19,675 research outputs found

    Recent Progress in Image Deblurring

    Full text link
    This paper comprehensively reviews the recent development of image deblurring, including non-blind/blind, spatially invariant/variant deblurring techniques. Indeed, these techniques share the same objective of inferring a latent sharp image from one or several corresponding blurry images, while the blind deblurring techniques are also required to derive an accurate blur kernel. Considering the critical role of image restoration in modern imaging systems to provide high-quality images under complex environments such as motion, undesirable lighting conditions, and imperfect system components, image deblurring has attracted growing attention in recent years. From the viewpoint of how to handle the ill-posedness which is a crucial issue in deblurring tasks, existing methods can be grouped into five categories: Bayesian inference framework, variational methods, sparse representation-based methods, homography-based modeling, and region-based methods. In spite of achieving a certain level of development, image deblurring, especially the blind case, is limited in its success by complex application conditions which make the blur kernel hard to obtain and be spatially variant. We provide a holistic understanding and deep insight into image deblurring in this review. An analysis of the empirical evidence for representative methods, practical issues, as well as a discussion of promising future directions are also presented.Comment: 53 pages, 17 figure

    Learning sparse representations of depth

    Full text link
    This paper introduces a new method for learning and inferring sparse representations of depth (disparity) maps. The proposed algorithm relaxes the usual assumption of the stationary noise model in sparse coding. This enables learning from data corrupted with spatially varying noise or uncertainty, typically obtained by laser range scanners or structured light depth cameras. Sparse representations are learned from the Middlebury database disparity maps and then exploited in a two-layer graphical model for inferring depth from stereo, by including a sparsity prior on the learned features. Since they capture higher-order dependencies in the depth structure, these priors can complement smoothness priors commonly used in depth inference based on Markov Random Field (MRF) models. Inference on the proposed graph is achieved using an alternating iterative optimization technique, where the first layer is solved using an existing MRF-based stereo matching algorithm, then held fixed as the second layer is solved using the proposed non-stationary sparse coding algorithm. This leads to a general method for improving solutions of state of the art MRF-based depth estimation algorithms. Our experimental results first show that depth inference using learned representations leads to state of the art denoising of depth maps obtained from laser range scanners and a time of flight camera. Furthermore, we show that adding sparse priors improves the results of two depth estimation methods: the classical graph cut algorithm by Boykov et al. and the more recent algorithm of Woodford et al.Comment: 12 page

    Monte Carlo-based Noise Compensation in Coil Intensity Corrected Endorectal MRI

    Get PDF
    Background: Prostate cancer is one of the most common forms of cancer found in males making early diagnosis important. Magnetic resonance imaging (MRI) has been useful in visualizing and localizing tumor candidates and with the use of endorectal coils (ERC), the signal-to-noise ratio (SNR) can be improved. The coils introduce intensity inhomogeneities and the surface coil intensity correction built into MRI scanners is used to reduce these inhomogeneities. However, the correction typically performed at the MRI scanner level leads to noise amplification and noise level variations. Methods: In this study, we introduce a new Monte Carlo-based noise compensation approach for coil intensity corrected endorectal MRI which allows for effective noise compensation and preservation of details within the prostate. The approach accounts for the ERC SNR profile via a spatially-adaptive noise model for correcting non-stationary noise variations. Such a method is useful particularly for improving the image quality of coil intensity corrected endorectal MRI data performed at the MRI scanner level and when the original raw data is not available. Results: SNR and contrast-to-noise ratio (CNR) analysis in patient experiments demonstrate an average improvement of 11.7 dB and 11.2 dB respectively over uncorrected endorectal MRI, and provides strong performance when compared to existing approaches. Conclusions: A new noise compensation method was developed for the purpose of improving the quality of coil intensity corrected endorectal MRI data performed at the MRI scanner level. We illustrate that promising noise compensation performance can be achieved for the proposed approach, which is particularly important for processing coil intensity corrected endorectal MRI data performed at the MRI scanner level and when the original raw data is not available.Comment: 23 page

    BLADE: Filter Learning for General Purpose Computational Photography

    Full text link
    The Rapid and Accurate Image Super Resolution (RAISR) method of Romano, Isidoro, and Milanfar is a computationally efficient image upscaling method using a trained set of filters. We describe a generalization of RAISR, which we name Best Linear Adaptive Enhancement (BLADE). This approach is a trainable edge-adaptive filtering framework that is general, simple, computationally efficient, and useful for a wide range of problems in computational photography. We show applications to operations which may appear in a camera pipeline including denoising, demosaicing, and stylization
    • …
    corecore