2,239 research outputs found

    Curriculum Domain Adaptation for Semantic Segmentation of Urban Scenes

    Full text link
    During the last half decade, convolutional neural networks (CNNs) have triumphed over semantic segmentation, which is one of the core tasks in many applications such as autonomous driving. However, to train CNNs requires a considerable amount of data, which is difficult to collect and laborious to annotate. Recent advances in computer graphics make it possible to train CNNs on photo-realistic synthetic imagery with computer-generated annotations. Despite this, the domain mismatch between the real images and the synthetic data cripples the models' performance. Hence, we propose a curriculum-style learning approach to minimize the domain gap in urban scenery semantic segmentation. The curriculum domain adaptation solves easy tasks first to infer necessary properties about the target domain; in particular, the first task is to learn global label distributions over images and local distributions over landmark superpixels. These are easy to estimate because images of urban scenes have strong idiosyncrasies (e.g., the size and spatial relations of buildings, streets, cars, etc.). We then train a segmentation network while regularizing its predictions in the target domain to follow those inferred properties. In experiments, our method outperforms the baselines on two datasets and two backbone networks. We also report extensive ablation studies about our approach.Comment: This is the extended version of the ICCV 2017 paper "Curriculum Domain Adaptation for Semantic Segmentation of Urban Scenes" with additional GTA experimen

    Model Adaptation with Synthetic and Real Data for Semantic Dense Foggy Scene Understanding

    Full text link
    This work addresses the problem of semantic scene understanding under dense fog. Although considerable progress has been made in semantic scene understanding, it is mainly related to clear-weather scenes. Extending recognition methods to adverse weather conditions such as fog is crucial for outdoor applications. In this paper, we propose a novel method, named Curriculum Model Adaptation (CMAda), which gradually adapts a semantic segmentation model from light synthetic fog to dense real fog in multiple steps, using both synthetic and real foggy data. In addition, we present three other main stand-alone contributions: 1) a novel method to add synthetic fog to real, clear-weather scenes using semantic input; 2) a new fog density estimator; 3) the Foggy Zurich dataset comprising 38083808 real foggy images, with pixel-level semantic annotations for 1616 images with dense fog. Our experiments show that 1) our fog simulation slightly outperforms a state-of-the-art competing simulation with respect to the task of semantic foggy scene understanding (SFSU); 2) CMAda improves the performance of state-of-the-art models for SFSU significantly by leveraging unlabeled real foggy data. The datasets and code are publicly available.Comment: final version, ECCV 201

    Listening for Sirens: Locating and Classifying Acoustic Alarms in City Scenes

    Get PDF
    This paper is about alerting acoustic event detection and sound source localisation in an urban scenario. Specifically, we are interested in spotting the presence of horns, and sirens of emergency vehicles. In order to obtain a reliable system able to operate robustly despite the presence of traffic noise, which can be copious, unstructured and unpredictable, we propose to treat the spectrograms of incoming stereo signals as images, and apply semantic segmentation, based on a Unet architecture, to extract the target sound from the background noise. In a multi-task learning scheme, together with signal denoising, we perform acoustic event classification to identify the nature of the alerting sound. Lastly, we use the denoised signals to localise the acoustic source on the horizon plane, by regressing the direction of arrival of the sound through a CNN architecture. Our experimental evaluation shows an average classification rate of 94%, and a median absolute error on the localisation of 7.5{\deg} when operating on audio frames of 0.5s, and of 2.5{\deg} when operating on frames of 2.5s. The system offers excellent performance in particularly challenging scenarios, where the noise level is remarkably high.Comment: 6 pages, 9 figure

    Improving Anomaly Segmentation with Multi-Granularity Cross-Domain Alignment

    Full text link
    Anomaly segmentation plays a crucial role in identifying anomalous objects within images, which facilitates the detection of road anomalies for autonomous driving. Although existing methods have shown impressive results in anomaly segmentation using synthetic training data, the domain discrepancies between synthetic training data and real test data are often neglected. To address this issue, the Multi-Granularity Cross-Domain Alignment (MGCDA) framework is proposed for anomaly segmentation in complex driving environments. It uniquely combines a new Multi-source Domain Adversarial Training (MDAT) module and a novel Cross-domain Anomaly-aware Contrastive Learning (CACL) method to boost the generality of the model, seamlessly integrating multi-domain data at both scene and sample levels. Multi-source domain adversarial loss and a dynamic label smoothing strategy are integrated into the MDAT module to facilitate the acquisition of domain-invariant features at the scene level, through adversarial training across multiple stages. CACL aligns sample-level representations with contrastive loss on cross-domain data, which utilizes an anomaly-aware sampling strategy to efficiently sample hard samples and anchors. The proposed framework has decent properties of parameter-free during the inference stage and is compatible with other anomaly segmentation networks. Experimental conducted on Fishyscapes and RoadAnomaly datasets demonstrate that the proposed framework achieves state-of-the-art performance.Comment: Accepted to ACM Multimedia 202

    Learning Aerial Image Segmentation from Online Maps

    Get PDF
    This study deals with semantic segmentation of high-resolution (aerial) images where a semantic class label is assigned to each pixel via supervised classification as a basis for automatic map generation. Recently, deep convolutional neural networks (CNNs) have shown impressive performance and have quickly become the de-facto standard for semantic segmentation, with the added benefit that task-specific feature design is no longer necessary. However, a major downside of deep learning methods is that they are extremely data-hungry, thus aggravating the perennial bottleneck of supervised classification, to obtain enough annotated training data. On the other hand, it has been observed that they are rather robust against noise in the training labels. This opens up the intriguing possibility to avoid annotating huge amounts of training data, and instead train the classifier from existing legacy data or crowd-sourced maps which can exhibit high levels of noise. The question addressed in this paper is: can training with large-scale, publicly available labels replace a substantial part of the manual labeling effort and still achieve sufficient performance? Such data will inevitably contain a significant portion of errors, but in return virtually unlimited quantities of it are available in larger parts of the world. We adapt a state-of-the-art CNN architecture for semantic segmentation of buildings and roads in aerial images, and compare its performance when using different training data sets, ranging from manually labeled, pixel-accurate ground truth of the same city to automatic training data derived from OpenStreetMap data from distant locations. We report our results that indicate that satisfying performance can be obtained with significantly less manual annotation effort, by exploiting noisy large-scale training data.Comment: Published in IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSIN

    Generating All the Roads to Rome: Road Layout Randomization for Improved Road Marking Segmentation

    Full text link
    Road markings provide guidance to traffic participants and enforce safe driving behaviour, understanding their semantic meaning is therefore paramount in (automated) driving. However, producing the vast quantities of road marking labels required for training state-of-the-art deep networks is costly, time-consuming, and simply infeasible for every domain and condition. In addition, training data retrieved from virtual worlds often lack the richness and complexity of the real world and consequently cannot be used directly. In this paper, we provide an alternative approach in which new road marking training pairs are automatically generated. To this end, we apply principles of domain randomization to the road layout and synthesize new images from altered semantic labels. We demonstrate that training on these synthetic pairs improves mIoU of the segmentation of rare road marking classes during real-world deployment in complex urban environments by more than 12 percentage points, while performance for other classes is retained. This framework can easily be scaled to all domains and conditions to generate large-scale road marking datasets, while avoiding manual labelling effort.Comment: presented at ITSC 201

    Synthetic Datasets for Autonomous Driving: A Survey

    Full text link
    Autonomous driving techniques have been flourishing in recent years while thirsting for huge amounts of high-quality data. However, it is difficult for real-world datasets to keep up with the pace of changing requirements due to their expensive and time-consuming experimental and labeling costs. Therefore, more and more researchers are turning to synthetic datasets to easily generate rich and changeable data as an effective complement to the real world and to improve the performance of algorithms. In this paper, we summarize the evolution of synthetic dataset generation methods and review the work to date in synthetic datasets related to single and multi-task categories for to autonomous driving study. We also discuss the role that synthetic dataset plays the evaluation, gap test, and positive effect in autonomous driving related algorithm testing, especially on trustworthiness and safety aspects. Finally, we discuss general trends and possible development directions. To the best of our knowledge, this is the first survey focusing on the application of synthetic datasets in autonomous driving. This survey also raises awareness of the problems of real-world deployment of autonomous driving technology and provides researchers with a possible solution.Comment: 19 pages, 5 figure
    corecore