

As shown in Figure A.3, dk is the difference between the odd sample x2k+1 and the
average of two even samples. This causes a loss dk/2 in the area with the red shade.
To preserve the running average, this area is redistributed to the two neighbouring
even samples x2k and x2k+2, which shapes a coarser piecewise linear signal s in the
solid line. The signal after LiftDownPool, drawn as solid line, covers the same area
with the original signal dashed line. LiftDownPool reduces aliasing compared to the
downsizing drawn in the solid line in (a).
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(A) (B)

(C) (D)

FIGURE A.4: Comparisons between the robustness of various pool-
ing methods to per kind of corruption on ImageNet-C and pertur-
bation on ImageNet-P. LiftDownPool presents stronger robustness to

almost all the corruptions and perturbations.

Out-of-distribution Robustness We show the robustness of pooling methods for
each corruption and perturbation type in Figure A.4. Corruption Error (CE) is the
metric of the robustness to corruptions on ImageNet-C. And Flip Rate (FR) is reported
for the robustness to perturbation on ImageNet-P. Following [84], we report both un-
normalized raw values and normalized values by AlexNet’s CE and FR. Lower values
are better. As seen in Figure A.4(a) and (c), LiftDownPool gets the lowest CE for
most of the “high frequency” corruptions including gaussian noise and spatter, as well
as the “low frequency” corruptions such as motion blur, zoom blur. In Figure A.4(b)
and (d), it clearly shows LiftDownPool has less sensitivity to most of the perturbations
such as speckle noise and gaussian blur.

Visualization of Up-pooling In Figure A.5, we show the feature map for each
predicted category from the last layer of SegNet using varying up-pooling methods.
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Using MaxUpPool, the feature maps look noisy and less continuous due to the fact that
MaxUpPool generates the output with many ‘zeros’, where there is no information. By
applying a BlurPool following the MaxUpPool, the feature maps turn more smooth,
while still with less details. LiftUpPool, benefiting from the recorded details during
LiftDownPool, produces finer feature maps for each category. It has smooth edges,
continuous segmentation maps and less aliasing.
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MaxUpPool MaxUpPool+BlurPool LiftUpPoolGround-truth

cow

person

motobike

car

FIGURE A.5: Visualization of feature maps per-predicted-category
from the last layer of SegNet. Lift-UpPool generates more precise

predictions for each category.
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Appendix B

Supplementary Materials for Dance
with Flow

B.1 Extra Experiments and Results
All the results in this supplementary material are from a single-frame network trained
on UCF101-24. We report mAP at the high IoU threshold of 0.5:0.95. BroxFlow is
applied here.

Influence of Fusion Performance of different fusion methods are seen in Table
C.1. Besides mean fusion, we use another two fusion methods to fuse RGB-stream and
flow-stream following [184]. To conduct boost fusion, we perform L-1 normalization
on the detection boxes’ scores after fusion and then retain any flow detection boxes for
which an associated appearance based box was not found. The other way is retaining
the union {ba

i } ∪ {b f
j } of the two sets of RGB-stream {ba

i } and flow-stream {b f
j }

detection boxes, respectively. All of the three fusion methods applied to two stream
help to improve results of single stream. Mean fusion is the best way to fuse RGB-
and flow- stream. Our two-in-one stream beats all of them with only half runtime and
model size.

Quantitative Results per Action We report deteciton results per action from
UCF101-24 in Table B.2. For some challenging cases such as basketball dunk, cricket
bowling, pole vault and volleyball spiking, which have crowded and cluttered back-
grounds, our two-in-one stream achieves better results than other methods. For instance
two-in-one stream outperforms two-stream by 6% and RGB-stream by 9% for pole
vault. For the cases where multiple instances may occur, such as fencing, ice dancing
and salsa spin, our two-in-one stream also boosts the accuracy. Notably, fusing RGB
and optical flow, improves results in most cases except for skiing. Both two-stream and
two-in-one stream perform worse than the RGB-stream for skiing. The flow images
are very noisy and even make results worse. Overall, the proposed two-in-one stream
outperforms alternatives for 16 out of 24 action classes.

Qualitative Results per Action Some successful detected results of challenging
cases using our two-in-one stream are visualized in Figure B.1 and Figure B.2. The
green boxes represent the ground truth boxes. The yellow boxes with the labels are
detected boxes with the classification scores.
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Accuracy Efficiency

sec/frame parameters (MB)

flow-stream 11.60 0.04 102.32
RGB-stream 18.49 0.04 102.32
two-stream (boost-fusion) 18.97 0.09 204.64
two-stream (union-set) 19.42 0.09 204.64
two-stream (mean-fusion) 19.79 0.09 204.64
two-in-one stream 21.51 0.04 102.44

TABLE B.1: Influence of Fusion Performance (mAP@IoU =
0.5:0.95, runtime and model size) comparison on UCF101-24. Three
different fusion methods are used in two-stream method. Mean fusion
achieves better results than the two others. Our two-in-one stream out-

performs all of them.

Basketball dunk is difficult as there are many interfering actors. An RGB-stream
cannot detect any actions for the scenes shown in the Figure B.1. For cliff diving,
when the actor reaches the surface of the water, the action is mistaken as surfing due
to the sea context captured by the RGB-stream. The RGB-stream model may pay
more attention to backgrounds. However, our two-in-one stream using flow condition
to modulate RGB features, focuses more on actions and improves the results. For
pole vault, it is easily mistaken as cliff diving when the actor falls down from up
using the RGB stream. Our two-in-one strem performs better. In Figure B.2, we also
show some multi-instance cases such as ice dancing and salsa spin. In these cases
only one ground-truth box is given for each image. However, it is reasonable that
our two-in-one stream is capable to detect multiple instances. Thus, the results are
actually better than the AP values of these cases shown in Table B.2. It is worth to be
mentioned that the detection boxes of our two-in-one stream have high overlap with
the ground-truth boxes.

Failure Cases We show three kinds of failure cases in Figure B.3. It is difficult to
define whether the frames at the bound of an action are action or not. In the first row,
these frames follow an action tennis swing. The model still takes them as tennis swing.
Without considering ground-truth, we think it is reasonable. In the second row, when
the actor appears blurry, our model still gives correct detection in the last three frames.
However, there are no actions in the ground-truth for these frames. In the third row,
the model successfully locates the actors, but assigns the wrong action label. The real
action is pole vault, which has a similar run-up with floor gymnastics in the beginning
of the action.
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FIGURE B.1: Examples of successful detected results of some chal-
lenging cases using our two-in-one stream. The green boxes represent
ground-truth boxes. The yellow boxes with labels mean detection boxes
with classification scores. Our two-in-one stream performs well at high

IoU thresholds.
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FIGURE B.2: Examples of successful detected results. Our two-in-one
stream is able to detect multiple instances for ice dancing and salsa
spin. It is reasonable even only one actor is labeled in the ground-truth.
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FIGURE B.3: Failure cases. It is reasonable to assign tennis swing to
these actions in first row even there is no action for these frames in the
ground-truth. In the second row, our model still gives correct detections
for the blurry actions even no actions are labeled in the ground-truth. In
the last row, our model successfully locates the actors. But pole vault is
mistaken as floor gymnastics as the two actions have the similar run-up

in the beginning.
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C.1 Action Classification
Backbone. For fast training, we use Resnet18-3D as backbone for the ablation
study. We suggest to plug the aligned 3D convolution into the layer res2. The network
structure is shown in Table C.1.

Applying the aligned convolution to multiple layers. In the ablation study, we
plug the patch-to-point aligned 3D convolution into different individual layers. We
find it is better to apply the aligned 3D convolution to the bottom layer. Besides,
we also add it to multiple residual layers. We use input length 32. There are modest
improvements when applying the patch-to-point aligned convolution to multiple layers
compared to a single layer. The results are shown in Table C.2. Thus, we prefer to
utilize the aligned 3D convolution in the single res2 layer.

C.2 Moving Object Segmentation.
Network Architecture. We extend a Deeplab [23] model to a 3D convolution
network for moving object segmentation in videos. An encoder-decoder structure
shown in Figure C.1 is adopted. An input clip includes eight successive frames from a
video. We take a light network Resnet18 as the encoder. A pretrained model for action
classification on Kinetics400 is used for initializing the weights. We apply Atrous
Spatial Pyramid Pooling for multiple scale representations before the decoder. In
order to generate segmentation maps with the same spatial and temporal dimensions
per input clip, 3D upsampling is utilized in the decoder. To verify the effectiveness
of the aligned 3D convolution for moving object segmentation, we only plug the
patch-to-point aligned convolution into the residual layers in the encoder.
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layer output size

conv1 7 × 7 × 7, 64, stride 1,2,2 16 × 56 × 56

pool1 3 × 3 × 3, max, stride 2,2,2 8 × 28 × 28

res2

3 × 3 × 3, 64

3 × 3 × 3, 64

×2 8 × 28 × 28

res3

3 × 3 × 3, 128

3 × 3 × 3, 128

×2 4 × 14 × 14

res4

3 × 3 × 3, 256

3 × 3 × 3, 256

×2 2 × 7 × 7

res5

3 × 3 × 3, 512

3 × 3 × 3, 512

×2 1 × 4 × 4

global average pool, fc 1 × 1 × 1

TABLE C.1: Resnet18-3D baseline model used in our ablation studies.
The dimensions of 3D output maps and filter kernels are in T × H ×W,
with the number of channels following. The input size 16 × 112 × 112
is taken as an example. The details of a Residual block is shown in

brackets.

top-1 top-5

3D baseline 48.57 71.87

patch-to-point
res2 52.25 74.17
res2, res3 52.38 75.67
res2, res3, res4 52.70 75.07

TABLE C.2: Applying the patch-to-point aligned convolution to
multiple layers achieves slight improvements compared to a single
layer. All aligned convolution models outperform the 3D baseline on

UCF101.

Implementation. We conduct the experiments on Densely Annotated Video Seg-
mentation 2016 (DAVIS2016) [155]. There are 50 videos with 3455 annotated frames,
including 30 videos for training and 20 videos for test. Following the previous
works [89], we use 480p videos with a resolution of 854 × 480 pixels. For train-
ing and test, we resize the frames to 530 × 300. The training leverages the Adam
optimizer with initial learning rate 0.001.
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FIGURE C.1: Network architecture for moving object segmentation.
We use Resnet18-3D as the encoder. For multiple scale representations,
Atrous Spatial Pyramid Pooling is applied. d means the dilation rate
for the atrous convolution. In the decoder, the up-sampling layer is a

tri-linear interpolation layer.

FIGURE C.2: Sequence visualization of moving object segmentation.
We show segmentation results of some video sequences in DAVIS2016
generated by the patch-to-point aligned 3D convolution network. The
output on the pixel level are indicated by the pink mask. It works well

for the occlusion and deformable cases.

Visualization. We visualize the segmentation results of some sequences using
the patch-to-point aligned convolution network in Figure C.2. The patch-to-point
aligned convolution performs well for the occlusion and deformable cases. Some
video examples are also uploaded with the file.
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Appendix D

Supplementary Materials for TubeR

Losses. During TubeR training, we first produce an optimal bipartite matching δ
between predictions and ground truth tubelets. δ(i) is the index of the prediction
matched with the i-th ground-truth tubelet. We need to calculate the losses between
a set of ground-truth tubelets Y=(Ycoor, Yswitch, Yclass) and the matched predictions
y=(ycoor, yswitch, yclass).

We utilize four losses: an action classification loss, a box matching loss, a general-
ized IoU [163] loss and an action switch loss to train TubeR. The total loss is a linear
combination of the four losses:

L = λ1Lswitch(yswitch, Yswitch) + λ2Lclass(yclass, Yclass)

+λ3Lbox(ycoor, Ycoor) + λ4Liou(ycoor, Ycoor).
(D.1)

Lclass = −
N

∑
i=1

L

∑
j=1

[Yclass(i, j) log yclass(δ(i), j)

+(1 − Yclass(i, j)) log(1 − yclass(δ(i), j))] .

(D.2)

Lswitch = −
N

∑
i=1

Tout

∑
j=1

[Yswitch(i, j) log yswitch(δ(i), j)

+(1 − Yswitch(i, j)) log(1 − yswitch(δ(i), j))] .

(D.3)

Lbox =
N

∑
i=1

Tout

∑
j=1

∥Ycoor(i, j)− ycoor(δ(i), j)∥1. (D.4)

Liou =
N

∑
i=1

Tout

∑
j=1

Giou(Ycoor(i, j), ycoor(δ(i), j)), (D.5)

Giou(b, b̂) = 1 −
(
|b⋂ b̂|
|b⋃ b̂|

− |B(b, b̂)\b
⋃

b̂
B(b, b̂)

)
. (D.6)
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Here Giou(b, b̂) is the generalized IoU [163] loss between two given boxes b and
b̂. We empirically set the scale parameter as λ1=1, λ2=5, λ3=2, λ4=2.
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FIGURE D.1: Comparison between TubeR and a hypotheses-base
detector on UCF101-24. TubeR performs better on most of the action

classes.

TubeR vs. hypotheses-based method on UCF101-24. We compare TubeR and [106],
which depends on positional hypotheses to do detection on UCF101-24, with per-class
Video-mAP@0.5 in Figure D.1. For actions with multiple people, TubeR detects the
action more precisely and produces higher video-mAP, like 44.83% for ‘Basketball-
Dunk’ compared to [106] with video-mAP 1.19%. The tubelet attention mechanism
better models the relations between the real action tubelets and surroundings. We
note that [106] hardly works for ‘Basketball’ and ‘TennisSwing’ which have many
transitional states. TubeR improves significantly for theses action categories. TubeR
performs slightly worse for ‘LongJump’ in which actors may change scales along
time. As [106] applies multiple scale anchors and multiple level features, it is more
robust in this case. Incorporating multiple level features into TubeR will further help
improve TubeR results.
TubeR vs. two-stage method on AVA. We use CSN-50 [203] as backbone with 1-
view evaluation protocol unless specified otherwise. We report frame-mAP@IoU=0.5
for AVA v2.1. We compare the performance between a baseline [74] using offline
person detection rather than a Region-Proposal-Network, and our TubeR. We used
the same input (32 × 2) and we did not use long-term context feature for TubeR. To
make a fair comparison, the baseline is evaluated using bounding boxes generated
by TubeR (93.3% AP for person localization). The results are shown in Table D.1.
TubeR achieves +5% frame-mAP compared to the baseline. TubeR is a unified
approach which performs localization and classification from a single tubelet-level
feature, rather than separated features used in the baseline. It further demonstrates the
effectiveness of tubelet-level features.
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(a)

(b)

(c)

(d)

FIGURE D.2: Action tubelets visualization on UCF101-24 and
JHMDB51-21. Each action tubelet contains its action labels and boxes
on each frame. (a-b) are from UCF101-24 to show the cases with de-
formable actors and crowded people. (c-d) are from JHMDB51-21 to

show the fast action and interacted action.

Model frame-mAP@IoU=0.5

Baseline [74] 22.8
TubeR 27.7

TABLE D.1: Comparison between a two-stage baseline and TubeR.
The TubeR only use short-term context feature. TubeR performs sig-

nificantly better than the baseline.

Visualization. We show more action tubelets generated by TubeR in Figure D.2.
TubeR performs well in various cases. In Figure D.2 (a-b), we show the cases with
deformable actors and crowded people from UCF101-24. Figure D.2 (c-d) present
the fast action and interacted action from JHMDB51-21. Moreover, some challenging
cases on AVA are visualized in Figure D.3. All these cases show our TubeR is able to
generate precise tubelets with various length.

We also generate a demo on AVA and some random movie clips. Different colours
are used for labeling different action tubelet. One can clearly see TubeR detects action
tubelets well.

We will release all TubeR code.
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watch (a person),

crouch/kneel,
hug (a person)
watch (a person)

(a)

(b)

(c)

sit,
sing to (e.g., self, a person, a group),
play musical instrument

(d)

dance,
sing

dance,
sing

dance,
sing

dance,
sing

dance,
sing

dance,
sing

dance,
sing

walk,
carry/hold (an object)

walk,
carry/hold (an object)

walk walk walk

stand,
talk to (e.g., self, a person, a group),
watch (a person)

stand,
listen to (a person),
watch (a person)

sit,
talk to (e.g., self, a person, a group),
watch (a person)

sit

sit,
carry/hold (an object),
listen to (a person)

walk,
watch (a person)

fight/hit (a person),
fall down

(e)

(f)

(g)

(h)

watch (a person),
talk to,
stand

watch (a person),
listen to (a person),
sit

FIGURE D.3: Action tubelets visualization on AVA. We use different
colors to mark different tubelets. Each action tubelet contains its action
labels and boxes on each frame. We only show the action labels on the
first frame of an action tube. We show some challenging cases here.
(a) and (b) Raw actions: “play musical instrument”, “hug (a person)”
. (c) Tiny actions. The actors are very tiny. (d) Crowded cases. (e-h)
Shot cuts. All these cases show our TubeR is able to generate precise

tubelets with various length.
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Summary

This thesis aims at learning continuity for visual recognition. As a natural property
of images and videos, continuity is important for many computer vision tasks. The
thesis strives to answer the research question “What is the benefit of continuity for
image and video recognition?” Therefore, the thesis includes two parts, respectively
looking into spatial continuity of images and spatio-temporal continuity of videos.
Our contributions are:

Part I: Learning Continuity for Image Recognition

In Chapter 2, we explore spatial continuity for image colorization. While many
image colorization algorithms have recently shown the capability of producing plausi-
ble color versions from gray-scale photographs, they still suffer from limited semantic
understanding. To address this shortcoming, we propose to exploit pixelated object
semantics to guide image colorization. The rationale is that human beings perceive
and distinguish colors based on the semantic categories of objects. Starting from
an autoregressive model, we generate image color distributions, from which diverse
colored results are sampled. We propose two ways to incorporate object semantics
into the colorization model: through a pixelated semantic embedding and a pixelated
semantic generator. Our network, when trained with semantic segmentation labels,
produces more realistic and finer results compared to the colorization state-of-the-art.

Chapter 3 presents a new pooling method maintaining better spatial continuity.
Most existing pooling operations downsample the feature maps, which is a lossy pro-
cess. Moreover, they are not invertible: upsampling a downscaled feature map can not
recover the lost information in the downsampling. By adopting the philosophy of the
classical Lifting Scheme from signal processing, we propose LiftPool for bidirectional
pooling layers, including LiftDownPool and LiftUpPool. LiftDownPool decomposes
a feature map into various downsized sub-bands, each of which contains informa-
tion with different frequencies. LiftUpPool is able to generate a refined upsampled
feature map using the detail sub-bands, which is useful for image-to-image transla-
tion challenges. Experiments show the proposed methods achieve better results on
image classification and semantic segmentation, using various backbones. Moreover,
LiftDownPool offers better robustness to input corruptions and perturbations.
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Part II: Learning Continuity for Video Recognition

The goal of Chapter 4 is to utilize temporal continuity for action detection. The two-
stream detection network based on RGB and flow provides state-of-the-art accuracy at
the expense of a large model-size and heavy computation. We propose to embed RGB
and optical-flow into a single two-in-one stream network with new layers. A motion
condition layer extracts motion information from flow images, which is leveraged by
the motion modulation layer to generate transformation parameters for modulating
the low-level RGB features. The method is easily embedded in existing appearance-
or two-stream action detection networks, and trained end-to-end. Leveraging the
motion condition to modulate RGB features improves detection accuracy and is more
efficient.

Chapter 5 targets on endowing a 3D-Convnet with spatio-temporal continuity.
Effectively capturing spatio-temporal information is critical for video analysis. The 3D
convolution is designed for this objective. It aggregates the information from the same
spatial grids across the time steps, thereby ignoring the object dislocations caused by
motion. In this chapter, we present aligned 3D convolution blocks, which collect the
valuable information from the locations aligned by the learned offsets rather than the
original dislocated positions. Furthermore, we propose three variants: patch-to-patch
aligned convolution, patch-to-point aligned convolution and point-to-point aligned
convolution. Thanks to their ability to align spatial video changes over time, without
the need to pre-compute optical flow, aligned 3D convolution blocks are effective
for different frame-rate videos. Additionally, the building blocks are easily plugged
into many existing network architectures. Experiments illustrate the effectiveness and
robustness of the aligned 3D convolutions.

In Chapter 6, we propose TubeR: a simple solution for spatio-temporal video
action detection. Different from existing methods that depend on either an off-line
actor detector or hand-designed actor-positional hypotheses like proposals or anchors,
we propose to directly detect an action tubelet in video by simultaneously performing
action localization and recognition from a single representation. TubeR learns a
set of tubelet-queries and utilizes a tubelet-attention module to model the dynamic
spatio-temporal nature of a video clip, which effectively reinforces the model capacity
compared to using actor-positional hypotheses in the spatio-temporal space. For
videos containing transitional states or scene changes, we propose a context aware
classification head to utilize short-term and long-term context to strengthen action
classification, and an action switch regression head for detecting the precise temporal
action extent. TubeR directly produces action tubelets with variable lengths and even
maintains good results for long video clips.

This thesis has explored potential benefits of continuity for image and video recog-
nition. Various fundamental topics have been covered, including image colorization,
image classification, semantic segmentation, video action detection, action recognition
and video object segmentation. Finally, our journey through exploring continuity in
visual recognition has come to an end, but the quest will never be over. With speedy



Summary 141

developments in computer vision by learning, more and more attention is being paid
to the benefit of continuity, especially for video tasks. Future work should target
on even more flexible spatio-temporal continuity modelling to further boost video
understanding.
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Samenvatting

Dit proefschrift is gericht op het leren van continuïteit voor visuele herkenning. Als
een natuurlijke eigenschap van afbeeldingen en video’s is continuïteit belangrijk
voor veel beeldverwerkingstaken. Het proefschrift streeft naar het beantwoorden
van de volgende onderzoeksvraag: “Wat is het nut van continuïteit voor beeld- en
videoherkenning?” Het proefschrift omvat twee delen: het kijken naar ruimtelijke
continuïteit van afbeeldingen en spatio-temporele continuïteit van video’s. Onze
bijdragen zijn:

Deel I: Continuïteit leren voor beeldherkenning

In hoofdstuk 2 onderzoeken we de ruimtelijke continuïteit voor beeld inkleuring.
Hoewel veel algoritmen voor het inkleuren van beelden onlangs het vermogen hebben
laten zien om geloofwaardige kleurenversies van grijswaardenfoto’s te produceren, is
er nog steeds een beperkt semantisch begrip. Om deze tekortkomingen te adresseren
stellen we voor om gepixelde object semantiek te exploiteren om beeld inkleuring te
bewerkstelligen. De grondgedachte is dat mensen waarnemen en onderscheid maken
tussen kleuren op basis van de semantische categorieën van objecten. Beginnend
vanuit een autoregressief model genereren we beeld-kleur verdelingen van waaruit
diverse gekleurde resultaten worden gesampled. We stellen twee manieren voor om
object semantiek te verwerken in het kleuringsmodel: via een gepixelde semantische
representatie en een gepixelde semantische generator. Ons netwerk, wanneer het
getraind wordt met semantische segmentatielabels, produceert meer realistische en
fijnere resultaten in vergelijking met de state-of-the-art kleuring.

Hoofdstuk 3 presenteert een nieuwe pooling methode die een betere ruimtelijke
continuïteit behoudt. De meeste bestaande pooling operaties downsamplen de fea-
ture maps, wat een verliesgevend proces is. Bovendien zijn ze niet omkeerbaar: het
upsamplen van een verkleinde feature map kan niet de verloren informatie in de
downsampling herstellen. Door de filosofie van het klassieke ‘Lifting Scheme’ van
signaalverwerking aan te passen, stellen we LiftPool voor voor bidirectionele pooling
lagen, inclusief LiftDownPool en LiftUpPool. LiftDownPool ontleedt een feature map
in verschillende verkleinde sub-banden, waarvan elk informatie bevat met verschil-
lende frequenties. LiftUpPool kan een verfijnde ge-upsamplede feature map genereren
door gedetailleerde sub-banden te gebruiken, wat handig is voor uitdagingen in beeld-
naar-beeld vertaling. Experimenten tonen aan dat de voorgestelde methoden betere
resultaten opleveren op beeldclassificatie en semantische segmentatie, met behulp van
verschillende backbones. Bovendien biedt LiftDownPool een betere robuustheid voor
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invoercorrupties en verstoringen.

Deel II: Continuïteit leren voor videoherkenning

Het doel van hoofdstuk 4 is om temporele continuïteit te gebruiken voor actiede-
tectie. Het tweestromige detectie netwerk gebaseerd op RGB en stroom biedt state-of-
the-art nauwkeurigheid ten koste van een grote modelgrootte en zware berekeningen.
We stellen voor om RGB en optische stroom in een enkel twee-in-een stroom netwerk
te embedden met nieuwe lagen. Een bewegingscondidtielaag extraheert bewegingsin-
formatie uit stroombeelden, die wordt benut door de bewegingsmodulatielaag om
transformatieparameters te genereren om de low-level RGB-functies te moduleren.
De methode kan eenvoudig worden ingebed in een bestaande verschijning of twee-
strooms actiedetectienetwerken en kan end-to-end worden getraind. Het gebruik
maken van de bewegingsconditie om RGB-functies te moduleren verbetert de detec-
tienauwkeurigheid en is efficiënter.

Hoofdstuk 5 richt zich op het geven van een 3D-Convnet met spatio-temporele
continuïteit. Het effectief vastleggen van spatio-temporele informatie is van cruci-
aal belang voor video-analyse. De 3D convolutie is ontworpen voor dit doel. Het
aggregeert de informatie van dezelfde ruimtelijke rasters over tijd, waarbij de object-
dislocaties worden genegeerd die worden veroorzaakt door beweging. In dit hoofd-
stuk presenteren we uitgelijnde 3D-convolutieblokken die de waardevolle informatie
verzamelen van locaties die uitgelijnd zijn door de geleerde offsets in plaats van de
oorspronkelijke ontwrichte posities. Verder stellen we drie varianten voor: patch-naar-
patch uitgelijnde convolutie, patch-naar-punt uitgelijnde convolutie en punt-naar-punt
uitgelijnde convolutie. Dankzij hun vermogen om ruimtelijke videoveranderingen
in de loop van de tijd op elkaar af te stemmen, zonder de noodzaak om de optische
stroom vooraf te berekenen, zijn uitgelijnde 3D-convolutieblokken effectief voor
video’s met verschillende frame snelheden. Bovendien zijn de bouwstenen eenvoudig
in te pluggen in veel bestaande netwerkarchitecturen. Experimenten illustreren de
effectiviteit en robuustheid van de uitgelijnde 3D-convoluties.

In hoofstuk 6 stellen we TubeR voor: een eenvoudige oplossing voor spatio-
temporele video actiedetectie. Anders dan bestaande methoden die afhankelijk zijn
van een offline actor detector of met de hand ontworpen actor-positionele hypothesen
zoals voorstellen of ankers, stellen we voor om een actie tubelet in video te detecteren
door gelijktijdig actielokalisatie en herkenning vanuit een enkele representatie uit
te voeren. TubeR leert een verzameling van tubelet query’s en maakt gebruik van
een tubelet-aandacht-module om de dynamische spatio-temporele aard van een video
clip te modelleren, waardoor de modelcapaciteit effectief wordt versterkt vergeleken
met het gebruik van actor-positionele hypothesen in de spatio-temporele ruimte. Voor
video’s met overgangstoestanden of scèneveranderingen stellen we een contextbe-
wuste classificatie kop voor om korte- en lange termijn context te gebruiken om
actieclassificatie te versterken en een actie schakelaar regressie kop om precieze
temporele actie omvang te detecteren. TubeR produceert direct actie tubelets met
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variabele lengtes en behoudt zelfs goede resultaten voor lange videoclips.
Dit proefschrift heeft de potentiële voordelen van continuïteit voor beeld- en video-

herkenning onderzocht. Er zijn verschillende fundamentele onderwerpen behandeld,
waaronder het inkleuren van afbeeldingen, beeldclassificatie, semantische segmen-
tatie, video-actiedetectie, actieherkenning en video-object segmentatie. Uiteindelijk
is onze reis door het verkennen van continuïteit in visuele herkenning tot een einde
gekomen, maar de zoektocht zal nooit voorbij zijn. Met snelle ontwikkelingen in
beeldverwerking door te leren, komt er steeds meer aandacht ten behoeve van de
continuïteit, met name voor videotaken. Toekomstig werk moet gericht zijn op nog
flexibelere spatio-temporele continuïteitsmodellering om begrip over video verder te
stimuleren.
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