7 research outputs found

    Region-Based Image Retrieval Revisited

    Full text link
    Region-based image retrieval (RBIR) technique is revisited. In early attempts at RBIR in the late 90s, researchers found many ways to specify region-based queries and spatial relationships; however, the way to characterize the regions, such as by using color histograms, were very poor at that time. Here, we revisit RBIR by incorporating semantic specification of objects and intuitive specification of spatial relationships. Our contributions are the following. First, to support multiple aspects of semantic object specification (category, instance, and attribute), we propose a multitask CNN feature that allows us to use deep learning technique and to jointly handle multi-aspect object specification. Second, to help users specify spatial relationships among objects in an intuitive way, we propose recommendation techniques of spatial relationships. In particular, by mining the search results, a system can recommend feasible spatial relationships among the objects. The system also can recommend likely spatial relationships by assigned object category names based on language prior. Moreover, object-level inverted indexing supports very fast shortlist generation, and re-ranking based on spatial constraints provides users with instant RBIR experiences.Comment: To appear in ACM Multimedia 2017 (Oral

    ADVISE: Symbolism and External Knowledge for Decoding Advertisements

    Full text link
    In order to convey the most content in their limited space, advertisements embed references to outside knowledge via symbolism. For example, a motorcycle stands for adventure (a positive property the ad wants associated with the product being sold), and a gun stands for danger (a negative property to dissuade viewers from undesirable behaviors). We show how to use symbolic references to better understand the meaning of an ad. We further show how anchoring ad understanding in general-purpose object recognition and image captioning improves results. We formulate the ad understanding task as matching the ad image to human-generated statements that describe the action that the ad prompts, and the rationale it provides for taking this action. Our proposed method outperforms the state of the art on this task, and on an alternative formulation of question-answering on ads. We show additional applications of our learned representations for matching ads to slogans, and clustering ads according to their topic, without extra training.Comment: To appear, Proceedings of the European Conference on Computer Vision (ECCV

    Dual Attention on Pyramid Feature Maps for Image Captioning

    Full text link
    Generating natural sentences from images is a fundamental learning task for visual-semantic understanding in multimedia. In this paper, we propose to apply dual attention on pyramid image feature maps to fully explore the visual-semantic correlations and improve the quality of generated sentences. Specifically, with the full consideration of the contextual information provided by the hidden state of the RNN controller, the pyramid attention can better localize the visually indicative and semantically consistent regions in images. On the other hand, the contextual information can help re-calibrate the importance of feature components by learning the channel-wise dependencies, to improve the discriminative power of visual features for better content description. We conducted comprehensive experiments on three well-known datasets: Flickr8K, Flickr30K and MS COCO, which achieved impressive results in generating descriptive and smooth natural sentences from images. Using either convolution visual features or more informative bottom-up attention features, our composite captioning model achieves very promising performance in a single-model mode. The proposed pyramid attention and dual attention methods are highly modular, which can be inserted into various image captioning modules to further improve the performance.Comment: in IEEE Transactions on Multimedia, 202

    Spatial-Semantic Image Search by Visual Feature Synthesis

    Get PDF
    The performance of image retrieval has been improved tremendously in recent years through the use of deep feature representations. Most existing methods, however, aim to retrieve images that are visually similar or semantically relevant to the query, irrespective of spatial configuration. In this paper, we develop a spatial-semantic image search technology that enables users to search for images with both semantic and spatial constraints by manipulating concept text-boxes on a 2D query canvas. We train a convolutional neural network to synthesize appropriate visual features that captures the spatial-semantic constraints from the user canvas query. We directly optimize the retrieval performance of the visual features when training our deep neural network. These visual features then are used to retrieve images that are both spatially and semantically relevant to the user query. The experiments on large-scale datasets such as MS-COCO and Visual Genome show that our method outperforms other baseline and state-of-the-art methods in spatial-semantic image search

    Multimodal knowledge integration for object detection and visual reasoning

    Get PDF
    We humans still perceive and reason in a different way than artificial intelligence models. We witness, we listen, we touch, we understand the world via multi-modal sensing, while machine models rely only on a single or a few modalities and ignore abundant information. In this thesis, we explore techniques for reducing the perception gap between machines and humans and focus on two families of tasks, reasoning and detection. First, we incorporate information from text, audio, motion, external knowledge bases, for training computer vision models. We find that data inputs from more extensive channels provide complementary information to improve models. Second, we study how multimodal inputs can be fully utilized. We argue that most existing deep learning methods are prone to pay too large attention to shallow patterns in the input features, which causes the resulting models to be biased. We propose robust training to overcome the issue. Third, we extend the benefits of multi-modal information to the supervision signals instead of the inputs, by learning a weakly supervised detection model from the natural supervision of textual captions or audio narrations. With the help of NLP constituency parsing, it is possible to extract structural knowledges from the captions and narrations, hence determines the entities and relations of visual objects
    corecore