475 research outputs found

    Vision-based Human Fall Detection Systems using Deep Learning: A Review

    Full text link
    Human fall is one of the very critical health issues, especially for elders and disabled people living alone. The number of elder populations is increasing steadily worldwide. Therefore, human fall detection is becoming an effective technique for assistive living for those people. For assistive living, deep learning and computer vision have been used largely. In this review article, we discuss deep learning (DL)-based state-of-the-art non-intrusive (vision-based) fall detection techniques. We also present a survey on fall detection benchmark datasets. For a clear understanding, we briefly discuss different metrics which are used to evaluate the performance of the fall detection systems. This article also gives a future direction on vision-based human fall detection techniques

    Machine Learning Methods for Image Analysis in Medical Applications, from Alzheimer\u27s Disease, Brain Tumors, to Assisted Living

    Get PDF
    Healthcare has progressed greatly nowadays owing to technological advances, where machine learning plays an important role in processing and analyzing a large amount of medical data. This thesis investigates four healthcare-related issues (Alzheimer\u27s disease detection, glioma classification, human fall detection, and obstacle avoidance in prosthetic vision), where the underlying methodologies are associated with machine learning and computer vision. For Alzheimer’s disease (AD) diagnosis, apart from symptoms of patients, Magnetic Resonance Images (MRIs) also play an important role. Inspired by the success of deep learning, a new multi-stream multi-scale Convolutional Neural Network (CNN) architecture is proposed for AD detection from MRIs, where AD features are characterized in both the tissue level and the scale level for improved feature learning. Good classification performance is obtained for AD/NC (normal control) classification with test accuracy 94.74%. In glioma subtype classification, biopsies are usually needed for determining different molecular-based glioma subtypes. We investigate non-invasive glioma subtype prediction from MRIs by using deep learning. A 2D multi-stream CNN architecture is used to learn the features of gliomas from multi-modal MRIs, where the training dataset is enlarged with synthetic brain MRIs generated by pairwise Generative Adversarial Networks (GANs). Test accuracy 88.82% has been achieved for IDH mutation (a molecular-based subtype) prediction. A new deep semi-supervised learning method is also proposed to tackle the problem of missing molecular-related labels in training datasets for improving the performance of glioma classification. In other two applications, we also address video-based human fall detection by using co-saliency-enhanced Recurrent Convolutional Networks (RCNs), as well as obstacle avoidance in prosthetic vision by characterizing obstacle-related video features using a Spiking Neural Network (SNN). These investigations can benefit future research, where artificial intelligence/deep learning may open a new way for real medical applications

    Two-Stream RNN/CNN for Action Recognition in 3D Videos

    Full text link
    The recognition of actions from video sequences has many applications in health monitoring, assisted living, surveillance, and smart homes. Despite advances in sensing, in particular related to 3D video, the methodologies to process the data are still subject to research. We demonstrate superior results by a system which combines recurrent neural networks with convolutional neural networks in a voting approach. The gated-recurrent-unit-based neural networks are particularly well-suited to distinguish actions based on long-term information from optical tracking data; the 3D-CNNs focus more on detailed, recent information from video data. The resulting features are merged in an SVM which then classifies the movement. In this architecture, our method improves recognition rates of state-of-the-art methods by 14% on standard data sets.Comment: Published in 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS

    Comprehensive review of vision-based fall detection systems

    Get PDF
    Vision-based fall detection systems have experienced fast development over the last years. To determine the course of its evolution and help new researchers, the main audience of this paper, a comprehensive revision of all published articles in the main scientific databases regarding this area during the last five years has been made. After a selection process, detailed in the Materials and Methods Section, eighty-one systems were thoroughly reviewed. Their characterization and classification techniques were analyzed and categorized. Their performance data were also studied, and comparisons were made to determine which classifying methods best work in this field. The evolution of artificial vision technology, very positively influenced by the incorporation of artificial neural networks, has allowed fall characterization to become more resistant to noise resultant from illumination phenomena or occlusion. The classification has also taken advantage of these networks, and the field starts using robots to make these systems mobile. However, datasets used to train them lack real-world data, raising doubts about their performances facing real elderly falls. In addition, there is no evidence of strong connections between the elderly and the communities of researchers
    • …
    corecore