9 research outputs found

    Multi-resolution Tensor Learning for Large-Scale Spatial Data

    Get PDF
    High-dimensional tensor models are notoriously computationally expensive to train. We present a meta-learning algorithm, MMT, that can significantly speed up the process for spatial tensor models. MMT leverages the property that spatial data can be viewed at multiple resolutions, which are related by coarsening and finegraining from one resolution to another. Using this property, MMT learns a tensor model by starting from a coarse resolution and iteratively increasing the model complexity. In order to not "over-train" on coarse resolution models, we investigate an information-theoretic fine-graining criterion to decide when to transition into higher-resolution models. We provide both theoretical and empirical evidence for the advantages of this approach. When applied to two real-world large-scale spatial datasets for basketball player and animal behavior modeling, our approach demonstrate 3 key benefits: 1) it efficiently captures higher-order interactions (i.e., tensor latent factors), 2) it is orders of magnitude faster than fixed resolution learning and scales to very fine-grained spatial resolutions, and 3) it reliably yields accurate and interpretable models

    A Location-Sentiment-Aware Recommender System for Both Home-Town and Out-of-Town Users

    Full text link
    Spatial item recommendation has become an important means to help people discover interesting locations, especially when people pay a visit to unfamiliar regions. Some current researches are focusing on modelling individual and collective geographical preferences for spatial item recommendation based on users' check-in records, but they fail to explore the phenomenon of user interest drift across geographical regions, i.e., users would show different interests when they travel to different regions. Besides, they ignore the influence of public comments for subsequent users' check-in behaviors. Specifically, it is intuitive that users would refuse to check in to a spatial item whose historical reviews seem negative overall, even though it might fit their interests. Therefore, it is necessary to recommend the right item to the right user at the right location. In this paper, we propose a latent probabilistic generative model called LSARS to mimic the decision-making process of users' check-in activities both in home-town and out-of-town scenarios by adapting to user interest drift and crowd sentiments, which can learn location-aware and sentiment-aware individual interests from the contents of spatial items and user reviews. Due to the sparsity of user activities in out-of-town regions, LSARS is further designed to incorporate the public preferences learned from local users' check-in behaviors. Finally, we deploy LSARS into two practical application scenes: spatial item recommendation and target user discovery. Extensive experiments on two large-scale location-based social networks (LBSNs) datasets show that LSARS achieves better performance than existing state-of-the-art methods.Comment: Accepted by KDD 201

    Multi-resolution Tensor Learning for Large-Scale Spatial Data

    Get PDF
    High-dimensional tensor models are notoriously computationally expensive to train. We present a meta-learning algorithm, MMT, that can significantly speed up the process for spatial tensor models. MMT leverages the property that spatial data can be viewed at multiple resolutions, which are related by coarsening and finegraining from one resolution to another. Using this property, MMT learns a tensor model by starting from a coarse resolution and iteratively increasing the model complexity. In order to not "over-train" on coarse resolution models, we investigate an information-theoretic fine-graining criterion to decide when to transition into higher-resolution models. We provide both theoretical and empirical evidence for the advantages of this approach. When applied to two real-world large-scale spatial datasets for basketball player and animal behavior modeling, our approach demonstrate 3 key benefits: 1) it efficiently captures higher-order interactions (i.e., tensor latent factors), 2) it is orders of magnitude faster than fixed resolution learning and scales to very fine-grained spatial resolutions, and 3) it reliably yields accurate and interpretable models

    Point of interests recommendation in location-based social networks

    Get PDF

    Spatio-Temporal Recommendation in Social Media

    No full text

    Spatio-temporal recommendation in social media

    No full text
    corecore