5 research outputs found

    Improving Urban Cooling in the Semi-arid Phoenix Metropolis: Land System Science, Landscape Ecology and Urban Climatology Approaches

    Get PDF
    abstract: The global increase in urbanization has raised questions about urban sustainability to which multiple research communities have entered. Those communities addressing interest in the urban heat island (UHI) effect and extreme temperatures include land system science, urban/landscape ecology, and urban climatology. General investigations of UHI have focused primarily on land surface and canopy layer air temperatures. The surface temperature is of prime importance to UHI studies because of its central rule in the surface energy balance, direct effects on air temperature, and outdoor thermal comfort. Focusing on the diurnal surface temperature variations in Phoenix, Arizona, especially on the cool (green space) island effect and the surface heat island effect, the dissertation develops three research papers that improve the integration among the abovementioned sub-fields. Specifically, these papers involve: (1) the quantification and modeling of the diurnal cooling benefits of green space; (2) the optimization of green space locations to reduce the surface heat island effect in daytime and nighttime; and, (3) an evaluation of the effects of vertical urban forms on land surface temperature using Google Street View. These works demonstrate that the pattern of new green spaces in central Phoenix could be optimized such that 96% of the maximum daytime and nighttime cooling benefits would be achieved, and that Google Street View data offers an alternative to other data, providing the vertical dimensions of land-cover for addressing surface temperature impacts, increasing the model accuracy over the use of horizontal land-cover data alone. Taken together, the dissertation points the way towards the integration of research directions to better understand the consequences of detailed land conditions on temperatures in urban areas, providing insights for urban designs to alleviate these extremes.Dissertation/ThesisDoctoral Dissertation Geography 201

    Understanding urban gentrification through machine learning

    Get PDF
    Recent developments in the field of machine learning offer new ways of modelling complex socio-spatial processes, allowing us to make predictions about how and where they might manifest in the future. Drawing on earlier empirical and theoretical attempts to understand gentrification and urban change, this paper shows it is possible to analyse existing patterns and processes of neighbourhood change to identify areas likely to experience change in the future. This is evidenced through an analysis of socio-economic transition in London neighbourhoods (based on 2001 and 2011 Census variables) which is used to predict those areas most likely to demonstrate ‘uplift’ or ‘decline’ by 2021. The paper concludes with a discussion of the implications of such modelling for the understanding of gentrification processes, noting that if qualitative work on gentrification and neighbourhood change is to offer more than a rigorous post-mortem then intensive, qualitative case studies must be confronted with – and complemented by – predictions stemming from other, more extensive approaches. As a demonstration of the capabilities of machine learning, this paper underlines the continuing value of quantitative approaches in understanding complex urban processes such as gentrification

    Cultivating historical heritage area vitality using urban morphology approach based on big data and machine learning

    Get PDF
    The conservation of historical heritage can bring social benefits to cities by promoting community economic development and societal creativity. In the early stages of historical heritage conservation, the focus was on the museum-style concept for individual structures. At present, heritage area vitality is often adopted as a general conservation method to increase the vibrancy of such areas. However, it remains unclear whether urban morphological elements suitable for urban areas can be applied to heritage areas. This study uses ridge regression and LightGBM with multi-source big geospatial data to explore whether urban morphological elements that affect the vitality of heritage and urban areas are consistent or have different spatial distributions and daily variations. From a sample of 12 Chinese cities, our analysis shows the following results. First, factors affecting urban vitality differ from those influencing heritage areas. Second, factors influencing urban and heritage areas' vitality have diurnal variations and differ across cities. The overarching contribution of this study is to propose a quantitative and replicable framework for heritage adaptation, combining urban morphology and vitality measures derived from big geospatial data. This study also extends the understanding of forms of heritage areas and provides theoretical support for heritage conservation, urban construction, and economic development

    Geographical Python Teaching Resources: GeoPyTeR

    Get PDF
    GeoPyTeR, an acronym of Geographical Python Teaching Resources, provides a hub for the distribution of ‘best practice’ in computational and spatial analytic instruction, enabling instructors to quickly and flexibly remix contributed content to suit their needs and delivery framework and encouraging contributors from around the world to ‘give back’ whether in terms of how to teach individual concepts or deliver whole courses. As such, GeoPyTeR is positioned at the confluence of two powerful streams of thought in software and education: the free and open-source software movement in which contributors help to build better software, usually on an unpaid basis, in return for having access to better tools and the recognition of their peers); and the rise of Massive Open Online Courses, which seek to radically expand access to education by moving course content online and providing access to students anywhere in the world at little or no cost. This paper sets out in greater detail the origins and inspiration for GeoPyTeR, the design of the system and, through examples, the types of innovative workflows that it enables for teachers. We believe that tools like GeoPyTeR, which build on open teaching practices and promote the development of a shared understanding of what it is to be a computational geographer represent an opportunity to expand the impact of this second wave of innovation in instruction while reducing the demands placed on those actively teaching in this area
    corecore