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A B S T R A C T   

The conservation of historical heritage can bring social benefits to cities by promoting community economic 
development and societal creativity. In the early stages of historical heritage conservation, the focus was on the 
museum-style concept for individual structures. At present, heritage area vitality is often adopted as a general 
conservation method to increase the vibrancy of such areas. However, it remains unclear whether urban 
morphological elements suitable for urban areas can be applied to heritage areas. This study uses ridge regression 
and LightGBM with multi-source big geospatial data to explore whether urban morphological elements that 
affect the vitality of heritage and urban areas are consistent or have different spatial distributions and daily 
variations. From a sample of 12 Chinese cities, our analysis shows the following results. First, factors affecting 
urban vitality differ from those influencing heritage areas. Second, factors influencing urban and heritage areas’ 
vitality have diurnal variations and differ across cities. The overarching contribution of this study is to propose a 
quantitative and replicable framework for heritage adaptation, combining urban morphology and vitality 
measures derived from big geospatial data. This study also extends the understanding of forms of heritage areas 
and provides theoretical support for heritage conservation, urban construction, and economic development.   

1. Introduction 

In the 20th century, the conservation of historical heritage was a key 
topic in urban planning, as it is a widely recognized way to promote 
community economic development and societal creativity (Greffe, 2012; 
Tyler, Tyler, & Ligibel, 2018). In general, the development of conser-
vation of global historical heritage has two distinct evolution routes. On 
the one hand, early conservation of historical heritage almost entirely 
focuses on individual structures, which are often buildings, monuments, 
and archaeological sites (Whitehand & Gu, 2010). As the concept shifted 
(Jokilehto, 1998), historical heritage conservation is no longer limited 
to individual structures and has expanded from single buildings to 
groups of buildings. Then, the conservation of historic urban landscapes 
is considered (Ringbeck, 2018). At present, the scope of historical her-
itage conservation has gradually shifted to the entire historic heritage 
area (Bandarin & van Oers, 2012). Overall, historical heritage 

conservation has undergone a paradigm shift from individuals to groups 
and areas (Ahmad, 2006; Glendinning, 2013). On the other hand, the 
idea of historic heritage conservation has changed from museum-style 
conservation to diversified utilization of heritage areas (Wang, 2019). 
Thus, the concept of heritage adaption was proposed (ICOMOS, A, 
1979), which is defined as enhancing the vitality of heritage areas. 
Heritage adaptation can bring multiple social benefits (Conejos, Lang-
ston, & Smith, 2011), adapt to the transformation of modern industrial 
cities (Plevoets & Sowińska-Heim, 2018), and expedite the development 
of surrounding communities (Bullen, 2007; Conejos, Langston, & Smith, 
2013). 

Creating a more vibrant heritage area through planning has not yet 
been fully discussed, although research on urban planning and urban 
vitality has emerged (Lan, Gong, Da, & Wen, 2020; Still & Simmonds, 
2000; Yang & Pan, 2020). Mounting evidence suggests that urban 
morphological elements (e.g., ground plan, building pattern, land use 
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pattern, etc.) can significantly affect urban vitality (Marcus, 2010; Oli-
veira, 2013; Wang, 2021; Wu, Ta, Song, Lin, & Chai, 2018; Wu, Ye, Ren, 
& Du, 2018). However, it remains unclear whether urban morphological 
elements equally and effectively foster the vitality of historical heritage 
areas for at least the following three possible reasons. 

First, the unique morphological characteristics of heritage areas are 
significantly different from those of the generally considered vibrant 
urban areas (Whitehand, Gu, Whitehand, & Zhang, 2011). Heritage 
areas are often characterized by narrowness, single function, low height, 
and low density, whereas the opposite is featured in vibrant urban areas. 
Second, heritage areas are subject to stricter planning control than urban 
areas, and their original morphological characteristics cannot easily 
change. Therefore, promoting regional vitality through morphological 
strategies is more challenging (Ged & Marinos, 2011; Whitehand & Gu, 
2007). Finally, the heritage area itself may be relatively inactive. The 
historical heritage conservation area is usually located in the city’s core 
(Rossi & Tarragó, 1982), where the land value is higher and possibly 
over-commercialized (Wu, Wang, Zhang, Zhang, & Xia, 2019). Conse-
quently, high land rent may change a community’s socioeconomic class 
and reduce its population density (Jackson, Forest, & Sengupta, 2008). 
Over-commercialization may also harm tourists and residents (Hwang, 
2015). Therefore, it is worth further discussing how to cultivate a 
vibrant heritage area through the urban morphology approach. 

Meanwhile, the emergence of big geospatial data allows for depicting 
urban morphological elements of heritage areas more precisely (Aga-
piou et al., 2015; Kitchin, 2014; Saito, Said, & Shinozaki, 2017). The 
accompanying machine learning technology complements the limita-
tions of traditional statistics in massive data processing reliability 
reduction and slow calculation (Yang & Pan, 2020). The boom of new 
data and methods has laid a solid foundation for studying morphological 
vitality strategies. Therefore, with the help of big geospatial data, this 
study reshapes the technical ways to measure urban morphology and 
vitality concerning urban heritage. The morphological approach to the 
vitality of heritage areas is explored by combining ridge regression and 
LightGBM. The paper is arranged as follows: Section 2 introduces the 
research methods. Section 3 describes the study area and data sources. 

Section 4 presents the analysis of the results. Section 5 discusses the 
empirical results. The conclusion is summarized in the last section. 

2. Analytical framework 

A quantitative research approach is proposed to understand the re-
lationships between the urban morphological elements and the vitality 
of heritage areas at the block level (Fig. 1). The approach contains three 
essential parts. First, vitality is measured using open-sourced big geo-
spatial data. Second, urban morphology measurements are defined and 
conducted. Finally, machine learning algorithms are performed to 
analyze and discuss the differences in elements that affect vitality from 
multiple perspectives, including heritage and urban areas, daytime and 
nighttime, and differences across cities. 

2.1. Measurement of urban vitality 

Vitality can be defined and quantified (Yue et al., 2017). Table 1 lists 
several commonly used measurements that are generally divided into 
two theoretical types (Yue, Chen, Zhang, & Liu, 2019): one considers 
that vitality is a crucial urban factor in expanding the scope of human 
activities (Lynch, 1984), the richness of urban activities, or the intensity 
of land use (He et al., 2018; Jin et al., 2017; Zhang et al., 2020); the other 
is based on Jacobs’s diversity measurement to study vitality (Jacobs, 
1961), under which framework pedestrian volume is frequently used as 
a measurement (Sung, Go, & Choi, 2013; Wu, Ta, et al., 2018; Wu, Ye, 
et al., 2018; Yue et al., 2017). 

These methods have their relative merits and drawbacks. Geo-tagged 
small food facilities are used frequently to characterize urban vitality 
(Xia, Yeh, & Zhang, 2020; Ye, Li, & Liu, 2018; Yue & Zhu, 2019; Zhang 
et al., 2020). The spatial distribution of small food facilities is formed by 
the owner and the crowd (Yue & Zhu, 2019). They are usually located in 
places with high accessibility, attracting a dense and diverse crowd, 
directly related to their survival and success (Dawson, 2012). Therefore, 
the spatial organization of small food facilities reflects the changes in 
human activities to a large extent (Dong, Ratti, & Zheng, 2019). Using 

Fig. 1. Analysis approach.  
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geographical small food facilities to measure urban vitality has two 
advantages. First, this method is more time-saving and labor-saving than 
traditional methods, such as manual investigation. Second, geo-tagging 
has higher accessibility, updatability, and explainability than other big 
data methods, such as mobile positioning, and can accurately capture 
the spatial changes in urban vitality (Yue & Zhu, 2019). Therefore, small 
food facilities can be more effective in symbolizing urban daytime vi-
tality but cannot reflect nighttime vitality. 

Daytime and nighttime urban vitality have considerable differences 
(Xia et al., 2020). Indeed, urban economic activities are reshaped at 
night. As the most prominent feature of a night city, light is associated 
with socioeconomic parameters, including economic activity, urbani-
zation, and population density (Wang et al., 2018; Zhang & Seto, 2011). 
People’s social activities usually occur in bright areas at night, whereas 
dark spots are characterized by low or poor populations (Bennett & 
Smith, 2017). Therefore, nighttime lights are also regarded as one of 
those most reliable indicators of nighttime vitality and are widely used 
to represent human activities and spatial changes (Keola, Andersson, & 
Hall, 2015; Levin & Duke, 2012; Levin & Zhang, 2017). 

Overall, geo-tagged small food facilities and nighttime light data are 
used to characterize daytime vitality (DV) and nighttime vitality (NV), 
respectively, in this study. Specifically, kernel density analysis measures 
the distribution of geo-tagged small food facilities within a 500-m 
radius. The weights are set according to the number of comments to 
obtain the average values of different blocks as the DV value. In contrast, 
the average value of nighttime light data within the block is the NV 
value. 

2.2. Measurement of urban morphology 

All cities can be conceptualized as formed by urban morphological 
elements: streets, blocks, and buildings (Oliveira, 2016). Conzen (1960) 
argues the necessity to combine the morphological aspects of the orig-
inal theory with land use elements to establish a complete interpretation 
of urban morphology. There has been a growing popularity of Conzenian 
approaches on urban morphology (Oliveira, 2019). Conzen extended the 
concept of urban morphology and pointed out that combining three 

Table 1 
Commonly used methods of measuring vitality.  

Author (year), 
study area 

Data source & 
method 

Advantages Disadvantages 

Sung, Lee, & 
Cheon 
(2015), 
Seoul, South 
Korea 

Counting the 
number of 
pedestrians on 
the street 
through a 
manual survey. 

The street vitality 
each hour can be 
recorded with high 
accuracy. 

The high cost of 
data acquisition 
limits that it can not 
be used on a macro 
scale. 

Yue et al. 
(2017), 
Shenzhen, 
China 

The number of 
mobile phone 
users actively 
recorded by the 
mobile phone 
tower provided 
by a major 
mobile phone 
operator in half 
an hour interval. 

The actual usage of 
cell phones is not 
required. The 
dataset has a finer 
spatial-temporal 
granularity, can 
represent the 
spatial-temporal 
rhythm. 

The dataset is not 
disclosed to the 
public and is 
challenging to 
obtain. 

Li, Wang, 
Wang, & Wu 
(2016), 
Beijing, 
China 

Mobile phone 
location records 
provided by 
Tencent. 

There is a large 
amount of data, and 
the data is accurate. 
After inspection, the 
distribution of 
mobile location 
records is positively 
correlated with the 
actual distribution 
of population 
density. 

The socioeconomic 
characteristics and 
activity types of 
users at a specific 
time and place 
cannot be 
identified. 

Wang (2021), 
China 

POI data 
obtained by open 
API services of 
Dianping 

Data is easy to 
access and is a 
powerful way to 
reflect the urban 
pattern. 

The contribution of 
each point to 
vitality is not 
considered. 

Zeng, Wei, & 
Liu (2020), 
Shanghai, 
China 

Bike-sharing 
data provided by 
bike-sharing 
operator Mobike. 

An understanding 
of an individual’s 
mobility can be 
established, 
especially on the 
characteristics of 
travel behavior. 

Only departure and 
arrival areas of 
sharing bikes can 
be captured, and 
the amount of data 
is low and 
inaccurate. 

Kim (2018), 
Seoul, South 
Korea 

The density of 
Wi-Fi access 
points provided 
by the 
government and 
network 
operators. 

The vitality of 
virtual space can be 
measured and 
compared with that 
of physical space. 

Private Wi-Fi access 
points are not 
included. The 
virtual vitality may 
show errors for the 
younger generation 
and the elderly. 

Li, Li, Li, & 
Long (2020), 
China; Li, 
Zhou, & 
Wang (2018), 
USA 

Check-in and 
comment data 
captured by 
Social 
Networking 
Services (SNS) 
(e.g., Twitter, 
Foursquare, 
Flickr, and 
Weibo.) 

An area with more 
check-in can attract 
more people and 
contribute more to 
urban vitality. 

People who do not 
use SNS, such as the 
elderly’s 
contribution to 
urban vitality, are 
largely ignored. 

Kim (2020), 
Seoul, South 
Korea 

Dedicated 
dataset for 
pedestrian traffic 
provided by SK 
Telecom. 

It helps to overcome 
the temporal 
ambiguity of urban 
vitality studies 
based on big 
spatiotemporal 
data. 

Pedestrian traffic 
data are not free 
from their inherent 
biases. 

Ye et al. (2018); 
Zhang et al. 
(2020);  
Zheng, Hu, 
Wang, & 
Wang (2016), 
China 

Geotagged small 
food facilities. 

The spatial 
distribution of small 
food facilities is 
formed by the 
owner and the 
crowd (Yue & Zhu, 
2019). Small food 
facilities are often 
located in a place 
where people can 

Small food facilities 
are representative 
of only a specific 
aspect of vitality.  

Table 1 (continued ) 

Author (year), 
study area 

Data source & 
method 

Advantages Disadvantages 

easily access, 
attracting a dense 
and diverse crowd, 
directly related to 
the business’s 
survival and success 
(Dawson, 2012). 
Therefore, the 
spatial organization 
of small food 
facilities reflected 
the changes in 
human activities to 
a large extent, 
representing the 
intensity of the 
urban economic 
activities (Dong 
et al., 2019). 

Levin & Duke 
(2012);  
Mellander, 
Lobo, 
Stolarick, & 
Matheson 
(2015), 
Sweden, 
Israel, 
Palestine 

Nighttime light 
images. 

Data are relatively 
accessible and have 
been regarded as a 
good indicator of 
urban expansion 
and activity. 

The image 
resolution is 
relatively low and 
reacts only to 
vitality at night.  
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systematic form complexes, i.e., city planning, building base, and land 
use, constitutes urban morphology, which provides a valuable concept 
for quantification in this study. 

In Conzenian approaches, the block is used as the research unit to 
quantify the urban form through big data methods. Measurement details 
are discussed at length and proven their suitability (Wu et al., 2019; 
Zhang et al., 2019, 2020). Specifically, the ground plan was composed of 
three subsets: street system, block pattern, and building base. The 2D 
and 3D building elements from different spatial dimensions constitute 
the building form pattern (Zhang et al., 2019). Therefore, we divided the 
building form pattern into two classes: building 2D form and building 3D 
form. Land use patterns also have two categories: land use function and 
intensity. The former represents the heterogeneity of urban morphology 
and reflects different combinations of land use, while the latter dem-
onstrates the speed and efficiency of land development (Fig. 2, Table 2). 

2.3. Empirical strategies 

The most frequently used models for exploring the relationship be-
tween urban morphology and vitality are linear regressions based on the 
least-squares method and maximum likelihood estimation (Jin et al., 
2017; Long & Huang, 2019; Wang, 2021). Nevertheless, they have two 
potential issues. 

First, due to possible sample limitations and common trends among 
variables, the dataset may present multicollinearity. In traditional sta-
tistical analysis, the neglect of multicollinearity can cause ill-informed 

conclusions based on the regression (Fan, Rey, & Myint, 2017). There-
fore, the variance inflation factor was calculated, and a correlation co-
efficient was computed to test the multicollinearity among independent 
variables. The results show the existence of possible multicollinearity, 
for which penalized regressions are often recommended (see Wang and 
Vermeulen, 2020 for a detailed discussion regarding the benefits of 
penalized regressions in urban research). In the family of penalized 
regression, the commonly used models are the Lasso (least absolute 
shrinkage and selection operator; Tibshirani, 1996) and ridge regression 
(Hoerl & Kennard, 1970). They are regularized versions of least squares 
regression using L1 and L2 penalties on the coefficient vector (Verducci, 
2007). However, L1 regularization is better at outputting sparse solu-
tions than L2 regularization. The main reason is the built-in feature se-
lection method of the former (Zeng, Gou, & Deng, 2017). Accordingly, 
Lasso regression causes some variables in the linear regression, resulting 
in a coefficient of 0 instead of approaching 0. Thus, Lasso can be used for 
feature selection. However, feature selection is not necessary to compare 
and discuss regression results with machine learning in this study. Based 
on the above discussion, we used ridge regression to identify the main 
vitality determinants of heritage areas. 

Ridge regression is a biased estimation that can effectively solve the 
multicollinearity problem. The regression coefficient can be more 
practical and reliable at the cost of information loss and reducing pre-
cision (Amico & Currà, 2014; Hoerl & Kennard, 1970; Vinod, 1978). In 
recent years, ridge regression has been applied in different aspects of 
urban science, such as urban heat islands (Lan & Zhan, 2017), carbon 

Fig. 2. The framework of urban morphology measurement.  
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dioxide (Xu, Ou, Liu, Liu, & Zhang, 2021), and PM2.5 (Tao, Zhang, Ou, 
Guo, & Pueppke, 2020). In this study, the ridge regression model is 
expressed as: 

Yi
* = β*

1X*
1 + β*

2X*
2 + β*

3X*
3 + ε*  

where Yi
* represents the DV and NV of the heritage area, X1* are ground 

plan elements, X2* are building form pattern elements, and X3* are land 
use pattern elements. Unlike ordinary least squares, βi* are standardized 
parameters of ridge regression, expressed as: 

β̂(k) = (X
′

X + kI)− 1X
′

Y  

where X′X are correlation matrices among independent variables, X′Y 

are correlation matrices among predicted and independent variables, 
respectively β̂(k) is the regression coefficient, and k serves as the ridge 
parameter, reflecting the bias in the regression (García, García, Martín, 
& Salmerón, 2015; Lan & Zhan, 2017). The reasonable value of k is 
determined according to the variance inflation factor. 

Second, the above studies merely considered the significance value 
of independent variables in the regression analysis but ignored their 
importance. Compared with regression models, machine learning algo-
rithms using Classification and Regression Tree (CART) can calculate the 
importance of variables. Among the many CART algorithms, we used the 
gradient boosting decision tree (GBDT) in this study for its efficiency, 
accuracy, and reliability (Georganos et al., 2018; Natekin & Knoll, 
2013). With the recent development of big data, GBDT faces new chal-
lenges. When the number of samples is large or the feature dimension is 
high, GBDT requires a trade-off between efficiency and precision. Three 
efficient methods based on GBDT were developed in recent years, 
including XGBoost, CatBoost, and LightGBM. These new methods have 
been successfully applied in industry, academia, and competitive ma-
chine learning (Daoud, 2019). Many studies have compared these 
improved implementations of the gradient boosting framework and 
showed that LightGBM is the fastest, most accurate, and most robust 
using the same time budget of hyperparameter optimization (Daoud, 
2019; Ke et al., 2017; Machado, Karray, & de Sousa, 2019; Song et al., 
2019). 

LightGBM (http://github.com/Microsoft/LightGBM) was developed 
by Microsoft as a faster and higher performance framework that uses less 
memory and achieves better prediction (Ma et al., 2018). In LightGBM, 
Microsoft introduced new features, such as leafwise tree growth and 
histogram-based algorithms (Fig. 3), to solve the efficiency trade-off 
(Shi, Cheng, & Xue, 2019). LightGBM can be nearly 20 times more 
efficient than GBDT with the same accuracy (Ke et al., 2017) and is 
selected as the machine learning framework in this study to obtain the 
importance of variables. 

With the approaches mentioned, the significance of explanatory 
variables obtained by ridge regression is used to investigate the elements 
that affect the vitality of heritage areas and then compare and discuss 
the importance of explanatory variables obtained using LightGBM. 
Modern cities are all similar, but their heritage areas are bound to have 
substantial regional differences. Finally, statistics are created for the 
significance and importance of explanatory variables for each city, and 
the factors affecting the vitality heritage area in each city are analyzed. 

3. Case study 

3.1. Study areas 

China is chosen for the empirical study due to its long history, 
creating many famous historical and cultural cities. Like other countries, 
China has established its legislation on conserving historical heritage 
under UNESCO principles (Zhu & Goethert, 2010). In most cases, the 
historical heritage areas in China are full of vitality because of their 
diverse functions and convenience. 

In China, with rapid industrialization and economic growth during 
the past few decades, the conservation of historical cities and areas has 
become a challenge to urban development and social progress (Bell, 
2014; Zhang, 2012). The National People’s Congress passed the Law of 
the People’s Republic of China on the Protection of Cultural Relics in 
1982, which clarified the legal status of famous historical and cultural 
cities as “a city with rich cultural relics, great historical value, and 
revolutionary significance” (Wang, 2000; Zhang, 2012). Then, in 1986, 
the State Council of China proposed delimiting “historic preservation 
zones” (Whitehand & Gu, 2007), which ought to protect real historical 
remains. The conservation of appearance and improvement of internal 
conditions in historical preservation zones are advocated to adapt to 
modern life needs. Simultaneously, the infrastructure should be 

Table 2 
Measurement of urban morphology.  

Components of urban 
morphology 

Factors Code 

Ground plan Street system Public transportation convenience 
degree 

PTCD 

Road intersection quantities RID 
Road intersection separation 
distance 

RISD 

Near-road building density NRBD 
Near-road building expandability NRBE 

Block pattern Area A 
Fractal dimension FD 
Spatial compact ratio SCR 
The average elevation within the 
block 

MBE 

The average slope within the 
block 

G 

Adjacent Block Number Per Unit 
Length 

ULABN 

Building base Eccentricity degree of building 
distribution 

BDE 

Dispersion degree of building 
distribution 

BDD 

Max of building area MAX_BA 
Building form 

pattern 
Building 2D 
form 

Mean of building area MBA 
Building area-weighted 
orientation index 

AWBOI 

Building area-weighted fractal 
dimension 

AWBFD 

Building area-weighted spatial 
compact ratio 

AWBSCR 

Building fractal dimension 
variation coefficient 

BFDVC 

Building spatial compact ratio 
variation coefficient 

BSCRVC 

Building 3D 
form 

Mean of building height MBH 
Building height variation 
coefficient 

BHVC 

The proportion of the tower 
building 

PTB 

Land use 
pattern 

Land use 
function 

Near-block greening rate NGR 
Green serviceability SA_GRE 
Industrial serviceability SA_IND 
Commercial serviceability SA_COM 
Public serviceability SA_PUB 
Residential serviceability SA_RES 
Transportation serviceability SA_TRA 
The proportion of green service P_GRE 
The proportion of industrial 
service 

P_IND 

The proportion of commercial 
service 

P_COM 

The proportion of public service P_PUB 
The proportion of residential 
service 

P_RES 

The proportion of transportation 
service 

P_RES 

Mix degree MD 
Land use 
intensity 

Building expandability BE 
Building density BD  
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improved, and a step-by-step approach is necessary to enhance resi-
dents’ quality of life and activate the vitality of the reserve (Zhao, 2001). 

The selected study areas include twelve cities in China, namely, 
Beijing, Shanghai, Tianjin, Guangzhou, Hangzhou, Wuhan, Chengdu, 
Nanjing, Qingdao, Shenyang, Changsha, and Suzhou (Fig. 4). These 
cities were economically developed in history with prosperous historical 
heritage. Thus, the government recognizes these cities as famous his-
torical and cultural areas and templates for urban development. In the 
past two decades, zoning plans have been developed for their 
conservation. 

3.2. Data sources 

Big data plays a more important role in academic research on human 
geography with the help of ICT advancement (Lowry & Lowry, 2014; 
Wu, Ta, et al., 2018; Wu, Ye, et al., 2018). In this study, we adopted data 
from the following four sources. 

3.2.1. Historic preservation zoning data 
In addition to the officially released data, finding information on the 

historical protection zones of 12 cities that have not been formally 
released online requires much effort. In particular, planning materials 
related to the historical conservation of cities takes much time. Finally, 
the data are obtained through multiple resources, including official 
websites, web portals, newspapers, academic journals, and personal 
contacts between scholars, planners, and other people involved in 
landscape planning. These cities have multiple historic preservation 
plans; in this case, the latest plan was used as the reference (Table 3). 

3.2.2. Building and street data 
The building and street data come from Amap, one of China’s largest 

online digital map providers. Amap provides a relatively comprehensive 
database of building boundaries, base area, and building height. The 
original building footprint data were more than three million in twelve 
cities, while the road data were more than four million in the whole 
nation. The basic unit in the analysis is the block (Conzen, 1960). Blocks 
are essential urban research units and critical elements in urban devel-
opment and construction and government planning, management, and 
design (Zhang et al., 2019). A city was divided into blocks through the 
level-five roads identified by OpenStreetMap (Liu & Long, 2016). 

Fig. 3. Improvement of LightGBM.  

Fig. 4. Research area.  
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Finally, there are 102,865 blocks in all the cities within the study area. 

3.2.3. Point of interest (POI) data 
POI data are obtained from Baidu Map. As the largest search engine 

in China, Baidu perhaps provides the most up-to-date information on 
POIs via its Baidu Map product. Specifically, POI data were first acquired 
in January 2016 using JavaScript from the Baidu Map open interface 
and divided into 19 categories, including shopping, hotels, food, and 
attractions. More than seven million POI data points were obtained in 
the twelve cities. POI data reflect life, work, communication, and other 
residential activities (He et al., 2018) and thus have been widely used in 
daily life and scientific research (Wu, Ta, et al., 2018; Wu, Ye, et al., 
2018). 

3.2.4. Land use data 
We obtained land use data from the official data provided by the 

Bureau of Natural Resources of each city. Most of the data were from the 
second national land survey from 2007 to 2009 (Liu, Liu, & Qi, 2015). 
This survey investigates urban construction land use and determines 
each urban land boundary, scope, quantity, and usage. We used these 
data to verify the effectiveness of the POI data. 

4. Results 

4.1. Model performance 

After excluding blocks with incomplete data, the valid blocks in 
urban areas within 12 cities are 45,206, containing 3532 valid heritage 
area blocks. The influence of urban morphological elements on the vi-
tality of heritage areas is verified using ridge regression. The DV and NV 
coefficients of determination are 0.446 and 0.683, suggesting that ridge 
regression explains NV better than DV. Simultaneously, the model 
passed the F-test, revealing a significant effect at the confidence interval 
of 99%. 

As too many statistically significant factors contribute to vitality, it is 
not easy to demonstrate their importance directly. Therefore, LightGBM 
is applied to determine the importance of these factors. In training, tree 

and boosting parameters are adjusted to achieve the best predictive ef-
fect, keeping the coefficient of determination as large as possible and the 
residuals as small as possible while maintaining regularization. Table 4 
shows the optimal parameters after adjustment. The coefficients of 
determination are then used to assess the model performance. The co-
efficients of determination associated with DV and NV are 0.703 and 
0.875, respectively. 

4.2. Factors affecting the vitality of heritage and urban areas 

Fig. 5 illustrates the significance of the 39 factors in predicting the 
vitality of heritage and urban areas. The results demonstrate that most 
urban morphological elements show a significant influence on heritage 
areas. Street accessibility indicators (RID and PTCD), block patterns, 
land use, and building form are among the elements that affect the vi-
tality of heritage areas. Compared with the DV, more elements show 
significance for NV. 

Specifically, among the three urban morphological element groups, 
land use patterns mainly promote the vitality of heritage areas through 
serviceability elements, which have a greater impact than urban plan-
ning and building patterns, mainly in the daytime. Street accessibility 
indicators and areas have significant positive effects on DV and NV. Most 
of the building form pattern elements do not show significance. Only the 
building 3D form elements (MBH, BHVC, and PTB) show significant 
positive effects on NV. The impact of the land use function on vitality has 
apparent diurnal variation, which is consistent with previous research 
(Xia et al., 2020). Serviceability elements significantly affect the DV but 
are insignificant or less significant on NV. In addition, P_PUB and P_IND 
significantly reduce the vitality of heritage areas throughout the day, 
while P_TRA and P_GRE significantly promote NV. 

Fig. 6 identifies the importance of the 39 explanatory variables in 
predicting the vitality of both urban and heritage areas. Comparing 
Figs. 5 and 6, factors with high importance do not necessarily show 
significance. The significance and importance of urban morphological 
elements are more consistent in the daytime than at night. Among those 
significant elements, street accessible indicators and block pattern ele-
ments (A and G) have higher importance during the daytime. In 
contrast, street accessibility indicators, ULBAN, and P_COM have higher 
importance at night. Regarding diurnal variation, ground plan elements 
(PTCD, FD, ULABN, and MBE) have a more critical impact on DV. In 
contrast, A, MBH, and NGR have a more substantial effect on NV. 

4.3. Vitality across different cities 

Fig. 7 shows the vitality across different cities. The DV and NV 
distinctly differ across cities. For instance, Shanghai and Guangzhou 
have higher DV, whereas Tianjin and Shenyang have greater NV. In 
terms of day–night differences, the DV in 11 cities except Changsha is 
higher than that in the urban areas (DV_UR). In contrast, the NV in 10 
cities except Changsha and Beijing is higher than that in urban areas 
(NV_UR). Fig. 7 also shows that Suzhou has the most considerable 

Table 3 
Historic preservation planning in twelve cities.  

City Year Planning policy 

Beijing 2002 Beijing’s Conservation of Historic-Cultural Cities 
2011 Beijing’s Conservation of Historic-Cultural Cities for the 12th 

Five-Year Plan Period 
2016 Beijing’s Conservation of Historic-Cultural Cities for the 13th 

Five-Year Plan Period 
Chengdu 2017 Chengdu’s Conservation of Historic-Cultural Cities 
Guangzhou 2015 Guangzhou’s Conservation of Historic-Cultural Cities 
Nanjing 2019 Nanjing’s Conservation of Historic-Cultural Cities 
Hangzhou 2003 Hangzhou’s Conservation of Historic-Cultural Cities 
Qingdao 2015 Qingdao’s Conservation of Historic-Cultural Cities 
Shanghai 2015 Regulations on the Conservation of Historical and Cultural 

Areas and Historical Buildings in Shanghai 
2017 City Comprehensive Planning of Shanghai (Conservation of 

Historic-Cultural Cities) 
2019 Shanghai’s Conservation of Historic-Cultural Cities 

Shenyang 2011 City Comprehensive Planning of Shenyang (Conservation of 
Historic-Cultural Cities) 

2019 Shenyang’s Conservation of Historic-Cultural Cities(Recent 
Construction Plan) 

Suzhou 2013 Suzhou’s Conservation of Historic-Cultural Cities 
2020 Suzhou’s Conservation of Historic-Cultural Cities 

Tianjin 2013 Tianjin’s Conservation of Historic-Cultural Cities, Town, and 
Village 

2019 Tianjin’s Conservation of Historic-Cultural Cities 
Wuhan 2010 Wuhan’s Conservation of Historic-Cultural Cities and 

Historic Cultural streets in Main Urban Areas 
Changsha 2012 Changsha’s Conservation of Historic-Cultural Cities 
Chongqing 2015 Chongqing’s Conservation of Historic-Cultural Cities  

Table 4 
Optimal parameters of LightGBM.  

Parameter Description DV NV 

num_leaves Maximum tree leaves 45 81 
learning_rate Boosting learning rate 0.05 0.05 
max_depth Limit the max depth for the tree model 8 8 
feature_fraction The proportion of randomly selected 

features in each iteration 
0.63 0.8 

reg_alpha L1 regularization term on weights 0 0 
reg_lambda L2 regularization term on weights 0 0 
min_child_samples The minimum number of samples 

contained in a leaf 
18 20 

min_child_weight The minimum sum of instance weights 
needed in a leaf 

0.001 0.001 

n_estimators Number of boosted trees to fit 498 867  
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difference between DV and NV, possibly due to its reputation as a 
famous tourist city with extensive and remarkable heritage areas (Tang 
& Cheung, 2020) that attract more tourists during the daytime. In 
contrast, Tianjin is inactive in the daytime but overly active at night-
time. Unlike Suzhou, Tianjin’s historical development has determined 
its unique urban style that integrates east and west (Biao, Xiao-meng, & 
Ming-yong, 2012). Its heritage areas can bring different rich experiences 
to tourists to increase their activities. 

5. Discussion 

5.1. Are factors affecting the vitality of heritage areas consistent with 
those of urban areas? 

For comparison with heritage areas, data for urban areas are ob-
tained using the method described in Section 2.3. Table 5 shows the 
coefficients of determination. Fig. 5 shows that the elements affecting 
the vitality of heritage and urban areas are almost the same and differ by 
only a few elements, consistent with previous theoretical research (Sung 
& Lee, 2015; Ye et al., 2018; Zeng, Song, He, & Shen, 2018). However, 
the results unexpectedly indicate that the land use pattern has the 
greatest impact on the vitality of heritage areas among the three urban 
morphological element groups. However, according to Zhang et al. 
(2020), the ground plan has a greater effect on urban vitality, mainly 
through street accessibility indicators. The reason for the difference is 
possibly twofold. First, land use and urban vitality at the block level 
have a mismatched distribution (Xia et al., 2020). Land use can more 
easily affect the vitality of heritage areas. More substantial serviceability 
can enhance the block function of a heritage area (Zumelzu & 
Barrientos-Trinanes, 2019) and increase crowd attraction, promoting 
vitality. Second, heritage areas are usually subject to stricter planning 
control by the government (Whitehand & Gu, 2007). Buildings and 
streets have strikingly different forms from urban areas (Bandarin & van 
Oers, 2012). Consequently, the impact of the ground plan and building 
form patterns on the vitality of the heritage area is relatively weak. 

In addition, this empirical study finds that several urban morpho-
logical elements only influence the vitality of heritage areas. During the 
daytime, P_TRA and MD do not guarantee urban vitality but are 
generally considered significant contributors in the existing literature 
(Hachem, 2016; Sharifi, 2019). The reason is that intensive urban land 
does not promote urban vitality (Xia et al., 2020). Blocks with a high mix 
degree and a high proportion of traffic attract more nonlocal populations 
(Mouratidis & Poortinga, 2020) and inhibit local social bonds (Wood, 
Frank, & Giles-Corti, 2010). The green space indicators (P_GRE, SA_GRE, 
and NGR) are not guarantees of NV_UR. Possible reasons include the 
constraints of service hours and safety concerns in urban areas, where 
the vitality of public service facilities and parks declines at night 
(Schwanen, van Aalst, Brands, & Timan, 2012). At night, people tend to 
gather in certain bright places in urban areas, such as commercial cen-
ters, bars, karaoke, and restaurants, which are the main venues for 
Chinese nightlife (Zhang et al., 2020) rather than green spaces. Never-
theless, people visit heritage areas for their architectural, social, 

Fig. 5. Significance of explanatory variables.  

Fig. 6. Importance of explanatory variables.  
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cultural, and historical value (Latham, 2016) and thus tend to partici-
pate in large-scale activities in heritage green spaces at night. 

5.2. Are factors affecting the vitality of heritage areas consistent among 
different cities? 

This study obtains significant results of urban morphological ele-
ments of different cities. Fig. 8 shows that the results are similar to 
previous research, where all urban morphological features only affect 
the vitality of the heritage area at specific times in specific cities (Zhang 
et al., 2020). In particular, several elements can effectively affect the 
vitality of heritage areas in most cities. For example, street accessibility 
and traffic-related indicators (P_TRA and SA_TRA) also have a substan-
tial effect on vitality in multiple cities, which means that convenient 
transportation and high accessibility attract people and improve the 
vitality of heritage areas in most cities, in line with public expectations 
and previous theoretical research (Xia et al., 2020; Zhang et al., 2020). 

Factors affecting the vitality of heritage areas also have a specific 
relationship with city size. As the city progresses in development, more 
urban morphological elements can affect the vitality of its heritage area. 

For instance, 3D building pattern elements only affect the vitality of the 
heritage areas of first-tier cities in China, such as Beijing and Shanghai, 
but have little or no impact on other cities; the possible reason is that 
Beijing and Shanghai heritage areas have more enormous proportions of 
renovated architectural sites than in other cities (Chen, Judd, & 
Hawken, 2016; Zheng, 2017). In the master and conservation plan of 
historical-cultural cities in Beijing and Shanghai, controlling the build-
ing height in heritage areas is explicitly stated (Wang, 2009). The pos-
sibility that differences in the amount of data between cities may lead to 
such results has been ruled out. The number of blocks in different cities 
in this study only varies slightly and not to the extent that the results can 
be influenced. 

6. Conclusion 

The main research questions in this study are the differences in urban 
morphological elements affecting the vitality of urban areas and heri-
tage areas across cities. With empirical evidence from twelve Chinese 
cities, the following conclusions can be drawn. First, factors that affect 
the vitality of heritage areas differ from those that affect the vitality of 
urban areas. However, some common factors are found that significantly 
affect both heritage areas and urban areas. Among the three groups of 
urban morphological elements, the land use pattern group has a more 
substantial impact on heritage areas than the ground plan and building 
form pattern. In addition, land use is mainly influenced by various ser-
vice capabilities. The building form pattern has little influence on the 
vitality of heritage areas, mainly through the building’s 3D patterns. The 
urban morphological elements that affect DV and NV considerably 

Fig. 7. The vitality of heritage and urban area in 12 cities.  

Table 5 
Comparison of prediction performance.   

DV_UR DV NV_UR NV 

k -value of ridge regression 0.206 0.206 0.196 0.196 
R2-value of ridge regression 0.449 0.486 0.446 0.683 
R2-value of LightGBM 0.534 0.703 0.661 0.875  
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differ. Second, the elements that affect the vitality of heritage areas vary 
across cities. The number of elements affecting heritage areas has a 
specific relationship with city size, and more urban morphological ele-
ments affect the vitality of heritage areas in more developed cities. 

The overarching contribution of this study is a proposal of a path of 
urban morphology for heritage adaptation. Various elements of urban 
morphology and vitality are quantitatively measured by big geospatial 
data. The differences in urban morphological elements affecting the 
vitality of urban and heritage areas, spatial changes, and diurnal 
changes are empirically analyzed. This path evaluates the significance of 
urban morphological elements to vitality and assesses their importance 
through a multidimensional perspective. This study can also help un-
derstand the forms of heritage areas and provide theoretical support for 
heritage conservation, urban construction, and economic development 
in China. After establishing the institution of historic city conservation 
in mainland China in 1982, the scope of conservation has gradually 
extended from single buildings to historical blocks, and the conservation 
of urban material spaces has expanded to nonmaterial elements. The 
government strictly protects the physical environment of heritage areas 
but has implemented relatively few policies and practices to promote 
social life. 

Moreover, large-scale exploration of heritage adaptation only began 
in the 2010s. For example, the Conservation of Historic-Cultural Cities in 
Shanghai addresses the relationship between conservation and adaptive 
reuse. Thus, the relationship between the physical environment and 
social life and the conservation of the street form, block scale, envi-
ronment, and ground paving is confirmed. However, these explorations 
are based on empirical judgments. The management and control of the 
heritage area are often carried out following the current technical 
guidelines for management, and at most, several modifications can be 
made. In essence, the overall view, data, and theoretical support for 

Chinese heritage adaptation policy are lacking. This study can fill these 
gaps from the general urban morphology perspective and implement 
policy recommendations to activate heritage areas from a new 
perspective. For example, we argue that improving green land and 
transportation serviceability may enhance the vitality of most heritage 
areas. In the future, regulatory guidelines on greening should be intro-
duced for heritage areas. A series of small but flexible greening measures 
should also be implemented in heritage areas to enhance the vitality of 
the area while maintaining historical features. 

Finally, this study encounters certain limitations. Vitality is an ab-
stract and complex concept resulting from dimensions including society, 
economy, and culture. As such, measurements using small food facilities 
and night light data may lead to incomplete results, but these are only 
one dimension of proxies. Therefore, the study results may be biased or 
possibly vary due to the data characteristics. Furthermore, the data 
collected are not from the same year, and the POI data cannot demon-
strate the temporal dimension. However, this study is the first to analyze 
the factors affecting the vitality of heritage areas on the block scale. It 
compares with those in the urban area. In the future, this study can be 
used as evidence to provide references for planning and construction to 
improve the vitality of heritage areas and revitalize cities. 
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