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We humans still perceive and reason in a different way than artificial intelligence models.

We witness, we listen, we touch, we understand the world via multi-modal sensing, while

machine models rely only on a single or a few modalities and ignore abundant information.

In this thesis, we explore techniques for reducing the perception gap between machines and

humans and focus on two families of tasks, reasoning and detection. First, we incorporate

information from text, audio, motion, external knowledge bases, for training computer vision

models. We find that data inputs from more extensive channels provide complementary

information to improve models. Second, we study how multimodal inputs can be fully

utilized. We argue that most existing deep learning methods are prone to pay too large

attention to shallow patterns in the input features, which causes the resulting models to be

biased. We propose robust training to overcome the issue. Third, we extend the benefits

of multi-modal information to the supervision signals instead of the inputs, by learning a

weakly supervised detection model from the natural supervision of textual captions or audio

narrations. With the help of NLP constituency parsing, it is possible to extract structural

knowledges from the captions and narrations, hence determines the entities and relations of

visual objects.

keywords weakly supervised learning, object detection, scene graphs generation, cross-

modal retrieval, multi-modal learning, advertisements, external knowledge, vision and

language, representation learning, question answering.
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1.0 Introduction

Developing an intelligent system behaving like a human is the mainstream study of

artificial intelligence in the past decades. For example, supervised learning can be generalized

as learning a function that maps an input to an output, where the golden-standard of the

output is the supervision that we expect the machine to mimic. Early machine learning

methods use manually extracted features for the input, hence the machine’s perception of the

world is through human efforts. The advent of the deep neural networks replaced the human

roles in feature extraction through end-to-end training. CNN obtains information from

pixels, RNN and transformer models discover patterns from tokens, all without manually

specifying the feature rules. In these ways, machines sense the world more similar to human

beings, and humans are partially freed from labor-intensive feature extraction works.

However, the perception gap between machines and humans still exists. The neural

network models did not change the fact that most models only rely on the two conven-

tional modalities - image and text. For example, the core tasks of computer vision (namely

classification, detection, segmentation) all only use the image features. Also, the vision-and-

language tasks such as image captioning, image-text matching, and visual question answer-

ing, only use the pairing of image and text. In comparison, humans perceive and reason in

a different way. We witness, we listen, we touch, we understand the world via multi-modal

sensing, while the models ignore abundant information in the wild. Thus, natural cues such

as audio, speech, motion, scene depth are all potentially helpful and need to be explored.

More specifically, the perception gap lies in the inputs, as well as the supervised signals.

For the inputs, models usually do not know which modalities are useful for prediction and

do not know how to encode them. For example, TextVQA [233] shows that embedded texts

are informative for understanding images, yet previous models for the task do not consider

them as a primary modality. For the use of multimodal supervision that is free and abundant

on the internet (videos, images paired with comments, etc.), it is not the mainstream, so

institutes and companies still hire people to provide paired annotations instead. However,

due to the big data era, we believe that using the weakly paired multimodal annotations has
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Chapter 7, 8: using captions to learn 
object detection models
Chapter 9: using audio narrations to learn 
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“Nike products 
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Figure 1: Visual reasoning v.s. Weakly supervised detection. Visual reasoning uses the

multimodal features at both training and testing time, while weakly supervised detection

only uses the multimodal signals for training. At testing time, the detection model has to

figure out the location of visuals without the multimodal signals.

the potential which merits more attention.

To cope with the perception gap mentioned above, we incorporate both richer features

and richer supervision from multimodal information. First, we propose multimodal knowl-

edge integration for visual reasoning, to analyze images/videos with implicit persuasive intent

and answer questions about images/videos. We study how to encode and fuse multimodal

representations, as well as how to use them efficiently. For this part, we focus on image/video

advertisements’ understanding in that ads are usually well-designed to incorporate compli-

cated and informative features from embedded texts, audio, motion, speech, and so on. Since

the goal of ad design is even to enforce humans to think, the task is challenging for machine

models — without fully perceiving the hints like humans, the models can hardly understand

the true meanings of ads. Then, we extend the idea of using multimodal cues to conventional

images and videos and study the cues that potentially serve as weakly supervised signals to

localize visual objects or actions. Specifically, we attempt to learn detection models from

them. As compared to multimodal knowledge integration, this part explores to use multi-

modal signals as supervision instead of inputs, and it targets to harvest better and more

concrete vision detection models (see Fig. 1 for the differences).
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1.1 Challenges

Multimodal information is not guaranteed to help. First, multimodal features and ex-

ternal knowledge can contain noises in practical scenarios. These bring complexity to the

modeling. For example, the speech in videos often contains unrelated content (even incor-

rectly recognized), such as mentioning the time, discussing the popular sports events during

the season, or just presenting simple greetings. The knowledge that may be retrieved from a

general-purpose knowledge base is even noisier in that the external retrieval process usually

considers no semantics, or it considers semantics beyond the studied domain. For example,

WWF has ambiguous meanings such as World Wide Fund for Nature, The Working Women’s

Forum, etc., and the retrieval process just returns all of them or a random one, which may

confuse the models. Therefore, without properly dealing with noises from multimodal fea-

tures and external knowledge, one can hardly observe improved performance.

Then, even with clean inputs, generalizing a robust model is not easy. A well-known

issue is the overfitting to shallow patterns. For example, in VQA [12], many models learn to

answer three for the counting questions, without considering the visual. The reason is the

dataset biases — models generalize from biased dataset, hence are not able to really reason.

Thus, only when we are knowledgable regarding the data and understand the utilization of

the reasoning evidence, we can train a robust model that works in any situation, rather than

focusing on unreliable evidence.

Finally, properly incorporating multimodal supervision is complicated. For example,

utilizing text captions for object detection involves two primary challenges: reporting biases

and grounding issues. For the former, the multimodal cues may be complementary instead of

redundant. So, the supervisions may not cover all the objects in the images, i.e., they choose

NOT to mention some visual instances. In this case, models need to have some mechanism

to correct the biases. For the latter, although the visual and the supervision signals have

overlapped, determining the proper visual objects (or video actions) is still unclear since

some concepts such as the zoo, paveway may not have a clear visual boundary and can not

be treated as an “instance”. If a model tries to localize these abstract concepts, it may suffer

from a performance drop. So, models have to choose the visually concrete instances to be
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matched to the labels. In video action detection, using audio narrations needs to resolve

the ambiguity in which the temporal boundary between consecutive actions is incorrectly

annotated. Methods hence need to model the boundary uncertainty to better separate and

localize action instances.

1.2 Research Statements

We divide the focus of the thesis into two primary parts and propose five hypotheses

regarding them (formally introduced in Tab. 1). On the one hand, we are interested in the

multimodal knowledge integration for visual reasoning. Through training visual reasoning

models with/without extra features, we want to verify if multimodal features and external

knowledge are helpful to understand images/videos with implicit persuasive intent such as

visual advertisements (H1). We also expect to tackle the unreliable evidence for better

model reasoning, thus achieving a generalizable and robust model. Such unreliable evidence

includes but not limited to variants of dataset biases, overfitting to the shallow pattern (H2),

noises in the labels, and the underutilize of supervisions (H3). On the other hand, we are

eager to see if multimodal cues can be used for localizing objects in images and actions in

videos. We investigate whether the text captions are strong enough for training an object

detection model that recognizes and localizes visual objects. We investigate whether the

text captions are strong enough for training an object detection model that recognizes and

localizes visual objects. We explicitly deal with noises in the text supervision to learn the

object detection models (H3). Then, we further transfer knowledge such as properties and

relations from the text to visual models to utilize the caption supervision fully, and to infer

more reliable evidence from the supervision, for localization (H4). Finally, we investigate

the impact of audio and motion features, both for detection and reasoning tasks (H5).
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Table 1: Hypotheses in the thesis.

Primary # Hypotheses

Multimodal Cues for

Visual Reasoning

H1
Multimodal features help to understand images/videos with

implicit persuasive intent, such as visual advertisements.

H2 Text features can be unreliable if not modeled appropriately.

Multimodal Cues for

Localization

H3
Text supervision contains noise, but can be used to localize

visual objects in space, if modeled properly.

H4
Text supervision provides contexts regarding visual objects,

they are reliable cues for disambiguating entities and relations.

H5
Noisy audio narrations as a multimodal signal can be modeled

to localize video actions in temporal domain.

1.3 Outline of the Chapters

We show in Tab. 2 all the chapters in the thesis, under the two primary tasks using multi-

modal knowledge: visual reasoning which uses multimodal inputs, and weakly object/action

detection which uses multimodal supervision. For each task (visual reasoning or detection),

we first design basic models that can use the information from multiple channels : in Chap-

ter 3, 4, we design simple models for understanding the implicit intent in image/video ads.

Chapter 3 matches ads to the statements best describing them, while Chapter 4 predicts the

temporal dynamics, i.e. the sentiment and its intensity change. In Chapter 7 and Chap-

ter 9, we train image and video detection models respectively, using multimodal signals as

supervision. We preview the multi-modalities used in the mentioned chapters:

• Chapter 3 considers in the image model the visual symbol regions, embedded text slogans,

knowledge from symbols/visual objects; it also uses in the video model the video frames,

as well as the narrations parsed from speech-to-text API.

• Chapter 4 base on multiple frame-level features to provide the prediction. It uses the

5



place the story happens, the visual objects presented, the actors’ facial expressions, the

magnitude of the motion changes, the estimated shot boundary, and the sound loudness.

• Chapter 7 learns image object detectors from the paired captions of the images. It

extracts the entities mentioned in the texts as the image-level labels.

• Chapter 9 learns video action detectors from narration audios, considering the uncertain

boundaries between consecutive actions.

After presenting the fundamental models using multimodal cues as inputs or supervision,

we progressively consider a more practical issue when using the multiple modalities — noise.

Though the concept seems abstract, we concretely define and study the noise in the

following chapters:

• Chapter 5 integrates external knowledge for Chapter 3. However, the used text-query-

guided retrieval process is unaware of the image, thus may incur noisy knowledge entries

irrelevant to the ad. Besides, the query in the retrieved paragraph can be directly

connected to the statements to be ranked, causing a “shortcut effect” that hinders models

from true reasoning (models learn to utilize shortcuts, hence get “lazy” to uncover the

underlying “true” association). The former issue is caused by a noisy external random

process, and it hinders model inference, while the latter is caused by the biased data

distribution which is detrimental for training. Both issues bring obstacles to learning a

robust model.

• Chapter 6 investigates the shortcut effects same as in Chapter 5, but on a more general

VQA dataset.

• Chapter 7 tackles the noise in the descriptive captions paired to the images. In compar-

ison to Chapter 5, 6, the goal is to learn detection models from multimodal supervision

rather than using multimodal inputs for visual reasoning. We break down this type of

noise in the annotation process a bit more. On the one hand, the caption may or may

not mention the objects. Thus the quality of image-caption pairs are different, and some

may be more useful than others for learning an object detection model. By filtering out

complementary or irrelevant image-caption pairs, models may potentially be improved.

On the other hand, extracting object categories from good-quality captions incurs noise.

Because some objects are always implied in the captions (e.g., “pans”, “bowls” in the
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“kitchen” scene, “ties” worn by “professionals”) and are not explicitly mentioned, the

naive way of extracting labels (e.g., lexical matching) may introduce false negatives.

• Chapter 8 further extracts more reliable supervision than Chapter 7. It extracts a holistic

representation — a text graph from the caption. Thus the matching of instances, which

additionally depends on the relation context, is more accurate than Chapter 7. It avoids

the noisy instance labeling that associates a text entity to a random related region (e.g.,

connecting a “girl-in-hat” to the one without wearing a hat in the same image, since

lacking the context of “-in-hat”).

• Chapter 9 models the uncertainty in the video clip to use the noisy audio narration super-

vision. In the audio narrations, the start time of each narration annotation is imprecise.

The end time can only be assumed to be before the start time of the next annotation.

Thus whether a video frame belongs to the previous action, next action, or no action is

uncertain. We build a model to capture the uncertainty.
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Table 2: Published papers with regard to the thesis topics.

Primary Secondary Chapters
Conference

/ Journal
H1H2H3H4H5

Multimodal

knowledge

integration

for visual

reasoning

Using text,

audio,

external

knowledge,

etc.

Chapter 3 - ADVISE: Symbolism

and External Knowledge for

Decoding Advertisements

ECCV18 [294]

TPAMI19 [297]
3 3

Chapter 4 - Story Understanding in

Video Advertisements
BMVC18 [293] 3 3

Robustly

utilizing

multimodal

features

Chapter 5 - Breaking Shortcuts by

Masking for Robust Visual

Reasoning

WACV21 [298] 33

Chapter 6 - A Case Study of the

Shortcut Effects in Visual

Commonsense Reasoning

AAAI21 [295] 3

Multimodal

cues for

localizing

objects and

actions

Using text

captions,

audio

narrations as

supervision.

Chapter 7 - Cap2Det: Learning to

Amplify Weak Caption Supervision

for Object Detection

ICCV19 [299]

Submitted to

TPAMI

3

Chapter 9 - Action Detection

through Audio Narration

Supervision

TBD 3

Robustly

utilizing

multimodal

supervision

Chapter 8 - Linguistic Structures as

Weak Supervision for Visual Scene

Graph Generation

CVPR21 [296] 33
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1.4 Primary Tasks

In this section, we introduce the two primary tasks in the thesis. We work on visual

reasoning initially, then find the multimodal cues are useful for localization, thus dedicate

our later studies to object/action detection. The inner connection between the two is that

detection provides the fundamental regarding an image/video while visual reasoning is the

upper structure mimicking human thinking. For the multimodal knowledge integration for

visual reasoning, we focus on image/video ads understanding (Sec. 1.4.1) because ads are

usually well-designed to incorporate complicated and informative features from embedded

texts, audio, motion, speech, and so on. Thus, they are suitable for testing model reason-

ing. For localizing visual instances from multimodal cues, we focus on weakly supervised

object/action detection (Sec. 1.4.2) since learning from the enviroment (multimodal super-

vision) to localize and name instances is a fundamental problem in vision, and it has more

significant future impacts for applications such as navigation, robotic, self-driving etc.

1.4.1 Ads Understanding

Visual media are informative, but they are also manipulative, intentionally or uninten-

tionally [85, 181, 143, 217, 304]. Targeted campaigns to change public opinions on matters

with economic and social impact have been effective [287, 43]. Well-created ads gain great

popularity and are seen by many, thus entering our common consciousness [193]. The pub-

lic response to political images has caused policy changes as well as major governmental

decisions on issues such as war involvement and admitting refugees [18, 279].

Despite the importance of the persuasive nature of visual media, there is a scarcity of

computer vision approaches to understand visual rhetoric. While we have made impressive

progress on inferring the explicit content in the media (e.g. objects, scenes, actions), the

implicit nuances of the media have been overlooked, partly due to the significant challenges

that this task poses. Sometimes the message of an image is simple, and can be inferred

from body language, as in the “We can do it” ad (A) in Fig. 2. Other images convey more

complex or clever messages, whose decoding relies on human visual recognition (including
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generalization), association, and reasoning capabilities. For example, in Fig 2 (B), one

might infer that because the eggplant and pencil form the same object, the pencil gives a

very real, natural eggplant color, as in Fig. 2 (B). In Fig (C), one might conclude that Burger

King burgers are delicious, since even employees from competitor restaurants (McDonalds)

secretly buy them. In Fig (D), lungs symbolize breathing and by extension, life. However,

a human first has to recognize the groups of trees as lungs, which might be difficult for a

computer vision system to do, due to the atypical texture. In (E), the viewer has to infer

that the woman went on vacation from the fact that she is carrying a suitcase, and then

surmise that she is carrying dead animals from the blood trailing behind her suitcase. A

human knows this because she associates blood with injury or death. These are just a few

examples of how ads use different types of visual rhetoric to convey their message, namely:

association and symbolism, common-sense reasoning, and recognition of non-photorealistic

objects. Understanding advertisements automatically requires decoding this rhetoric.

EXAMPLE ADS IN OUR DATASET

Before it’s too late.

True colors.

Don’t buy exotic animal souvenirs.

A

B C

D E

Figure 2: Example advertisements from our dataset that require challenging visual recogni-

tion and reasoning. Despite the potential applications of understanding the messages of ads,

this problem has not been tackled in computer vision.
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In this thesis, Chapter 3, 5 consider the same ads understanding task: given an image

and several statements, the system must identify the correct statement to pair with the

ad. For example, the system in Fig. 3 made an incorrect top-1 prediction for Fig. 3 (A)

but a correct prediction for Fig. 3 (B). We evaluate the systems using more metrics such

as precision, recall, rank, etc., which shall be introduced in the chapters. Chapter 4 also

studies the ads but attempts to understand the sentiments of the video story (multi-label

classification), as well as to predict the sentiment peaks (binary classification).

Besides ads, there are other datasets that also require high-level reasoning, such as visual

question answering and visual commonsense reasoning, which perceive the features of an

image and provide natural language responses regarding the visual contents. We study

the Visual Common Reasoning (VCR) dataset in Chapter 6. The difference to the ads

understanding is that a natural language question is also provided as input for each image.

Thus, models are required to rank the answer options based on both the image and question.

We validate that our noise-dealing method applies to the ads dataset and also this more

general VCR dataset.

1.4.2 Object and Action Detection

Unlike visual reasoning, which is a high-level sensing and thinking problem, localizing

and classifying visuals is fundamental in computer vision. It has a wide range of applica-

tions, including robotics, autonomous vehicles, intelligent video surveillance, and augmented

reality. Formally, given an input image, visual object detection models generate bounding

boxes tight to objects, as well as the object labels for each box (see Fig. 4). Video action de-

tection is similar, but the bounding boxes are replaced with the starting and ending time in

the temporal domain. To learn object/action detection models, fully supervised methods re-

quire instance-level annotations. Since training requires a large amount of data, it is usually

a challenge to gather training data even with the help of crowdsourced platforms. Weakly

supervised methods only use image-level (or video-level) labels. They look for a set of tight

bounding boxes (or time intervals), such that the classification likelihood is maximized. To

some extent, the weakly supervised methods alleviate the labor-intensive annotation work,
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A

B

Figure 3: Ranking examples of the ads understanding task. Systems have to rank the paired

action-reason statement lower. We show the paired statement in bold and the predicted

image-text distance in the brackets.

yet they still need a crowdsource environment to provide clean and non-noisy labels.

In the thesis, Chapter 7, 8, 9 target the same goal of harvesting detection models to

recognize and localize visual instances. For example, Fig. 4a shows the results from Chap-

ter 7, which generates detection boxes (green and red) for an given image. Fig. 4b shows

some predictions from Chapter 9, which detects time intervals (starting and ending time)

as well as the action labels associated. The common challenge for them is similar to visual

reasoning, i.e., how to deal with noise in natural supervisions and how to extract reliable

information for localization. We provide answers in these chapters.
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(a) Image object detection

wash pan
wash spatula

wash plate
pour liquid:washing

wash fork
wash sponge

put plate
wash knife

wash pan
turn-on tap
throw food
wash fork
take plate

wash colander
take pan
put pan

take spatula
throw bin
wash fork
throw bin

GROUND-TRUTH

(b) Video action detection

Figure 4: Visual detection examples. The localization for both image objects and video

actions can be evaluated using the Average Precision at a given overlap/IoU threshold. We

show correct (overlap/IoU > 50%) detections in green, incorrect ones in red.
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1.5 Contributions

We summarize the contributions of this thesis. First, we show how to use multimodal

features as well as the encoded external knowledge to understand advertisements better.

Although we verify using our ads dataset, the method, in theory, can be generalized to

other data that requires to understand different types of rhetorics (e.g., story or movie

understanding). Moreover, the use of external knowledge also fits the VQA and Image-Text

retrieval background, it hence could be easily adapted.

Second, we have studied two cases (one uses our ads dataset [94] while the other uses the

VCR [314]) showing that models utilize shortcuts instead of real evidence to make decisions.

These studies remind researchers to take care of the shortcut effects to fully unleash the

power of multimodal features. Besides the observational studies, we also provide robust

training solutions to overcome the negative effects, resulting in generalizable models.

Last but not least, we explore the new direction of injecting the multimodal signals into

the supervisions. On one hand, we propose a task to learn object detection models from weak

supervision of textual captions. It is more useful than weakly supervised object detection

(WSOD) using ideal image-level labels since it suits a more practical using scenario. In such

a use scenario, tons of web images paired with descriptive captions or user-generated tags

can be potentially used for training the models. On the other hand, we attempt to learn

video action detection models from audio narrations. We find the audio narrations to be

both cheap and informative, leading to good action localization performance.
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2.0 Related Work

In this chapter, we retrospect the related techniques for our two primary focus: multi-

modal knowledge integration for visual reasoning (Sec. 2.1) and multimodal cues for localizing

objects and actions (Sec. 2.2).

2.1 Visual Reasoning with Multimodal Features and External Knowledge

Visual reasoning is a challenging but important task that is gaining momentum. Exam-

ple tasks include reasoning about what will happen next in film, or interpreting what actions

an image advertisement prompts. Both of these reasoning tasks are “puzzles” which engage

the viewer and invite them to combine knowledge from prior experience, in order to find the

answer. Since one of the primary goals of this thesis is to study the multimodal knowledge

integration for visual reasoning, we summarize in Sec. 2.1.1 the extensive multimodal fea-

tures. We are also interested in using multimodal features efficiently without incorporating

model biases, so we summarize in Sec. 2.1.2 the methods for evaluating, diagnosing, and

overcoming model biases. Besides, we summarize the reasoning tasks such as understanding

the ads and multimedia in Sec. 2.1.3.

2.1.1 Extensive Multimodal Features

Region Proposals Estimating Instance-level Attention Prior. Region proposals

[81, 211, 150, 70] guide a model to regions likely to contain objects, thus for better reasoning.

Attention [33, 302, 285, 228, 291, 210, 184, 153, 61, 323, 198] focuses prediction tasks on

regions likely to be relevant. We show that for our task, the attended-to regions must be

those likely to be visual anchors for symbolic references.

Vision, Language and Image-Text Embeddings. Recently there is great interest

in joint vision-language tasks, e.g. captioning [265, 115, 52, 107, 11, 302, 262, 260, 309, 290,
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64, 198, 227, 35, 125], visual question answering [12, 307, 161, 291, 228, 283, 249, 327, 328,

88, 271, 106, 251], and cross-domain retrieval [31, 27, 310, 141]. These often rely on learned

image-text embeddings. [56, 121, 80] use triplet loss where an image and its corresponding

human-provided caption should be closer in the space than pairs that do not match. [53]

propose a bi-directional network to maximize correlation between matching images and text,

akin to CCA [87]. None of these consider images with implicit persuasive intent, as we do.

We compare against [56, 53] in Sec. 3.3.

External Knowledge for Vision-language Tasks. [283, 271, 106, 328, 251] examine

the use of knowledge bases and perform explicit reasoning for answering visual questions.

[262] use external sources to diversify their image captioning model. [174] learn to com-

pose object classifiers by relating semantic and visual similarity. [164, 73] use knowledge

graphs or hierarchies to aid in object recognition. These works all use mappings that are

objectively/scientifically grounded, i.e. lion is a type of cat. In contrast, we use cultural asso-

ciations that arose in the media/literature and are internalized by humans, e.g. motorcycles

are associated with adventure.

Human Emotions. Human emotions are also an important cue for visual reasoning.

Researchers have been interested in predicting facial expressions and emotions for a long

time [54, 111, 42]. Large datasets exist [178, 20, 122]. We train a facial expression model on

[178] and apply it on faces detected in the video, as a cue for the viewers’ sentiment.

Video Dynamics and Actions - Motion, Pose, and Activity. Optical flow [58,

24, 241, 166, 96, 207] is a basic building block of video understanding. We use [207] due

to its simplicity and reliable accuracy. Higher-level analysis of video includes human pose

estimation [255, 229, 188] and action detection and recognition [300, 71, 268, 28]. Unlike

these, optical flow does not capture semantics (such as the name of the action performed in

a video). This is desirable in our case since a wide variety of activities can be exciting and

climactic, so categorization is less useful. Anomaly detection [159] is also related, but rather

than predicting what does not fit, we wish to predict how a video builds up and increases

its dramatic content to create the climax.
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2.1.2 Model Biases: Evaluation, Diagnosis, and Overcoming Them

Formulation and Evaluation of Reasoning Tasks. A widely accepted definition for

reasoning involves utilization of external information (from a knowledge base or pretraining

on multimodal data in unsupervised fashion), which helps to answer questions about an im-

age. Visual question answering (VQA) is a representative task. It asks vision-related multi-

choice questions and assumes that only the models armed with reasoning capabilities could

answer. Early benchmarks [12, 77, 319] provide only the image and paired question/answers,

but various approaches [251, 283] have explored incorporating diverse external resources.

Later on, knowledge-based VQA (KBVQA) datasets such as [163, 225, 232, 271, 270] provide

facts or background knowledge as part of the dataset release. They facilitate the adoption of

external knowledge in VQA algorithms: for example, [185, 186] predict whether the answer

is in the knowledge base and further choose the most suitable answer from candidates. The

weakness of both VQA and KBVQA, we argue, is they over-simplify the reasoning by asking

a single question, i.e. while answering is explicitly evaluated, reasoning evaluation is only

implicit. This setting is not suitable for verifying the effectiveness of external knowledge

usage. Many works studied the VQA/KBVQA benchmark validity, e.g. [77, 319] retro-

spected on organizing the VQA challenge and proposed methods to improve the datasets.

[205] studied the language priors in the VQA dataset, and forced the method to look at the

image; we instead force it to look at external knowledge. In the NLP domain, [101, 104, 272]

showed on the SQuAD [204] benchmark that providing always-relevant knowledge is not

a good practice since the learned models are not necessarily based on the facts to reason.

They turned questions into confusing facts and added them to the knowledge context. They

observed state-of-the-art models to be fragile to such a simple input change.

To alleviate the oversimplification issue in VQA, the visual commonsense reasoning

(VCR) task [314] requires models to both answer a visual question, and provide rationales

to justify the answers. Automatic understanding of advertisements [94] requires the com-

prehension of two aspects of the ads: one requires the machine to answer what action is

suggested in the ad, and the other requires the model to explain the ad’s arguments for

encouraging this action. However, both the VCR and Ads understanding tasks fail to apply
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hard constraints to enforce the answer prediction to be based on the rationale. In other

words, the reason predictions are merely the outputs of some parallel models, which are not

necessarily helpful to the primary objective.

In this work, we specifically focus on evaluating the ability of knowledge-based visual

reasoning methods [163, 185, 186, 271] to retrieve relevant knowledge. In addition to the

main metric (which measures the accuracy of answer prediction), we explicitly evaluate its

reasoning capability, i.e., whether the model could find the correct knowledge piece to use.

Our new side task detected models that are utilizing superficial patterns.

Dataset Biases and Diagnosis. Many works studied VQA dataset biases to improve

data acquisition. For example, [77, 319] optimized the annotation pipeline to cope with

questions being answerable without examining the visual contents. The problem we study is

orthogonal as it has to do with question-answer shortcuts rather than the presence of modes

in the answer class distribution. The VCR authors [314] trained an adversarial matching

model to provide suggestions for the distracting options, but we show shortcuts still exist. [91]

developed a question engine to leverage scene graph structures to dispatch diverse reasoning

questions, thus tightly control the answer distribution; this does not remove question-answer

shortcuts. [105] proposed the procedurally generated synthetic CLEVR dataset and mini-

mized the biases of the annotations through random sample generation; this is not possible

for VCR. [3] propose train-test splits that have different answer distribution priors, but over-

reliance on priors is not the only problem. Importantly, prior work has largely focused on

biases in the classification probability given the question, but the shortcuts we study take

the broader form of co-existing words or objects, in the question-answer pair. Methods to

cope with classification biases do not apply also because both question and answer are entire

sentences.

Constructing adversarial data to attack the trained models is a way to diagnose the effects

of dataset biases, and we propose a technique in our work. In text question answering (QA),

[101, 272, 104] applied adversarial evaluation on the SQuAD dataset [204]. They turned

questions into confusing facts that should have no impact on the answers and added them

to the knowledge context to distract models. Our strategy for modifying the evaluation is

(1) simpler, i.e. we only replace pronouns with existing person tags or we mask, rather than
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generating new content at the phrase level, and (2) we are not aware of prior adversarial

evaluation in the VCR setting.

Explainable Models. Our focus is on ensuring and evaluating a model’s ability to

select reliable evidence (i.e. external knowledge), not on the explainability/interpretability

of models to a human. In other words, we care about the correctness of knowledge pieces used,

rather than how interpretable the model’s selections are. Because the difference is subtle, we

briefly discuss explainable models and how they are different than our work. Some work [83,

93] collects explanation annotations and requires a model to point to the human-annotated

reasons for an effect—for example, finding the spatial location in an image that directly

affects a model’s prediction. Unlike our work, these require annotation effort, i.e. humans

provide explanations. They also resemble the parallel reasoning task as evidence does not

necessarily lead to the main model decision. Attention mechanisms and Graph Convolutional

Networks (GCN) [120] are another way to achieve explainability. They optimize a primary

goal, meanwhile, learn the reliability of different evidence. Approaches such as [153, 184,

185, 198, 220, 228, 285, 286, 291, 302] fall into this category. Our approach is similar in

that we do not require additional supervision, but we propose a new side task to explicitly

evaluate the model’s ability to choose the right evidence. We study the relation between

choosing correct supportive evidence and predicting the correct answer.

Methods that Lead to Robust Training. General-purpose techniques, e.g. dropout

[238], regularization, or pre-training, potentially benefit VL tasks. In NLP, distributed

representations [173, 200] are often used to initialize sequence models. ELMo [201] and

BERT [50] learn context word embeddings through left-to-right/right-to-left or masked lan-

guage modeling, and are often used for pretraining in downstream tasks. In vision-and-

language, [37, 152, 140, 240] extend BERT to the multi-modal setting to pre-train on large

VL datasets e.g. Conceptual Captions [226]. The methods we study also use various forms

of pre-training, but still suffer from shortcut effects.

To cope with specific dataset biases, [205] push their full VQA model away from a

question-only one, thus encourage the former to pay more attention to the visual features.

[156] train textual distractors using reinforcement learning to confuse the answering module

thus partially resolve the priors in question type. However, these are limited to the classifi-
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cation setting, and tackle a different type of bias. We instead propose a technique to cope

with the input-output shallow matches.

Alternative Methods for VQA. There are methods that aim to perform “true reason-

ing” as we have described in it Sec. 6.1, e.g. neural module networks, executable programs,

and neuro-symbolic methods [9, 106, 301, 162, 261] which break up reasoning into a sequence

of steps. However, these are predominantly applied on synthetic VQA settings (e.g. CLEVR)

and are not appropriate for the VCR dataset.

2.1.3 Automatic Understanding of Advertisements and Multimedia

Predicting Placement and Responses to Ads. We are not aware of any work in

decoding the meaning of advertisements as we propose. However, [16, 39] predict click-

through rates in ads using low-level vision features, whereas we predict what the ad is

about and what message it carries. [288, 168] determine the best placement of a commercial

in a video stream, or of image ads in a part of an image using user affect and saliency.

[216, 67] detect whether the current video shown on TV is a commercial or not, and [224]

detect human trafficking advertisements. [256] modify ads to be indiscernible from regular

images, in order to bypass ad-blockers. In terms of human responses to ads, [167] predict

how much human viewers will like an ad by capturing their facial expressions. Human facial

reactions, and ad placement and recognition, are quite distinct from our goal of decoding the

messages of ads. There is also extensive research in the media studies, communications and

advertising research community [278, 170, 222] on how ads build rapport, but this research

is not computational.

Predicting Effectiveness. Media arts papers have examined effectiveness as related

to context [239], repetition [234], brand recognition [139], emotion and engagement [250], in-

tellectual curiosity [235], as well as humor, iconic characters, and thought-provoking content

[59]. Most of these papers require human input from surveys, and do not perform computa-

tional analysis or automatic prediction of effectiveness. [127] considers specific demographics

of individual viewers, as well as the final result of a video’s views to determine effectiveness,

which precludes inferring quality before a video is released. Finally, [206] uses neural net-
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works to predict TV ad effectiveness, but all 837 participants in the survey analyzed one

of three ads, all of which were marketing toothpaste. Our dataset consists of close to forty

topics and product types, thus making the task more challenging.

Retrieving the Most Suitable Ads-related Statements. The early work [94] pro-

poses the problem of decoding ads, formulated as answering the question “Why should I

[action]?” where [action] is what the ad suggests the viewer should do, e.g. buy a car or help

prevent domestic violence. The dataset contains 64,832 image ads. Annotations include the

topic (product or subject) of the ad, sentiments and actions the ad prompts, rationales pro-

vided for why the action should be done, symbolic mappings (referred to as signifier-signified,

e.g. motorcycle-adventure), etc.

In [94], ads understanding was defined as a classification task. [294] proposed a cross-

modal retrieval task to match the action-reason statement provided by human annotators

(“What action should the viewer take based on the ad? What reason does the ad provide

for taking the suggested action?”). [297, 4, 195, 294] proposed models for the cross-modal

retrieval task, where [294] incorporated knowledge from captioning and symbol prediction

models, [4] used a symbolism-based attention model, and [195, 297] additionally used textual

slogans in the image extracted with OCR techniques. Instead of using an embedding from

a single modality or fusing the multi-modal features, [298] used a graph and allow message

passing between modalities. The learned weights in the graph structure capture the model’s

reasoning and can be used to gauge “How does the model incorporate external knowledge

to reason about an ad?”.

Automated Media Analysis There is a small body of work in analyzing persuasion and

social phenomena as portrayed in the media domain. [109] analyze in what light a photograph

portrays a politician, and [110, 273] examine how the facial features of a candidate determine

the outcome of an election. [199] examine the facial attributes of faces in politics, and [252]

examine the variance of faces in ads. Some work also analyzes events (e.g. protests) as

reported in social media [280]. This work primarily applies to images of people. Also related

is work in parsing infographics, charts and comics [25, 117, 97]. In particular, these focus on

modeling attention, or extracting information and answering questions about comic books.

In contrast to these, our interest is analyzing the implicit arguments ads were created to
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make.

Movie and Story Understanding One task in our work is to understand the structure

of video ad stories. Others have developed techniques for understanding movie plots [249,

182, 263] and the principal characters and their relations [277]. While there is no prior work

on detecting climax in ads, some previous approaches model the tempo of other videos. [149]

use cues like “motion intensity” and “audio pace” to detect action scenes. [208] use pacing

to recognize movie genre since action movies are faster-paced than dramas. [40] create video

stories out of consumer videos, using story composition and dynamics. We show semantic

context features based on objects, scenes and emotions improve the performance of purely

motion- or pace-based ones.

2.2 Multimodal Cues for Localizing Objects and Actions

Object and action detection deal with recognizing and localizing instances of specific

visual categories (e.g., person, car, bus, cat, etc.). The former generates bounding boxes

tight to objects and the labels for each box, while the latter predicts start and end times for

specific actions. To achieve the two basic models, fully supervised object or action detection

requires instance-level annotations for all objects in images or all actions in videos. How-

ever, it is labor-intensitive to get the training datasets. Thus, the two tasks are not easy to

scale to use big data. Weakly supervised detection aims to alleviate the burden of collect-

ing such expensive box/action annotations. It requires only image-/video-level supervision,

thus gathers attention. However, weakly supervised detection still needs an unnatural and

crowdsourced environment. It inspires us to look for an entirely free method without human

annotation effort. That is the reason we explore multimodal cues for localization. We sum-

marize methods that learn from caption supervision (Sec. 2.2.1), and briefly introduce the

approaches applied to videos (Sec. 2.2.2).
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2.2.1 Learning Image Object Detectors from Weak Caption Supervisions

Weakly Supervised Detection via MIL. Most Weakly Supervised Object Detection

(WSOD) methods formulate the task as a multiple instance learning (MIL) problem. In this

problem, proposals of an image are treated as a bag of candidate instances. If the image is

labeled as containing an object, at least one of the proposals will be responsible to provide the

prediction of that object. [194, 324] propose a Global Average (Max) Pooling layer to learn

class activation maps. [22] propose Weakly Supervised Deep Detection Networks (WSDDN)

containing classification and detection data streams, where the detection stream weighs

the results of the classification predictions. [114] improve WSDDN by considering context.

[248, 247] jointly train multiple refining models together with WSDDN, and show the final

model benefits from the online iterative refinement. [51, 275] apply a segmentation map and

[275] incorporate saliency. Finally, [266] adds a min-entropy loss to reduce the randomness of

the detection results. Our work is similar to these since we have also attempted to represent

the proposals using a MIL weighted representation, however, we go one step further to

successfully adopt a more advanced neural architecture, and a more challenging supervision

scenario.

Weakly Supervised Scene Graphs Generation. Since the captions we proposed

to use also include the relation information, we learn the object detector and relation de-

tector in a joint manner — which serve the same goal as weakly supervised scene graphs

generation. Most weakly supervised scene graphs generation methods [34, 78, 141, 148, 151,

187, 203, 284, 289, 315] learn to generate graphs in a fully-supervised manner, in which

training data involves both entities (bounding boxes and labels) and predicates. Inspired by

weakly-supervised object detection (WSOD) [22, 194], [202, 313, 317] somewhat reduce the

reliance on these labor-intensive annotations. [202] infer visual relations using only image-

level triplets. [317] directly apply WSOD for entity localization and add a weakly-supervised

visual relation detection (WSVRD) task for classifying entity pairs. [313] match predicates

to entities and jointly infer the entities, predicates, and their alignments, using a bipartite

graph. However, [202, 313, 317] still require clean triplet annotations from crowdsourcing,

while our method only needs captions. Further, we capture visual properties in the internal
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graph at training time; these cannot be represented using triplets but help to enrich the

visual representation and better ground entities. [313]’s method includes a more general

(subject, predicate, ∅) graph, but it does not capture visual attributes.

Understanding Text and Learning Visual Objects from it. Recently there has

been great interest in modeling the relationship between images and texts, but to our knowl-

edge, no work has explored learning a detector for images from captions. [31] learn to

discover and localize new objects from documentary videos by associating subtitles to video

tracklets. They extract keywords from the subtitles using TFIDF, but we show that only

using words that actually appear in the caption (as done with TFIDF) results in suboptimal

performance.

There is also work to associate phrases in the caption to visually depicted objects —

visual grounding of phrases. It locates the entities in an image, based on a given natural

language query. [116] align sentence fragments with image regions. [32, 213] attend to the

relevant image regions to reconstruct the input phrase, similar to weakly-supervised object

detection. [321] incorporate a spatial transformer [98] to refine object boxes relative to

multi-scale anchors. However, none enable training of an independent object detector with

accurate localization and classification, as we propose.

Besides, a group of work is trying to parse the captions and use the structural parsing

results to help understanding visual objects. Open information extraction systems [10, 46,

55, 165, 292] produce relation triples using surface and dependency patterns, but target

language-only relation extraction or question answering. On the vision end, method exist to

parse a question or image into a structured, tree-like form, for composable visual reasoning [9,

72, 106, 118, 162, 301]. Following the emergence of scene graphs [108] as a global description

of an image, automatic parsing from textual descriptions to scene graphs [219, 274] aims to fill

the gap between texts and images. It tackles practical issues such as pronoun resolution and

plural nouns, and duplicates some nodes in the scene graph if necessary. Though we use the

parser designed in [219], our reliance on parsing is different. While the above methods tackle

pure language tasks, visual question answering, and image retrieval, we use the parsed results

as supervised signals to guide a scene graph generation model during training. Our work is

similar to [31, 100, 299] since we extract or amplify information from captions. However,
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these works only extract entities from captions, while we also learn from the properties

and relations described. Also related are recent methods that use supervision from visual-

language pairs [48, 171, 183, 242, 282], but these learn general-purpose representations and

do not perform scene graph generation.

Captions, Categories and Human Bias. We notice that there is a gap between what

humans name in captions, and what categorical annotations they provide. [175] study a

similar phenomenon they refer to as “human reporting bias”. They model the presence of an

actual object as a latent variable, but we do the opposite—we model “what’s in the image” by

observing “what’s worth saying”. Further, we use the resultant model as precise supervision

to guide detection model learning. In other work, [318] predict the nuance between an

ad image and a slogan, [258] study attribute dominance, and [21] explore perceived visual

importance.

2.2.2 Learning Weakly Supervised Models from Videos

Video Datasets Involving Objects and Actions. To deal with experiments on the

video data, many datasets were proposed. Wildlife Documentaries Dataset [31] contains 15

documentary films from YouTube and each is 9 - 50 minutes long. The authors provide

tracklet-level annotations for weakly supervised object detection evaluation. HowTo100M

instructional videos [171] contains 1.2M videos with automatically generated speech tran-

scription. Their videos feature the daily objects and actions on instructional videos. The

EPIC-Kitchens dataset [45, 44] records egocentric videos regarding actions in the kitchen.

They even annotated bounding boxes of essential objects, thus are potentially useful for

localization evaluation.

Weakly Supervised Learning in Videos. Since videos naturally involve multiple

modalities, many approaches use unsupervised or weakly supervised training to learn better

video representations. For example, [15, 30, 189, 196] explore the cross-modal relations and

leverage large amounts of unlabeled video for training. The basic idea behind this is that

vision and sound are naturally synchronized so that models can utilize the synchronization

as weak signals instead of ground truth labels. However, these methods are more often used
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in pre-training to improve the initialization of the visual-sound models. In comparison, our

focus is to use the additional modalities (e.g., audio narrations) to localize visual objects or

actions in the temporal domain.

Also related is the co-localization or audio-visual correspondence [2, 13, 14, 66, 80, 223].

Similar to learning the joint representations, these works also rely on the synchronization

of different modalities. However, they further learn to localize the sounds or visual objects

given the information from other modalities. Our work still differs from them in that 1)

these works did not quantify their results on detection tasks while only provide qualitative

results; 2) our model requires no supervised signals at testing time.

Weakly Supervised Video Detection Tasks. Extending the weakly supervised

detection to the video domain is required to greatly reduce the expensive human efforts.

However, due to the different understandings caused by the additional time axis, weakly

supervised object detection has various definitions in videos. For example, [129, 133, 142,

190, 177, 179, 269] only learn to detect the starting and ending time of particular actions,

while entirely ignored spacial layouts of the instances. To track the spatio-temporal local-

ization, methods such as [31, 276] rely on the video/image proposal frameworks such as

[113, 112, 99, 259] which provide high-quality region proposals. Their approaches are coun-

terparts to the WSOD of the image domain, with the only difference in the types of proposals.

Finally, there are also methods [176, 130, 132] attempted to only utilize cues from videos

(e.g., motion, subtitle, tight boxes) to potentially benefit the training of image detectors.

We study how to learn the action detection models (predicting starting/ending time and

action labels) in videos in the thesis. However, as compared to fully-supervised methods

[57, 71, 157, 231, 236, 300, 322], the supervised signals we used are the audio narrations,

which are noisy in nature hence are much weaker than instance-level annotations. As for

the weakly supervised action detection models [129, 190, 191, 197, 230, 269], their data in

most cases only involve one single action per video. Thus video-level supervision satisfy

their requirements. In comparison, our targeting task is a novel and new task, requiring

non-trivial efforts to deal with the noisy annotations to improve the learned model’s quality.
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3.0 ADVISE: Symbolism and External Knowledge for Decoding

Advertisements

3.1 Introduction

Many visual reasoning tasks require to understand the multimodal cues and the content

referring to the knowledge outside the image/video. Thus, one needs to know the background

to understand them. E.g., a photo of a celebrity in public media may refer to his/her recent

public statement regarding a social event. In this chapter, we focus on advertisements since

they are well-designed to incorporate complicated and informative features from external

knowledge, hence are excellent resources for testing model reasoning.

Advertisements are a powerful tool for affecting human behavior. Product ads convince

us to make large purchases, e.g. for cars and home appliances, or small but recurrent

purchases, e.g. for laundry detergent. Public service announcements (PSAs) encourage

socially beneficial behaviors, e.g. combating domestic violence or driving safely. To stand

out from the rest, ads have to be both eye-catching and memorable [303], while also conveying

the information that the ad designer wants to impart. All this must be done in a limited

space (one image) and time (however many seconds the viewer spends looking at the ad).

How can ads get the most “bang for their buck”? One technique is to make references

to knowledge viewers already have, e.g. cultural knowledge, associations, and symbolic map-

pings humans have learned [221, 136, 237, 135]. These symbolic references might come from

literature (e.g. a snake symbolizes evil or danger), movies (a motorcycle symbolizes adven-

ture or coolness), common sense (a flexed arm symbolizes strength), or pop culture (Usain

Bolt symbolizes speed).

In this chapter, we focus on the task of inferring the suggested action (what the viewer

should do) and provided arguments (why they should do it, according to the ad). We propose

a novel method that embeds images/videos and action-reason (what-why) statements, to

allow retrieval of statements given an image/video.

We first describe how to use symbolic mappings to predict the messages of image ad-
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vertisements. On one hand, we model how components of the ad image serve as visual

anchors to concepts outside the image, using annotations in the Ads Dataset of [94]. On the

other hand, we use knowledge sources external to the main task, such as object detection

models, to better relate ad images to their corresponding messages. Both of these are forms

of using outside knowledge, and they both boil down to learning links between objects and

symbolic concepts. We use each type of knowledge in two ways, as a constraint or as an

additive component for the learned image representation. We show that the knowledge

as an additive component helps to improve the ads understanding performance, while the

knowledge as a constraint additionally helps explain the symbolic links spatially in an image.

Then, we extend the multimodal features used in the basic image model and further

design a model for the video ads. In comparison, this time we focus more on the multiple

modalities, i.e., the contributions of image/video and text/speech/sound.

To summarize, our contributions are as follows:

• We show how to effectively use symbolism to better understand image ads.

• We show how to make use of noisy caption predictions to bridge the gap between the

abstract task of predicting the message of an ad, and more accessible information such

as the objects present in the image. Detected objects are mapped to symbols via a

domain-specific knowledge base.

• We show how to encode video ads as a bag of frames or a sequence of frames.

• We show how embedded slogans and speech are influencing image and video ads under-

standing, respectively.

3.2 Approach

We focus on the following multiple-choice task, implemented via ranking: Given an

image/video ad and several statements, the system must identify the correct statement to

pair with the ad. For example, for test image D in Fig. 5, the system might predict the right

statement is “Buy this drink because it’s exciting.” This ranking task is akin to multiple-

choice question-answering, which was also used in prior VQA works [12, 249], but unlike
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I should buy this drink because it’s exciting.

danger

cooldanger

gun

A
motorbike

bottle

cool

B

D

bottle

cool

C

TR
A

IN
TE

ST

Figure 5: Our key idea: Use symbolic associations shown in yellow (a gun symbolizes danger;

a motorcycle symbolizes coolness) and recognized objects shown in red, to learn an image-

text space where each ad maps to the correct statement that describes the message of the

ad. The symbol “cool” brings images B and C closer together in the learned space, and

further from image A and its associated symbol “danger.” At test time (shown in orange),

we use the learned image-text space to retrieve a matching statement for test image D. At

test time, the symbol labels are not provided.

these, we do not take the question as input. Similarly, in image captioning, [115, 56] look

for the most suitable image description.

We learn an embedding space where we can evaluate the similarity between ad images (or

videos) and ad messages (Sec. 3.2.1). We show how to use symbolic mappings to predict the

messages of image advertisements (Sec. 3.2.2). Then, we focus on the multiple modalities.

We present our image/video models, which consider multimodals from image/video and

text/speech/sound (Sec. 3.2.3).

3.2.1 Cross-modal Triplet Embedding for Statements Retrieval

We first directly learn an embedding that optimizes for the retrieval/ranking task. We

require that the similarity between an image (video) and its corresponding statement should

be higher than the similarity between that image (video) and any other statement, or between
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other images (videos) and that statement. Thus, we minimize Eq. 1:

L(v, t;θ) =

K∑
i=1

[ ∑
j∈Nvt(i)

max

(
0,

vᵀi tj
‖vi‖‖tj‖

−
vᵀi ti
‖vi‖‖ti‖

+ β

)
︸ ︷︷ ︸
image (video) as anchor, rank statements

+
∑

j∈Ntv(i)

max

(
0,

tᵀi vj
‖ti‖‖vj‖

−
tᵀi vi
‖ti‖‖vi‖

+ β

)
︸ ︷︷ ︸
statement as anchor, rank images (videos)

]

(1)

where K is the batch size; β is the margin of triplet loss; v and t (v, t ∈ R200×1) are the visual

and textual embeddings we are learning, respectively; vi, ti correspond to the same ad and

vᵀ
i ti

‖vi‖‖ti‖ measures the cosine similarity between the paired visual and textual embeddings;

Nvt(i) is the negative statement set for the i-th image (video), and Ntv(i) is the negative

visual set for the i-th statement, defined in Eq. 2. These two negative sets involve the most

challenging k′ examples within the size-K batch. A natural explanation is that Eq. 2 seeks

to find a subset A ⊆ {1, ..., K} which involves the k′ most confusing examples.

Nvt(i) = arg max
A⊆{1,...,K},|A|=k′

∑
j∈A,i 6=j

vᵀi tj
‖vi‖‖tj‖

, Ntv(i) = arg max
A⊆{1,...,K},|A|=k′

∑
j∈A,i 6=j

tᵀi vj
‖ti‖‖vj‖ (2)

Hard Negative Mining. Different ads might convey similar arguments, so the sampled

negative may be a viable positive. For example, for a car ad with associated statement “I

should buy the car because it’s fast”, a hard negative “I should drive the car because of

its speed” (provided on another image) may also be proper. Using the k′ most challenging

examples in the size-K batch (Eq. 2) is our trade-off between using all and using only the

most challenging example, inspired by [56, 218, 281].

Text Embedding. We use either mean-pooling or an LSTM model [84] depending on

our different needs, to encode the word embedding vectors (initialized from GloVe [200]) into

200-D statement embedding t. For Sec. 3.2.2, we focus on the symbolic mappings, thus re-

quire the permutation-invariant nature of mean-pooling. For Sec. 3.2.3, we use LSTM for the

image ads understanding and mean-pooling for the video understanding model, considering

the performance.

Basic Image Embedding. As a very basic representation, we extract the Inception-v4

feature [243] of a full image x, denoted as φcnn(x) ∈ R1536×1. Then we use a fully-connected
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layer with parameter wimg ∈ R1536×200 to project it to the joint embedding space, resulting

in v = wᵀ
imgφcnn(x) ∈ R200×1.

Basic Video Embedding. For the video ads, we treat the video as a bag of frames

(BOF) which ignores the sequence order, due to the limited size of our video ads dataset.

Consider a frame sequence x1, . . . ,xR of a video where R is the total number of frames. Given

that we sample 1 frame per second, R also equals to the time duration measured in seconds.

We use Inception-v4 [243] to extract frame features, resulting in φcnn(x1), . . . , φcnn(xR).

The BOF model then uses mean-pooling to represent the video zvdo = 1
R

∑R
i=1w

ᵀ
vdoφcnn(xi),

where wvdo ∈ R1536×200 is the parameter.

3.2.2 Symbolism and External Knowledge for Decoding Image Ads

We consider using the symbolic mappings to predict the messages of image ads. In

addition to Sec. 3.2.1, our method involves three components: (1) an image embedding

which takes into account individual regions in the image, (2) constraints on the learned

space from symbol labels and object predictions, and (3) an additive expansion of the image

representation using a symbol distribution. These three components are shown in Fig. 6,

and all of them rely on external knowledge in the form of symbols and object predictions.

Note that we can recognize the symbolic association to danger in Fig. 5 via two channels:

either a direct classifier that learns to link certain visuals to the “danger” concept, or learning

associations between actual objects in the image which can be recognized by object detection

methods (e.g. “gun”), and symbolic concepts.

Image Embeddings using Symbol Regions. Since ads are carefully designed, they

may involve complex narratives with several distinct components, i.e. several regions in the

ad might need to be interpreted individually first to decode the full ad’s meaning. Thus, we

represent an image as a collection of its constituent regions, using an attention module to

aggregate all the representations from different regions.

Importantly, the chosen regions should be those likely to serve as visual anchors for

symbolic references (such as the motorcycle or shades in Fig.5, rather than the bottles).

Thus we consider all the 13,938 images, which are annotated as containing symbols, each

31



Figure 6: Our image embedding model with knowledge branch. In the main branch (top

left), multiple image symbolic anchors are proposed. Attention weighting is applied, and

the image is represented as a weighted combination of the regions. The knowledge branch

(bottom left) predicts the existence of symbols, maps these to 200-D, and adds them to the

image embedding. We then perform triplet training to learn such an embedding space that

keeps images close to their matching action-reason statements.

with up to five bounding box annotations. Our intuition is that ads draw the viewer’s

attention in a particular way, and the symbol bounding boxes, without symbol labels, can

be used to approximate this. More specifically, we use the SSD object detection model

[150] implemented by [89], pre-train it on the COCO [147] dataset, and fine-tune it with the

symbol bounding box annotations [94].

We use bottom-up attention [7, 251, 124] to aggregate the information from symbolic

regions (see Fig. 6). Specifically, we use the Inception-v4 model [243] to extract CNN features

for all symbol proposals {x1, . . . ,xM} (we set M = 10, i.e., 10 proposals per image), resulting

in {φcnn(x1), . . . , φcnn(xM)} where φcnn(xi) ∈ R1536×1. Then, for each CNN feature φcnn(xi),

fully-connected layers are applied to project it to: (1) a 200-D embedding vector vi (Eq. 3,

wimg ∈ R1536×200), and (2) an importance score αi (Eq. 4, wattn ∈ R1536×1). The final image

representation z is a weighted sum of these region-based vectors (Eq. 5).

32



vi = wᵀ
imgφcnn(xi) (3)

αi =
exp(wᵀ

attnφcnn(xi))∑M
j=1 exp(wᵀ

attnφcnn(xj))
(4)

z =
∑M

i=1
αivi (5)

The loss to learn the image-text embedding is the same as Eq. 1, but now defined using

the region-based image representation z (Eq. 5) instead of v: L(z, t;θ).

We show in Sec. 3.3.1 that (1) learning a region proposal network with attention, and (2)

learning from symbol bounding boxes, greatly help the statement retrieval task. In particular,

statement ranking results are worse if we use a generic pre-trained region proposal network.

We argue general-purpose object detection models cannot capture nuance in ads since they

ignore uncommon or abstract objects.

Constraints via Symbols and Captions. We next exploit the symbol labels which are

part of [94]. Symbols are abstract words such as “freedom” and “happiness” that provide

additional information humans sense from the ads. We add additional constraints to the

loss terms such that two images/statements that were annotated with the same symbol are

closer in the learned space than images/statements annotated with different symbols. In

the extra loss term (Eq. 6), s is the 200-D embedding of a symbol word; z is the 200-D

region-based image representation defined in Eq. 5; and Nsz(i) and Nst(i) are the negative

image/statement sets of the i-th symbol in the batch, defined similar to Eq. 2.

Lsym(s, z, t;θ) =

K∑
i=1

[ ∑
j∈Nsz(i)

max

(
0,

sᵀi zj
‖si‖‖zj‖

−
sᵀi zi
‖si‖‖zi‖

+ β

)
︸ ︷︷ ︸

symbol as anchor, rank images

+
∑

j∈Nst(i)

max

(
0,

sᵀi tj
‖si‖‖tj‖

−
sᵀi ti
‖si‖‖ti‖

+ β

)
︸ ︷︷ ︸

symbol as anchor, rank statements

]

(6)

Much like symbols, the objects found in an image are quite telling of the message of the

ad. For example, environment ads often feature animals, safe driving ads feature cars, beauty

ads feature faces, drink ads feature bottles, etc. However, since the Ads Dataset contains
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insufficient data to properly model object categories, we use DenseCap [107] to bridge the

objects defined in Visual Genome [126] to the ads reasoning statements. More specifically, we

use the DenseCap model to generate image captions and treat these as pre-fetched knowledge.

For example, the caption “woman wearing a black dress” provides extra information about

the objects in the image: “woman” and “black dress”. We create additional constraints:

If two images/statements have similar DenseCap predicted captions, they should be closer

than images/statements with different captions. The extra loss term is defined similar to

Eq. 6 using c for the caption representations: Lobj(c, z, t;θ).

In our setting, word embedding weights are not shared among the three vocabularies

(ads statement, symbols, and DenseCap predictions). Our consideration is that the meaning

of the same surface words may vary in these domains thus they need to have different

embeddings. We weigh the symbol-based and object-based constraints by 0.1 since they in

isolation do not tell the full story of the ad. We found that it is not sufficient to use any type

of label as constraint in the domain of interest: using symbols as constraints gives greater

benefit than the topic (product) labels in [94]’s dataset, and this point is not discussed in

the general proxy learning literature [180].

Additive External Knowledge. We describe how to make use of external knowledge

that is adaptively added, to compensate for inadequacies of the image embedding. This

external knowledge can take the form of a mapping between physical objects and implicit

concepts, or a classifier mapping pixels to concepts. Given a challenging ad, a human might

look for visual cues and check if they remind him/her of concepts (e.g. “danger”, “beauty”,

“nature”) seen in other ads. Our model interprets ads in the same way: based on an external

knowledge base, it infers the abstract symbols. In contrast to the constraints via symbols

and captions, which use the annotated symbols at training time, here we use a predicted

symbol distribution at both training and test time as a secondary image representation.

Fig. 6 (bottom-left) shows the general idea of the external knowledge branch. Note our

model only uses external knowledge to compensate its own lack of knowledge (since we train

the knowledge branch after the convergence of the visual semantic embedding branch), and

it assigns small weights for uninformative knowledge.

We propose two ways to additively expand the image representation with external knowl-
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edge, and describe two ways of setting ysymb in Eq. 7. Both ways are a form of knowledge

base (KB) mapping physical evidence to concepts.

KB Symbols. The first way is to directly train classifiers to link certain visuals to symbolic

concepts. We learn a multilabel classifier usymb to obtain a symbol distribution ysymb =

sigmoid(usymb · x). We then learn a weight αsymbj for each of j ∈ {1, . . . , C = 53} symbols

from the Ads Dataset, denoting whether a particular symbol is helpful for the statement

matching task.

KB Objects. The second method is to learn associations between surface words for

detected objects and abstract concepts. For example, what type of ad might I see a “car” in?

What about a “rock” or “animal”? We first construct a knowledge base associating object

words to symbol words. We compute the similarity in the learned image-text embedding

space between symbol words and DenseCap words, then create a mapping rule (“[object]

implies [symbol]”) for each symbol and its five most similar DenseCap words. This results in

a 53×V matrix uobj, where V is the size of DenseCap’s vocabulary. Each row contains five

entries of 1 denoting the mapping rule, and V −5 entries of 0. Examples of learned mappings

are shown in Table 5. For a given image, we use [107] to predict the three most probable

words in the DenseCap vocabulary, and put the results in a multi-hot yobj ∈ RV×1 vector.

We then matrix-multiply to accumulate evidence for the presence of all symbols using the

detected objects: ysymb = uobj · yobj. We associate a weight αsymbjl with each rule in the KB.

For both methods, we first use the attention weights αsymb as a mask, then project the

53-D symbol distribution ysymb into 200-D, and add it to the image embedding. This additive

branch is most helpful when the information it contains is not already contained in the main

image embedding branch. We found this happens when the discovered symbols are rare.

Our Final Model using Symbolic mappings. To train our final model, we use the

ADs VIsual Semantic Embedding loss to combine the L, Lsym, and Lobj:

Lfinal(z, t, s, c;θ) = L(z + ysymb, t;θ)

+ 0.1 Lsym(s, z + ysymb, t;θ) + 0.1 Lobj(c, z + ysymb, t;θ)
(7)
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3.2.3 Interpreting the Rhetoric using Multimodal Features

Next, we consider more additive multimodal features including text slogans and knowl-

edge from symbols and visual objects (see Fig. 7) for the image ads while we consider no

external constraints (i.e., Lsym and Lobj). We also consider the speech-to-text in the video

ads understanding model.

200-D image 
embedding

Triplet training

“I should be careful on the road 
so I don’t crash and die.”

“I should buy this motorbike 
because it’s fast.”

200-D text embedding

+

Image embedding using 
symbol regions

0

0.2

0.4

0.6

 2

x1 x2 x3

α1 α2 α3

Knowledge from symbolsEncoding of the
embedded slogan

Read the road, and you won’t 
need as many new parts.

LSTM LSTM LSTM…

read the parts

Knowledge from 
visual objects

A black motorcycle
A motorcycle on the road

A large green tree
A road

A clear blue sky

LSTM LSTM LSTM…

a black sky

1 2 3 4

Figure 7: Our multimodal image embedding model. In the image branch (1), multiple image

symbolic anchors are proposed. Attention weighting is applied, and the image is represented

as a weighted combination of the regions. The knowledge branch (3) predicts the existence

of symbols and maps these to the 200-D embedding. For both the slogan (2) and visual

objects captions (4) branches, we use LSTM to model the phrases. Pointwise addition is

applied to fuse the features from four different modalities. We then perform triplet training

to learn such an embedding space that keeps images close to their matching action-reason

statements.

Embedded Slogans for Understanding Image Ads. In most cases, the image alone

does not tell the full story of the ad, and may be (intentionally) ambiguous [318]. Thus,
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we also need to consider the slogan embedded in the ad to accurately retrieve statements

about it. Two examples are shown in Fig. 8. It is clear that the ad understanding task

becomes easier if we can read the slogans in both images, namely “words can be deadly.”

and “Human Trafficking. Don’t ignore it”. Inspired by these examples, we design a method

to read the slogan information and thus improve the performance of inferring actions and

reasons.

Given an image, we first use the Optical Character Recognition (OCR) functionality

of the Google Cloud Vision API[75] to extract the text in the ad. We concatenate all the

detected pieces into one. About half of the ads have up to 20 detected tokens (usually a

word or part of a word). One-fifth has between 20 and 50 tokens, 14% has between 50 and

100 tokens, and the rest of the ads have over 100 tokens. We use a standard LSTM model to

obtain a slogan embedding which results in zslg ∈ R200×1. The model using only the slogan

modality can be trained using L(zslg, t;θ) in Eq. 1.

(a) “Words can be deadly. Think before you text”
QA: I should be careful what I say because words
can hurt like any weapons.

(b) “Human Trafficking. Don’t ignore it.”
QA: I should be aware of human traffick-
ing because it is not always obvious.

Figure 8: Example slogans from the image ads dataset. Both images require reasoning which

makes the task challenging even for a human. However, given the slogan text information,

understanding the message of the ads becomes easier.

Symbols for Understanding Image Ads. We next exploit the symbol labels which

are part of Ads Dataset [94]. Different from Sec. 3.2.2, our method of using symbol labels

requires the training of a symbol classifier that generalizes beyond the annotated images.
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However, to make the learning more feasible, instead of training classifiers on all symbols,

we base our work on the 53 symbol clusters in [94]. We learn a multilabel classifier usymb ∈

R1536×53 to obtain a symbol distribution σ(uᵀ
symbφcnn(x)) given the feature φcnn(x) ∈ R1536×1,

where σ is sigmoid. To use the additional knowledge (i.e., classifier usymb) regarding the

symbols, we use a fully connected layer to project the symbol distribution to the joint

embedding feature space, resulting in zsymb = wᵀ
symbσ(uᵀ

symbφcnn(x)) ∈ R200×1:

Visual Objects for Understanding Image Ads. We use the DenseCap [107] model

to generate image captions and treat these as pre-fetched knowledge. Modeling the visual

objects is similar to modeling the slogan. We concatenate all the captions generated by

DenseCap into a long textual description, then use an LSTM model to encode the sequence,

resulting in objects-text embedding zobj.

Speech-to-Text for Understanding Video Ads. There is more information than

the visual frames that can help distinguish the video contents. For example, the audio

may involve different styles of music and the speech may directly convey the ad messages.

We focus on the speech information since we think they are better suited for the task of

retrieving the action-reason statements. Given a video, we use FFMPEG[49] to extract the

audio track. We then invoke the Google Cloud Speech-to-text API [74] to extract text from

the audio data. After getting the text tokens, we concatenate them to a single sentence

and use mean-pooling during training to aggregate individual word embeddings, resulting in

zspch ∈ R200×1.

Our Final Multimodal Model. Our final multimodal model uses late fusion (we use

pointwise-add) to combine the components. For the full model on the image ads, we optimize

L(z + zslg + zsymb + zobj, t;θ) (see Fig. 7). For video ads, we optimize L(zvdo + zspch, t;θ).

3.3 Experiments

We evaluate to what extent our proposed method is able to match an ad to its intended

message. We present the analysis of our symbolic mapping model (Sec. 3.2.2) in Sec. 3.3.1,

including the comparison to the state-of-the-art, ablation study of components, and qualita-
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tive examples showing the learned symbolic mappings. Then, we show the contributions of

extensive multimodal features, and the performance of video models (Sec. 3.2.3) in Sec. 3.3.2.

3.3.1 Analysis of the Symbolic Mapping Model.

Baselines and Evaluation Metrics. We compare our Sec. 3.2.2 to the following

approaches from recent literature. All methods are trained on the Ads Dataset [94], using

a train/val/test split of 60%/20%/20%, resulting in around 39,000 images and more than

111,000 associated statements for training.

• Hussain-Ranking adapts [94], the only prior method for decoding the message of ads.

This method also uses symbol information, but in a less effective manner. The original

method combines image, symbol, and question features, and trains for the 1000-way

classification task. To adapt it, we pointwise-add the image features (Inception-v4 as for

our method) and symbol features (distribution over 53 predicted symbols), and embed

them in 200-D using Eq. 1 (using hard negative mining), setting v to the image-symbol

feature. We tried four other ways (described in supp) of adapting [94] to ranking, but

they performed worse.

• VSE++ [56] (follow-up to [121]) uses the same method as Sec. 3.2.1. It is representative

of one major group of recent image-text embeddings using triplet-like losses [192, 160,

115, 212].

• VSE, which is like VSE++ but without hard negative mining, for a more fair comparison

to the next baseline.

• 2-way Nets uses our implementation of [53] (published code only demoed the net-

work on MNIST) and is representative of a second type of image-text embeddings using

reconstruction losses [53, 90].

For each image, we use three related statements (i.e. statements provided by humans for

this image) and randomly sample 47 unrelated statements (written for other images). The

system must rank these 50 statements based on their similarity to the image. We compute

two metrics: Rank, which is the averaged ranking value of the highest-ranked true matching

statement (highest possible rank is 1, which means first place), and Recall@3, which denotes
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the number of correct statements ranked in the Top-3. We expect a good model to have low

Rank and high Recall scores. We use five random splits of the dataset into train/val/test

sets, and show mean results and standard error over a total of 62,468 test cases (removing

statements that do not follow the template “I should [action] because [reason].”).

Results on the Main Ranking Task. We show the improvement that our method

produces over state of the art methods, in Table 3. We show the better of the two alternative

methods from Sec. 3.2.2, namely KB-Symbols. Since public service announcements (e.g.

domestic violence or anti-bullying campaigns) typically use different strategies and senti-

ments than product ads (e.g. ads for cars or coffee), we separately show the result for PSAs

and products. We observe that our method greatly outperforms the prior relevant research.

PSAs in general appear harder than product ads (see Sec. 3.1).

Table 3: Ranking result of Sec. 3.2.2. We show two methods that do not use hard nega-

tive mining, and three that do. Our method greatly outperforms three recent methods in

retrieving matching statements for each ad. All methods are trained on the Ads Dataset of

[94]. The best method is shown in bold, and the second-best in italics

Method
Rank (Lower ↓ is better) Recall@3 (Higher ↑ is better)

PSA Product PSA Product

2-way Nets 4.836 (± 0.090) 4.170 (± 0.023) 0.923 (± 0.016) 1.212 (± 0.004)

VSE 4.155 (± 0.091) 3.202 (± 0.019) 1.146 (± 0.017) 1.447 (± 0.004)

VSE++ 4.139 (± 0.094) 3.110 (± 0.019) 1.197 (± 0.017) 1.510 (± 0.004)

Hussain-Ranking 3.854 (± 0.088) 3.093 (± 0.019) 1.258 (± 0.017) 1.515 (± 0.004)

ADVISE (ours) 3.013 (± 0.075) 2.469 (± 0.015) 1.509 (± 0.017) 1.725 (± 0.004)

Compared to 2-way Nets [53], VSE which does not use hard negative mining is stronger

by a large margin (14-23% for rank, and 19-24% for recall). VSE++ produces more accurate

results than both 2-way Nets and VSE, but is outperformed by Hussain-Ranking and

our ADVISE. Our method is the strongest overall. It improves upon VSE++ [56] by 20-27%

for rank, and 14-26% for recall. Compared to the strongest baseline, Hussain-Ranking
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[94], our method is 20-21% stronger in terms of rank, and 13-19% stronger in recall. Fig. 9

shows a qualitative result contrasting the best methods.

Ablation Studies. We also conduct ablation studies to verify the benefit of each com-

ponent of our method. We show the base triplet embedding (Eq. 1) similar to VSE++; a

generic region embedding using image regions learned using [150] trained on the COCO

[147] detection dataset; symbol region embedding and attention (Eq. 5); adding sym-

bol/object constraints (Eq. 6); and including additive knowledge (Eq. 7) using either KB

objects or KB symbols.

Table 4: (Left) Ablation study on PSAs. All external knowledge components except atten-

tion improve over basic triplet embedding. (Right) Ablation on products. General-purpose

recognition approaches, e.g. regions and attention, produce the main boost

Method

PSA Product

Rank ↓ Rec@3 ↑
% improvement

Rank ↓ Rec@3 ↑
% improvement

Rank Rec@3 Rank Rec@3

base triplet 4.139 1.197 3.110 1.510

generic region 3.444 1.375 17 15 2.650 1.670 15 11

symbol region 3.174 1.442 8 5 2.539 1.697 4 2

+attention 3.258 1.428 -3 -1 2.488 1.726 2 2

+symbol/object 3.149 1.466 3 3 2.469 1.727 1 <1

+KB objects 3.108 1.482 1 1 2.471 1.725 <1 <1

+KB symbols 3.013 1.509 4 3 2.469 1.725 <1 <1

The results are shown in Table 4 (left for PSAs, right for products). We also show percent

improvement of each new component, computed with respect to the previous row, except for

KB objects and KB symbols, whose improvement is computed with respect to the third-

to-last row, i.e. the method on which both KB methods are based. The largest increase

in performance comes from focusing on individual regions within the image. This makes

sense because ads are carefully designed and multiple elements work together to convey the
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VSE++: “I should try this 
makeup because its fun.”

ADVISE (ours): “I should be 
careful to how I treat Earth 
because when the water leaves 
we die.”

Hussain-ranking: “I should 
stop smoking because it 
destroys your looks.”

VSE++: “I should wear Nivea 
because it leaves no traces.”

ADVISE (ours): “I should buy 
GeoPack paper because their 
cutlery is eco-friendly.”

Hussain-ranking: “I should be 
eating these because it has 
fresh ingredients.”

Figure 9: Our ADVISE method compared to the two stronger baselines. On the left,

VSE++ incorrectly guessed this is a makeup ad, likely because often faces appear in makeup

ads. Hussain-Ranking correctly determined this is a PSA, but only our method was able

to predict the topic, namely water/environment preservation. On the right, both Hussain-

Ranking and our method recognized the concepts of freshness/naturalness, but our method

picked a more specific statement.

message. We see that these regions must be learned as visual anchors to symbolic concepts

(symbol region vs generic region) to further increase performance.

Beyond this, the story that the results tell differs between PSAs and products. Sym-

bol/object constraints and additive branches are more helpful for the challenging, abstract

PSAs that are the focus of our work. For PSAs, the additive inclusion of external informa-

tion helps more when we directly predict the symbols (KB symbols), but also when we

first extract objects and map these to symbols (KB objects). Note that KB symbols

required 64,131 symbol labels. In contrast, KB objects relies on mappings between object

and symbol words, which can be obtained more efficiently. While we obtain them as object-

symbol similarities in our learned space, they could also be obtained from a purely textual,

ad-specific resource. Thus, KB objects would generalize better to a new domain of ads

(e.g. a different culture) where the data from [94] does not apply.

Qualitative Examples of the Symbolic Mappings. In Table 5, we show the object-

symbol knowledge base that KB objects uses. We show “synonyms” across three vocabu-

laries: the 53 symbol words from [94], the 27,999 words from the action/reason statements,

and the 823 words from captions predicted for ads. We compute the nearest neighbors for
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each word in the learned space. This can be used as a “dictionary”: If I see a given object,

what should I predict the message of the ad is, or if I want to make a point, what objects

should I use? In triplet ID 1, we see to allude to “comfort,” one might use a soft sofa. From

ID 2, if the statement contains “driving,” perhaps this is a safe driving ad, where visuals

allude to safety and injury, and contain cars and windshields. We observe the different role

of “ketchup” (ID 3) vs “tomato” (ID 4): the former symbolizes flavor, and the latter health.

Table 5: Discovered synonyms between symbol, action/reason, and DenseCap words

ID Symbol Statement DenseCap

1 comfort couch, sofa, soft pillow, bed, blanket

2 safety, danger, injury driving car, windshield, van

3 delicious, hot, food ketchup beer, pepper, sauce

4 food, healthy, hunger salads, food, salad tomato

In Fig. 10, we show the learned association between the individual words and symbolic

regions. By learning from the ads image and statement pairs, our ADVISE model propa-

gates words in the statement to the regions in the image thus associates each label-agnostic

region proposal with semantically meaningful words (also the reason of using permutation

invarient mean-pooling of texts). At training time, we have neither box-level nor word-level

annotations.

Results on Additional Tasks. In Table 6, we demonstrate the versatility of our learned

embedding, compared to the stronger two baselines from Table 3. None of the methods were

retrained, i.e. we simply used the pre-trained embedding evaluated on statement ranking.

First, we show a harder statement retrieval task: all statements that are to be ranked are

from the same topic (e.g. all statements are about car safety or about beauty products).

The second task uses creative captions that MTurk workers were asked to write for 2,000

ads in [94]. We rank these slogans, using an image as the query, and report the rank of the

correct slogan. Finally, we check how well an embedding clusters ad images with respect to

a ground-truth clustering defined by the topics of the ads.
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Figure 10: Learned association between the individual words and symbolic regions. We

extract the CNN feature of each image region (Eq. 3), then use the word embeddings of

“smoking”, “nature”, and so on to retrieve the most similar image regions (denoted using

green boxes).
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Table 6: Other tasks our learned image-text embedding helps with. We show rank for the

first two (lower is better) and homogeneity [214] for the third (higher is better)

Method Hard stmt. (↓ better) Slogans (↓ better) Clustering (↑ better)

Hussain-Ranking 5.595 (± 0.027) 4.082 (± 0.090) 0.291 (± 0.002)

VSE++ 5.635 (± 0.027) 4.102 (± 0.091) 0.292 (± 0.002)

ADVISE (ours) 4.827 (± 0.025) 3.331 (± 0.077) 0.355 (± 0.001)

3.3.2 Analysis of the Multimodal Features.

Baselines and Evaluation Metrics. To analyze the extensive multimodal features in

Sec. 3.2.3, we use the splits defined in the ads challenge [123] (the challenge was organized

after Sec. 3.2.2 was finalized). We use the 51,223 trainval images which are paired with

161,557 annotated statements for training; and evaluate on the 12,805 test images which

are paired with 40,178 statements. We use TensorFlow [1] to build our model. We use a

learning rate of 0.001, and the RMSProp optimizer with 0.95 decay and 1e-8 momentum.

We use a batch size of 128, and all models are trained for roughly 60 epochs. To choose

the best model, we use a held-out validation set with approximately 20% trainval data.

For the similar action/reason ranking task on the video data, we split the 3,477 videos into

trainval/test sets (80%/20%), resulting in 2,777 trainval and 700 test videos. We use a

learning rate of 0.003 and roughly 170 epochs (3,000 steps). The remaining details are as

for the image task.

We evaluate to what extent our proposed method (Sec. 3.2.3) is able to match an ad

to its intended message; the message contains both the action and reason. We compare

the following ablations of our method. All but the last one use an LSTM to encode the

action-reason statements.

• Image Only uses region proposals trained from our symbolism data, without symbol

labels: L(z, t;θ).

• Slogan Only is the method that uses OCR to extract the slogan embedded in the
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image: L(zslg, t;θ).

• Image+Slogan combines the image and slogan by optimizing L(z + zslg, t;θ).

• Image+Symbols uses additional knowledge from pretrained multi-label symbol classi-

fier usymb, and optimizes L(z + zsymb, t;θ).

• Full Method combines the region-based image representation, slogan, symbol and

object: L(z + zslg + zsymb + zobj, t;θ).

• Full Method (BOW) is the same as the previous method but uses bag of words repre-

sentation, i.e. we average the individual word embeddings to get the full-text embedding

(for statement, slogan, and object).

We evaluate the ablations in terms of two metrics: Accuracy which is the percentage of

correct top-1 predictions; and Min Rank, which is the averaged ranking value of the best-

ranked true matching statement (best possible rank is 1). We expect a good model to have

high Accuracy and low Min Rank scores. We show results separately for product and public

service announcement (PSA) ads, as in [294].

Results on the Image Ads. The results are shown in Tab. 7. The most important

two modalities, as we expected, are the image (Image Only) and slogan (Slogan Only).

Adding symbols to the image representation helps for products, but less than adding the

slogan. Interestingly, the slogan extracted from the image seems to be more helpful than

the image itself, likely because the slogan is more straight-forward and the image is designed

to be attractive and creative, thus may be ambiguous in isolation. The fusion of both im-

age and slogan modalities (Image+Slogan) outperforms both Image Only and Slogan

Only. Image+Slogan outperforms Image Only by 34% on Product ads and 45% on

PSAs, in terms of accuracy. This greater improvement on PSAs might be because these

are less intuitive and more “clever” than product ads, thus hints from the slogan are more

important. The inclusion of objects and symbols in our full method (Full Method) im-

proves the accuracy of Image+Slogan on PSAs by 3%. Finally, aggregating all the text

information using averaging (Full Method (BOW)) provides similar but slightly worse

results compared to Full Method, i.e. accuracy reduced by 2% on product ads and PSAs.

We next break down the action-reason ranking task into two tasks, separately ranking the

action and the reason. We do this in order to investigate which task is harder, and how much
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Table 7: Ranking action-reason statements for image ads; high accuracy and low rank is

desired. Bold is best, Italics is second- and third-best.

Method
Accuracy Min Rank

Product PSA Product PSA

Image Only 0.630 0.491 1.836 2.214

Slogan Only 0.791 0.677 1.599 1.788

Image+Slogan 0.847 0.712 1.320 1.635

Image+Symbols 0.640 0.489 1.764 2.241

Full Method 0.847 0.733 1.282 1.554

Full Method (BOW) 0.827 0.718 1.318 1.588

Table 8: Ranking action and reason statements separately, vs action-reason together. All

methods shown use BOW. Numbers denote Min Rank (lower is better).

Method Action-Reason Action Reason

Image Only 1.755 2.007 2.157

Slogan Only 1.532 1.758 1.845

Image+Slogan 1.300 1.521 1.696

observing the image or slogan contributes. The results are shown in Tab. 8. In general, the

task of ranking the combined action-reason is the easiest one since it only requires the model

to be confident about either the action or the reason. The additional image information

(Image+Slogan vs Slogan Only) gives 18% reduction in rank while the extra slogan

message (Image+Slogan vs Image Only) reduces rank by 35%. The action statement

ranking is the second-easiest. Using the image gives 16% performance gain over slogan only.

Predicting the reason statement is the most challenging, and offers the most limited room

for improvement when using the image (9% over slogan only).
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Results on the Video Ads. We show the performance on ranking statements for video

ads. We use the same metrics and compare the following methods:

• Frame Only (BOF) is the model that only uses the video representation: L(zvdo, t;θ).

• Speech Only (BOF) only uses the text information extracted by speech recognition:

L(zspch, t;θ).

• Frame+Speech (BOF) combines the bag-of-frames encoded video and speech by op-

timizing L(zvdo + zspch, t;θ). This is our final model.

• Frame+Speech (LSTM) is similar but uses LSTM to encode all modalities (video,

speech, and statement).

Table 9: Ranking action-reason statements for video ads. A good model has high accuracy

and low rank. Bold is best, and Italics is second-best.

Method Accuracy Min Rank

Frame Only (BOF) 0.560 2.401

Speech Only (BOF) 0.507 2.987

Frame+Speech (BOF) 0.639 2.053

Frame+Speech (LSTM) 0.561 2.547

The results are shown in Tab. 9. Unlike the scenario in the image task, the directly

detected spoken language (Speech Only (BOF)) is less useful than the pure visual cue

(Frame Only (BOF)); the visual feature is 10% better in terms of accuracy. This implies

that the ads designers did not put many unambiguous explanations in the conversation.

However, we see that the conversation does help improve understanding, when used in com-

bination with the frames: in terms of accuracy, Frame+Speech (BOF) is 14% better than

Frame Only (BOF). Finally, we compare the BOF approach to a more complex model

with more learnable parameters (Frame+Speech (LSTM)). We see that this latter mod-

els is 12% worse than the simpler BOF version. We surmise that the reason is the limited

size of the video set. Note that when we use an LSTM to represent the visual information,

results are similar to the BOF version; the drop comes from the LSTM representation of the

text information.
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3.4 Conclusion

We presented a method for matching image advertisements to statements which describe

the idea of the ad. Our method uses external knowledge in the form of symbols and predicted

objects in two ways, as constraints for a joint image-text embedding space, and as an additive

component for the image representation.

For the thesis topic, we validated the hypotheses H1 and H3 (see Tab. 10). Thanks to the

external knowledge and the attention building on region proposals (H1), our method outper-

forms existing image-text embedding techniques [53, 56] and a previous ad-understanding

technique [94] by a large margin. The region embedding relying on visual symbolic anchors

greatly improves upon traditional embeddings. For PSAs, regularizing with external info

provides further benefit. Besides, the proposed constraints (supervisions) bridge the visual

regions and the concepts in the knowledge bases. Thus, the learned model understands the

symbolic meanings of the region proposals (H3).

Besides, we tested our image and video models combining multimodal channels on the

tasks of predicting what the viewer should do and why. On the image ads dataset, we

observed more than 30% improvements (32% for Product Ads and 50% for PSAs). Our

method also achieved 14% improvements in video ads compared to the methods without

using speech.

Table 10: Conclusion - validated hypotheses in this chapter.

Multimodal
features help to

understand
images/videos
with implicit

persuasive intent,
such as visual

advertisements.

Text features can
be unreliable if

not modeled
appropriately.

Text supervision
contains noise,

but can be used
to localize visual
objects in space,

if modeled
properly.

Text supervision
provides contexts
regarding visual
objects, they are
reliable cues for
disambiguating

entities and
relations.

Noisy audio
narrations as a

multimodal
signal can be
modeled to

localize video
actions in

temporal domain.

This Chapter 3 3
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4.0 Story Understanding in Video Advertisements

4.1 Introduction

Different from the images, videos also involve temporal dynamics. To tell a full story

using video media, not every second is presenting equally important information. Besides,

video media are usually human-centric; thus, the multimodal features of human emotion,

human motion, and so on, should be considered to understand the implicit intent.

In this chapter, we focus on videos and try to understand the dynamic structure of

a video ad. As a powerful tool for affecting public opinion, video advertisements appeal

to the viewers’ emotions [304]. To achieve persuasive power, many ads explore creative

narrative techniques. One classic technique is “Freytag’s pyramid” where a story begins

with exposition (setup), followed by rising action, then climax (action and sentiment peak),

concluding with denouement or resolution (declining action) [60].

We model the dynamic structure of a video ad in this chapter. We track the pacing and

intensity of the video, using both the visual and audio domains. We model how emotions

change over the course of the ad. We also model correlations between specific settings (e.g.,

child’s bedroom), objects (e.g., teddy bear) and sentiments (e.g., happy). We propose two

methods to predict climax, “the highest dramatic tension or a major turning point in the

action” [169], of a video. Then we use them along with rich context features to predict the

sentiment that the video provokes in the viewer. Our framework is illustrated in Fig. 11. Our

techniques are based on the following two hypotheses which we verify in our experiments.

First, we hypothesize that the climax of a video correlates with dramatic visual changes

or intense content. Thus, we compute optical flow per frame and detect shot boundaries,

then predict that climax occurs at those moments in the video where peaks in optical flow

vectors or shot boundary changes occur. To measure dynamics in the audio domain, we

extract the amplitude of the sound channel and predict climax when we encounter peaks in

the amplitude. In addition to this unsupervised approach, we also show how to use the cues

we develop as features, to predict climax in a supervised way. Both the unsupervised and
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supervised approaches greatly outperform the baseline tested.

Second, we hypothesize that video ads exploit associations that humans make, to create

an emotional effect. We aim to predict the sentiment that an ad provokes in the viewer, and

hypothesize that the setting and objects in the ad are greatly responsible for the sentiment

evoked. We first extract predictions about the type of scene and type of objects in the ad,

for each frame. We also hypothesize that the facial expressions of the subjects of the ad

(i.e., the people in the ad) correlate with the sentiment provoked in the people watching

it, so we also extract per-frame facial expression predictions. We treat sentiment prediction

as a recurrent prediction task based on the scene, object, and emotion features, as well as

features related to climax and standard ResNet [82] visual features.

To train our methods and test our hypotheses, we crowdsource climax annotations on

1,149 videos from the Video Ads Dataset of [94], and use the sentiment annotations provided.

To summarize, our contributions are as follows:

• We gather climax annotations for 1,149 video ads.

• We model the correlations between the climax and dramatic visual, audio changes.

• We show that video ads use human expressions, video scenes to create emotional effects.

• We show how to combine the visual and audio cues to predict the climax and sentiment.

• Our video ads sentiment prediction model outperforms the only prior work [94] by a large

margin.
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Figure 11: The key idea behind our approach. We want to understand the story being told

in the ad video, and the sentiment it provokes. We hypothesize that the semantic content of

each frame is quite informative and that we need to model the rising action to understand

which temporal parts most contribute to the sentiment. We show the places recognized in the

frames of two videos, as well as soft predictions about whether a certain frame corresponds

to the climax of the video or not. While both videos start with images of children, which

might indicate positive sentiment denoted in green (e.g. “youthful”), this positive trend only

remains in the first video (indicated by places correlated with youthfulness, such as “toy

shop”). In contrast, the second video changes course and shows unpleasant places (denoted

in red) e.g. “basement” and “hospital room”. Because the climax in the second video

occurs near the end, our method understands that it is these later frames that determine

the sentiment (“alarmed”).

52



4.2 Approach

In The Advertising Research Handbook [304], dramatic structure has four prototypical

forms, shown in Fig. 12 (based on [304] p.212). These structures depend on how positive

and negative sentiment rises or declines. [304] examines product ads, and the changes in

positive/negative sentiment are correlated with appearances of the brand. In public service

announcements (PSAs), the role of positive/negative might be reversed, as PSAs often aim

to create negative sentiment in order to change a viewer’s behavior. However, understanding

the story of PSAs still depends on understanding the climax of (negative) sentiment. Thus,

we first collect data (Sec. 4.2.1) and develop features (Sec. 4.2.2) that help us predict when

climax occurs. We then develop features informative for sentiment (Sec. 4.2.3). We finally

describe how we use these features to predict the type of sentiment and occurrences of climax

(Secs. 4.2.4 and 4.2.5).

(a) Emotional pivot (b) Positive transition (c) Emotional build (d) Sustained emotion

Figure 12: The “four archetypes of dramatic structure” in product ads [304] which motivate

our approach. For PSAs, the roles of positive and negative sentiments might be reversed.

4.2.1 Climax and Sentiment Data

We use the Video Ads Dataset of [94]. It contains 3,477 video advertisements with a

variety of annotations, including the sentiment that the ad aims to provoke in the viewer. We

collected climax annotations on a randomly chosen subset of 1,595 videos from this dataset,

using the Amazon Mechanical Turk platform. We restricted participation on our tasks to

annotators with at least 98% approval rate who submitted at least 1000 approved tasks in

the past. We submitted each video for annotation to four workers. Each was asked to watch

the video and could choose between two options, “the video has no climax” or “the video

has climax.” If the latter, the worker was asked to provide the minute and second at which
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climax occurs (most videos are less than 1 min long). To ensure quality, annotators were

also asked to describe what happens at the end of the video. Some of the videos in [94]’s

dataset were not available, so the annotators could also mark this option. We ended up with

1,149 videos that contain climax annotations. We manually inspected a subset of them and

found the timestamps were quite reasonable. The descriptions of what happened at the end

were often quite detailed. We will make this data publicly available upon publication.

4.2.2 Climax Indicators

We first analyze the dynamics of the video, using both visual and audio channels. We

plot time on the x-axis, and measurement of dynamics/activity on the y-axis (Fig. 13). We

consider three indicators of rapid activity: the amplitude of audio signals, the occurrence of

shot boundaries, and the magnitude of optical flow vectors between frames.

In particular, we extract these features and portray them as follows:

• The audio amplitude ak, which is the max amplitude of audio for the k-th frame. We

first extract the sound channel from the video, take a fixed number of samples from the

sound wave per second, then compute the max across the samples for that frame.

• The shot boundary indicator, which is equal to 0 or 1 depending on whether a shot

boundary occurs in the k-th frame. We use [29] for shot boundary extraction. In order to

obtain more informative cues, we vary the parameters of [29] to get five 0/1 predictions

per frame and use this 5D prediction bk as the representation for the k-th frame. To

generate the plot in Fig. 13, we aggregate information over all frames in a given second.

• The optical flow magnitude ok, which is computed as 1
W∗H

∑W
i=1

∑H
j=1

√
(uki,j)

2+(vki,j)
2

where uki,j and vki,j are the horizontal and vertical optical flow components for each pixel

(i, j) in the k-th frame. We use [207] to extract optical flow vectors.

4.2.3 Sentiment Indicators

The Advertising Research Handbook [304] describes the dramatic structure of ads as

closely depending on the emotion of the video. One type of structure (Fig. 12) is the “emo-

tional pivot” where an ad starts with negative sentiment, which declines over time, to make

54



00:00:24 00:00:2600:00:25 00:00:29 00:00:30 00:00:32 00:00:33

Figure 13: The audio, shot boundary frequency, and optical flow plots for two videos, along

with frames from the videos corresponding to climactic points. The first video shows an

“explosion” around the 25th second, and the second shows a car crash around the 32nd

second. The circles correspond to the timestamp of the frames shown. In the first video,

climax is detected well in each of the three plots. In the second, shot boundaries and audio

are informative, but optical flow is not.

room for increasing positive sentiment. The “emotional build” involves a gradual increase

and climax in positive sentiment. Thus, the sentiment is equally crucial to understanding the

story of the ad video as the climax. Since an ad targets an audience and wants to convince

the audience to do something, it is the viewer’s sentiment that matters the most.

[94] contains annotations about what sentiment each ad video provokes in the viewer,

collected from five annotators. These annotations involve 30 sentiments, both positive (e.g.,

cheerful, inspired, educated), negative (e.g., alarmed, angry) and neutral (e.g., empathetic).

[94] also includes a baseline for predicting sentiment, using a multi-class SVM and C3D

features [257]. The authors extract features from 16-frame video clips, then average the

features. Thus, their model does not capture the dynamics and sequential nature of the

video. We hypothesize that if we model how the content of the video changes over time, and

consider the context in which the sentiment in the video is conveyed, we would be able to

model sentiment more accurately. We model sentiment with the following intuitive context

features:

• The setting in each frame of the video, i.e. the type of place/scene. Let vp =

{p1, . . . , p365} be the vocabulary of places in the Places365 dataset [325]. We use a pre-
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Figure 14: Our dynamic context-based approach. The last frame shows an explosion.

trained prediction model from [325] to obtain a 365D vector plk = [lk1 , . . . , l
k
365], where lki

is the probability that the k-th frame exemplifies the i-th place.

• The objects found in the video. Let vo = {c1, c2, . . . , c80} be the vocabulary of the

COCO object detection dataset [147]. We use the model of [89] trained on COCO to get

the objects in a frame. We then use max-pooling to turn the detection results into an

80D fixed-length feature vector obk = [sk1, . . . , s
k
80], where ski is the maximum confidence

score among multiple instances of the same object class ci, in frame k.

• The facial expressions in the video. We observed that the overall sentiment that

the video provokes in the viewer often depends on the emotions that the subjects of the

video go through. For example, if a child in an ad video is initially “happy” but later

becomes “sad,” the sentiment provoked in the adult viewer might be “alarmed” because

something disturbing must have happened. Thus, we also model emotions predicted on

faces extracted per frame. We first detect the faces using OpenFace [6]. We then extract

the expression of each face using an Inception model [244] trained on the AffectNet

dataset [178]. Two types of results are predicted: (1) the probability distribution among

the eight expressions defined in AffectNet, and (2) the valence-arousal values for the face,

saying how pleased and how active the person is (in range -1 to +1). We average the

face expressions (10 values) for all faces detected in the k-th frame, to get the 10D final

representation fak.

• The topic of the ads. [94] defines a vocabulary of 38 topics in the ads domain and

also provides annotations for these topics. We hypothesize the overall sentiment that

the video provokes is related to the topic the ad belongs to. For example, “sports” ads

usually convey “active” and “manly” sentiments, while “domestic violence” ads often
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make people feel “sad”. Thus, we designed a multi-task learning framework with two

objectives: one for the topic and the other for the sentiment prediction, hoping the topic

prediction can help the prediction of sentiments. We first use the video-level feature

(the last hidden state of the LSTM) to predict the 38D topic distribution, then concate-

nate this 38D vector with the video-level feature to predict the sentiment. The idea is

described in Fig. 14.

• The video frame-level CNN features. We also use features from the last layer of a

ResNet trained on ImageNet [82, 215].

4.2.4 Unsupervised Climax Prediction

We can directly predict that climax occurs at times which are peaks in terms of shot

boundary frequency, optical flow magnitude, or audio amplitude. Since the shot boundary

frequency can be the same for many timeslots, we look for the longest sequence of timeslots

which contain at least one shot boundary and predict the center of this “run” as a peak.

Optical flow magnitudes and audio amplitudes are compared on a second-by-second basis.

We extract the top-k maximal responses from each plot, predict these as climax, and evaluate

the performance in Sec. 4.3.3.

4.2.5 Supervised Climax/Sentiment Prediction

We predict climax using an LSTM (with 64 hidden units) that outputs 0/1 for each frame,

where 1 denotes that the frame is predicted to contain climax. The frame-level features used

are ResNet features (2048D), optical flow magnitude ok (1D), the shot boundary indicator

bk (5D), the sound amplitude ak (1D), the place representation plk (365D), the object

representation obk (80D), and the facial expression feature fak (10D).

For the sentiment prediction task, we also use an LSTM with 64 hidden units. We use

the same frame-level features as the climax prediction. Moreover, we also add the predicted

climax (1D) as extra information. Ads topics are used as both an additional loss/constraint

and an extra feature for the sentiment prediction (see Fig. 14).
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Discussion. The advantages of our approach are as follows. First, the distribution of ob-

ject, place, and facial expression probability vectors is much lower-dimensional than ResNet

features, so given the limited size of the Video Ads Dataset (3,477), formulating the prob-

lem as learning a mapping from objects/scenes/facial expressions to sentiments/climax is

much more feasible. The optical flow, shot boundary, and sound features are also very low-

dimensional, and have clear correlation with the presence of climax. Further, understanding

the sentiment of a video and its climax are related tasks. Thus, it is intuitive that climax

predictions should be allowed to affect sentiment prediction; this is the idea shown in Fig. 11

where we use climax to select the part of the video which affects the elicited sentiment the

most. We show in Sec. 4.3.4 (Table 14) that our semantic/climax features outperform the

ResNet features, and the combination of the two achieves the strongest performance.

4.3 Experiments

We first describe our experimental setup and training procedure, then present quantita-

tive and qualitative results on the climax and sentiment prediction tasks.

4.3.1 Evaluation Metrics

For the climax prediction task, we use the recall of the top-k prediction (k = 1, 3)

to measure performance. Since exactly matching the ground-truth climax timestamp is

challenging, we apply an error window saying that the prediction is treated as correct if

the ground-truth climax is close (within 0, 1, 2 sec). We treat the prediction as correct if it

recalls any of the ground-truth annotations for that video, except rejected work. Table 11

shows the results.

To measure how well the model’s prediction agrees with the sentiment annotations, we

compute mean average precision (mAP) and top-1 accuracy (acc@1) based on three forms of

agreement (agree with k, where k = 1, 2, 3). “Agree with k” means that we assign a ground-

truth label to a video only if at least k annotators agree on the existence of the sentiment.
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The acc@1 is the fraction of correct top-1 predictions across all videos, and the mAP is the

mean of the average precision over evenly spaced recall levels. Tables 12, 13 and 14 show

the results.

4.3.2 Training and Implementation Details

For training both the climax and sentiment prediction models, we use the TensorFlow

[1] deep learning framework. We split the Video Ads Dataset [94] (3,477 videos) into

train/val/test (60%/20%/20%), resulting in around 2,000 training examples for the sen-

timent prediction task and about 700 training examples for the climax prediction task (since

only 1,149 of the 3,477 videos have climax annotation). We report our results using five-fold

cross-validation.

For the climax prediction task, we use a one-layer LSTM model with 64 hidden units. At

each timestamp, the model predicts a real value ranging from [0, 1] (output of the sigmoid

function) denoting whether the corresponding frame contains a climax. We then use the

sigmoid cross entropy loss to constrain the model to mimic the human annotations. Con-

sidering the size of the dataset, we set both the input and output dropout keep probability

of the LSTM cell to 0.5 to avoid over-fitting. We use the RMSprop optimizer with a decay

factor of 0.95, momentum of 1e-8, and learning rate of 0.0002. We train for 20,000 steps

using a batch size of 32, and we use the recall of the top-1 prediction (the error window is

set to “within 2 seconds”) to pick the best model on the validation set.

For the sentiment prediction task, we use the same procedure, but we pick the best

model using mAP using “agreement with 2”. We use the last hidden state of the LSTM

to represent the video feature and add a fully connected layer upon it to get the 38D topic

representation. We then concatenate the 38D topic representation with the last hidden state

of the LSTM and infer a 30D sentiment logits vector from the concatenated feature. The

sigmoid cross entropy loss is also used here. Similar to [251], we found that using soft scores

as ground-truth targets improves the performance and makes the training more stable. To

deal with data imbalance for the rare classes, we sampled at most 5n negative samples if

there were n positives.
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4.3.3 Results on Climax Prediction

We show the results of unsupervised and supervised climax prediction in Table 11. We

measure whether the predicted climax is within 0, 1, or 2 seconds of the ground-truth climax.

We first show a heuristic-guess baseline which always predicts that climax occurs at 5 seconds

for the top-1 prediction and at 5, 15 and 25 seconds for top-3. We then show the performance

of the three unsupervised climax prediction methods described in Sec. 4.2.4. Next, we show

the performance of 0/1 climax prediction (Sec. 4.2.5) using an LSTM with ResNet features

only, and finally our method using the features we proposed in both Sec. 4.2.2 and Sec. 4.2.3

(excluding the video-level topic feature).

Table 11: Climax prediction with best performer per setting in bold and second performer

in italics. Unsupervised prediction performs quite well. Our supervised method achieves the

best or second-best performance for all settings. For the “LSTM, ResNet only” approach, we

guess the reason that it is competitive is that LSTM has the ability to capture the temporal

dynamics to a certain degree

Method
top-1 prediction top-3 prediction

w/in 0 s w/in 1 s w/in 2 s w/in 0 s w/in 1 s w/in 2 s

baseline 0.031 0.083 0.121 0.122 0.299 0.430

shot boundary (unsup) 0.068 0.179 0.265 0.221 0.457 0.588

optical flow (unsup) 0.064 0.152 0.220 0.163 0.380 0.513

audio (unsup) 0.077 0.171 0.255 0.178 0.403 0.534

LSTM, ResNet only 0.071 0.206 0.290 0.190 0.400 0.523

LSTM, all feats (Ours) 0.077 0.209 0.287 0.226 0.439 0.546

We see that the unsupervised methods, and especially shot boundary and audio, greatly

outperform the baseline. Interestingly, audio performs quite well in the hardest setting, only

one shot at prediction and exact alignment between predicted and ground-truth climax.

Shot boundary achieves the best performance in the two weakest settings (top-3 predictions,

agreement within 1-2 seconds). In all settings, our method achieves the best or second-best
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performance.

4.3.4 Results on Sentiment Prediction

Table 12 shows our main result for sentiment prediction. We compare to Hussain et al.

[94]’s method which is a multi-class SVM model using the C3D features [257]. This is the

only prior method that attempts to predict sentiment on the Video Ads Dataset. We observe

that our method improves upon [94]’s performance for most metrics. The improvement is

more significant for mAP, which is more reliable because of the imbalance of the dataset.

We improve the mAP compared to prior art by up to 25% in terms of agreement with 3 an-

notators. For reference, human annotators’ agreement with 1 (at least one other annotator)

is 0.723.

Table 12: Our method outperforms prior art for sentiment prediction

Method
Agree with 1 Agree with 2 Agree with 3

mAP acc@1 mAP acc@1 mAP acc@1

Hussain et al. [94] 0.283 0.664 0.135 0.435 0.075 0.243

Our model 0.313 0.712 0.160 0.449 0.094 0.241

Table 13 examines the contribution of the features described in Sec. 4.2.2 and Sec. 4.2.3,

and the use of an LSTM to model dynamics of the video. We compare against an LSTM

that uses only ResNet features. We also compare to a bag-of-frames (BOF) method that

rules out the effects of dynamics. It computes the final video-level representation by simply

applying mean pooling among the frame-level features. We observe that our method (using

the proposed features and LSTM) always outperforms the other methods in terms of mAP

scores. Our method achieves significant improvement over the second-best method (10% for

mAP and agreement with 2, and 21% for mAP and agreement with 3). In terms of accuracy,

all methods perform similarly, and the best model (BOF, all features) also uses our proposed

features.

Table 14 verifies the benefit of each of our features. We show the LSTM-ResNet-only
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Table 13: In-depth evaluation of the components of our method for sentiment prediction

Method
Agree with 1 Agree with 2 Agree with 3

mAP acc@1 mAP acc@1 mAP acc@1

BOF, ResNet only 0.295 0.708 0.141 0.449 0.076 0.242

LSTM, ResNet only 0.302 0.716 0.145 0.451 0.074 0.242

BOF, all features (incl. ours) 0.302 0.719 0.146 0.462 0.078 0.248

LSTM, all features (Our model) 0.313 0.712 0.160 0.449 0.094 0.241

baseline from Table 13, then eight methods which add one of our features at a time, on top

of this baseline. Next, we show an LSTM method which uses our features without the base

ResNet feature, and finally, our full method. We use mAP for agreement with 3 in the table.

We show the average result across all sentiment classes, then results for four individual ad

sentiments. In bold are all methods which improve upon the ResNet baseline. We see that

all of our features (the average column) contribute to the performance of our full method.

Using all features except ResNet is stronger than using ResNet features alone. We note

models based on individual features still show benefits on specific sentiment classes, and we

believe the reason is that our fusion method is too simple to aggregate all the information.

We observe some intuitive results for the four chosen individual sentiments. We ranked

sentiments by frequency in the dataset and picked the 6th, 7th, 9th and 13th most frequent.

For “educated,” the places feature is most beneficial, which makes sense because “education”

might occur in particular environments, e.g., classroom. As shown in our example ad in

Fig. 14, the setting (e.g., places) and dramatic content changes (measured by optical flow

and shot boundaries) are quite telling of the “alarmed” sentiment. Most features help greatly

for the “fashionable” sentiment. For “angry”, audio is very helpful (43% improvement over

ResNet), which makes sense since loud speaking might trigger or correlate with anger.

We show qualitative examples in Fig. 15. Our model using the extensive features correctly

predict “amazed” and “fashionable” while the baseline method does not. Our method relies
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Table 14: Ablation study evaluating the benefit of each feature for sentiment prediction,

using agreement with 3 mAP. In bold are all methods that outperform the baseline

average educated alarmed fashionable angry

ResNet only (baseline) 0.074 0.036 0.117 0.047 0.007

objects 0.082 0.032 0.140 0.080 0.004

places 0.082 0.074 0.132 0.160 0.005

facial expressions 0.077 0.044 0.143 0.084 0.003

topic 0.086 0.032 0.143 0.136 0.009

optical flow 0.082 0.045 0.150 0.133 0.005

shot boundaries 0.080 0.037 0.151 0.110 0.003

audio 0.077 0.040 0.113 0.116 0.010

climax 0.079 0.025 0.119 0.082 0.011

all features except ResNet 0.080 0.038 0.104 0.036 0.007

all features (Our model) 0.094 0.026 0.099 0.202 0.005

on recognized places (e.g. laboratory, beauty salon), objects, facial expressions, and climax

dynamics.
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Places:	
  beauty_salon
Objects:	
  person
Facial	
  expression:	
  neutral

Places:	
  chemistry_lab
Objects:	
  bottle

Places:	
  pharmacy,	
  beauty_salon Places:	
  pier

New	
  dream	
  liquid	
  mousse	
  (https://www.youtube.com/watch?v=MTgeUVOxl8E)

Places:	
  parking_garage/indoor
Objects:	
  person,	
  car

Places:	
  physics_laboratory
Objects:	
  person,	
  laptop

Places:	
  elevator
Objects:	
  person
Facial	
  expression:	
  happy

Places:	
  elevator_lobby

So	
  real	
  it’s	
  scary	
  (https://www.youtube.com/watch?v=NeXMxuNNlE8)

Annotation:	
  
amazed
Prediction	
  (without
our	
  features):	
  
alarmed
Prediction	
  (ours):	
  
amazed

Annotation:	
  
feminine,	
  amazed,	
  
fashionable
Prediction	
  (without
our	
  features):	
  
alert
Prediction	
  (ours):	
  
fashionable

Figure 15: Qualitative results from our model. More examples could be found at http:

//people.cs.pitt.edu/~yekeren/ads_climax/demo/

4.4 Conclusion

We made encouraging progress in understanding the dynamic structure of a video ad.

We hypothesized that climax correlates with dramatic visual and audio changes. We crowd-

sourced climax annotations on 1,149 videos from the Video Ads Dataset of [94] and used

both unsupervised and supervised methods to predict the climax.

We proved the thesis hypotheses H1 and H5 (see Tab. 15). We show that the multimodal

cues have strong correlations to the climax (H5); hence, we can use them to localize climax in

an unsupervised manner. By combining visual and audio cues with semantically meaningful

context features (H1), our sequential model (LSTM) outperforms the only prior work [94] by

a large margin, on the sentiment prediction task. To better understand the relations between

the semantic visual cues and the sentiment each ad video provokes, we performed detailed
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ablations and found all the features we proposed help to understand the evoked sentiment.

From the next chapter, we study the way to efficiently utilize the multimodal features.

Table 15: Conclusion - validated hypotheses in this chapter.

Multimodal
features help to

understand
images/videos
with implicit

persuasive intent,
such as visual

advertisements.

Text features can
be unreliable if

not modeled
appropriately.

Text supervision
contains noise,

but can be used
to localize visual
objects in space,

if modeled
properly.

Text supervision
provides contexts
regarding visual
objects, they are
reliable cues for
disambiguating

entities and
relations.

Noisy audio
narrations as a

multimodal
signal can be
modeled to

localize video
actions in

temporal domain.

This Chapter 3 3
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5.0 Breaking Shortcuts by Masking for Robust Visual Reasonin

5.1 Introduction

Chapter 3, 4 discussed the use of multimodal features and external knowledge in ads

understanding, a particular visual reasoning task. From this chapter, we start to extend

our discussion beyond ads. We pay more attention to what visual reasoning is and how to

use the multi-channel inputs for it efficiently. Although this chapter still uses the ads data,

the proposed method of using bottom-up graph and stochastic masking is a generalizable

machine reasoning process. Hence it can be adapted to additional data rather than ads. In

the next chapter, we use a different Visual Commonsense Reasoning (VCR) dataset [315].

Visual reasoning is an important family of problems that are of increasing interest. Ex-

ample problems in this space include visual question answering [12, 79, 91, 233] and vi-

sual commonsense reasoning [314] (see Fig. 16). The general approach is to learn a joint

embedding space for images, questions and answers, then learn to generate or retrieve a

correct answer, by minimizing a loss computed using supervised training data. The name

“reasoning” bears a flavor of classic AI and structured logic-inspired inference steps; one

might argue that a human accumulates knowledge as they mature, and they store this

knowledge in a metaphorical “knowledge base”, then retrieve information from it as needed.

Though in many domains state of the art performance is achieved by end-to-end-trained

transformer models [37, 152, 245], some approaches to VQA/VCR do rely on symbolic rea-

soning [9, 106, 261, 271], and they just like humans.

In this chapter, we design a bottom-up graph model (see Fig. 17) to mimic the human

symbolic reasoning process and discuss a more general problem: how to use multimodal

features and external knowledge efficiently. We test two solutions. On the one hand, we

consider the weighting of the multiple input channels. Since some channels contain informa-

tive features and the others contain noises, we use weighting to adjust the reliance on them.

On the other hand, not all co-occurrences of the feature-answer pairs uncover the natural

rules (e.g., holding up an umbrella does NOT necessarily cause the rain). Thus, we propose
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Why	is	[person4]	pointing	
at	[person1]?

Why	is	this	answer	right?

What	should	I	do,	
according	to	this	
advertisement?	[action]

Why,	according	to	this	ad,	
should	I	take	this	action?	
[reason]

Parallel	Task
Reasoning	is	evaluated	
as	a	separate	task	with	

no	guarantee	for	
helping	the	main	task.

Does	this	person	have	
20/20	vision?

Single	Task
Reasoning	process	is	

not	explicitly	evaluated.

Side	Task
Reasoning	is	integral	to	
the	main	task	and	can	
be	evaluated	directly.

Which	of	the	following	comments	help	
to	understand	the	ad?
a) Nike	is	a	sportswear	company.
b) Nike	was	the	goddess	of	victory.

Match	the	image	with	a	description	
based	on	the	comment	you	choose

Figure 16: Visual understanding tasks. Previous definitions either oversimplified reasoning

(as answering, see top) or treat reasoning as a standalone task parallel to answering (middle).

In contrast, we propose a new evaluation side task (bottom) that checks the decisions made

by our main model, i.e. which knowledge pieces it selected to complete the answering task.

a stochastic masking technique to break the unreliable co-occurrences occasionally.

Our key novelty is the idea that by randomly masking parts of the training data we can

force the method to focus on more generalizable patterns. Specifically, we mask parts of text

found in the image, of knowledge pieces, and of the answer options, with some probability.

This technique prevents models from learning simple string-match or object-match between

input and output.

To evaluate our model, we use a visual reasoning task for advertisement understanding.

Given a visual ad, the method needs to retrieve the correct “action-reason” statement de-

scribing this image. Action-reason statements capture the action that the ad implies the

viewer should take and reasons it provides for taking the suggested action (e.g. “I should

buy these shoes because they will make me athletic”, for the example in Fig. 17). Note that
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the word “reason” in this context is akin to “rationale”. In contrast, by “reasoning” we

mean the ability to use the right evidence to select an action-reason statement.

We show that masking allows our model to improve the standard metrics used for eval-

uating advertisement understanding. However, we find these metrics are not sufficient to

evaluate a model’s ability to reason using suitable evidence. Thus, we propose a new side

task, used only for evaluation (not training). In this task, we verify whether the external

knowledge that our method chose to use, is actually supporting the reasoning. To facilitate

the evaluation, we collect human annotations on a small test set. We show that our method

more than doubles the accuracy of the knowledge selection mechanism.

Visual	PatchesObject	Detection

Optical	Character	
Recognition Embedded	

Slogans

Knowledge	
Entries

Knowledge	Retrieval

Introducing	the	Nike	
hyperdunk	July	26

Nike,	Inc.	is	an	American-
based	sportswear	and	
apparel	company	…

DBPedia
307	Nike	is	a	
sizeable	asteroid	of	
the	main	belt	…

In	ancient	Greek	religion,	
Nike	was	a	goddess	who	
personified	victory	…	

Figure 17: Overview of the proposed model. Given a single image ad, we first expand the

representation using object detection and OCR, and also retrieve relevant knowledge based

on slogan snippets (left). We build a graph-based model to infer the overall message using

all available information (right). For more effective training, we mask query keywords and

randomly drop certain knowledge pieces (shown with red crossed-out circles). More details

are in Sec. 5.2.

To summarize, our contributions are as follows:

• a bottom-up graph model utilizing external knowledge,

• a method for more generalizble reasoning, by using masking of retrieved knowledge and

image evidence, to prevent the model from learning shortcuts,

• a new side task (with annotations) to evaluate reasoning ability, and

• state of the art results on visual reasoning about advertisements [94, 294, 297].
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5.2 Approach

We focus on one specific reasoning task, namely advertisement understanding. We incor-

porate image regions, text in the image, and external DBpedia knowledge [134], in a graph

model. Because we retrieve knowledge from an open, general, real-world knowledge base,

retrieved irrelevant pieces of knowledge dominate in count. We thus allow our model to

select which pieces of knowledge and information to leverage, using learnable scalar edge

weights.

One interesting but easy to neglect problem is that when the answer options can easily

be matched to the image evidence, additional information (external knowledge) may not be

necessary and hence may not help performance on the main task. We show a small example

in VCR [314], where the subject repetition seemed to be the trick to answer the question

without knowing the visual cues:

How is Jackie feeling? Avery is very excited.

How is Jackie feeling? Jackie is focused and active.

There is a similar problem in ads understanding. For example, given a Nike ad with an

embedded slogan containing the word “Nike”, the model must retrieve external knowledge

to infer the particular properties that this ad demonstrates, so it can select the correct

action-reason statement. However, the model can also find a shortcut and not perform

reasoning, by merely looking for potential choices containing the brand name. Another

example is the famous PepsiCo celebrity branding, where a naive model can simply remember

popular celebrities and directly match them to “Pepsi” rather than understanding their

shared characteristics (e.g. athleticism), thus it may generalize poorly if a new spokesperson

is introduced in the ads. We refer to this observation as shortcut learning. Specifically,

when there exists a superficial image-answer match on the surface, the model tends to lazily

seek it and avoid squeezing more useful information out of the retrieved knowledge, even

when abundant resources are available.

Below, we first describe the advertisement understanding task (Sec. 5.2.1). We then

introduce our overall framework and how we train (Sec. 5.2.2). We describe our image

representation (Sec. 5.2.3-5.2.4) and knowledge selection mechanisms (Sec. 5.2.5). Finally,
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we describe our strategy for breaking shortcuts and forcing the model to “study harder” and

learn more generalizable patterns (Sec. 5.2.6).

5.2.1 Task: Advertisement Understanding

We focus on the advertisement understanding task [94] because it considers an interesting

and practical scenario. First, ads exploit symbols that refer to content outside the image;

thus, retrieving external knowledge is required. Second, unlike [225, 314], neither external

knowledge nor reasoning rationales are available in clean form. Third, multiple modalities

(image and slogan text) must be considered.

For each image, [94] provide three statements in which each is an action-reason pair

(e.g., “I should buy Nike because it protects my feet.”). There may be multiple plausible

reasons per action, e.g. to buy “sportswear”, the image may argue “it protects”, “is cheap”,

or “celebrity wears it”. Models are required to match an advertisement with the correct

action-reason descriptive statement.

Given an ad image A, we assume it is composed of two parallel entity sets A = {V, T},

where V stands for visual signals and T represents the embedded slogans (i.e. textual

signals). For each image, we apply off-the-shelf object detectors to generate a group of

object proposals as the salient visual signals from the ad, noted as V = {v1, v2, . . . , v|V |}.

We also use existing optical character recognition (OCR) engines to extract embedded text

slogans as T = {t1, t2, . . . , t|T |}.

5.2.2 Training: Matching to the Statements

We follow the approach in [294] and use triplet loss (Eq. 8) to optimize the cosine

similarity cosine(h, s) =
h · s
‖h‖ · ‖s‖

between advertisement representation h and answer choice

statement embedding s. Eq. 8 ensures that paired image and answer choices should be more

similar than unpaired ones (i.e., cosine(h, s+) > cosine(h, s−)). s+ denotes the embedding of

a paired annotation, s− is a sampled statement embedding in the mini-batch, using semi-hard
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mining [218], and η is the margin in the triplet loss.

L(h, s) = max(0, cosine(h, s−)− cosine(h, s+) + η) (8)

In the sections below, we describe in detail how we represent the ad image h using a

graph, which involves information from image regions, text in the image (if available), and

potentially noisy retrieved external information. For the human-annotated action-reason

statements, we use a Bi-directional Long Short-Term Memory (BiLSTM) model to encode

them into the D-dimensional joint feature space s = WsBilstm(ψ(s);θs) ∈ RD×1, where

ψ is the word embedding process, θs denotes the parameters of the statement encoder, and

Ws is for the linear layer. During inference, models pick the most probable statement from

candidates according to cosine similarity: argmax
s∈candidates

cosine(h, s).

5.2.3 Image Representation Graph: Nodes and Edges

Briefly, an image is partially represented using slogan text found in the image; in turn,

these slogans are represented using external information found using the slogans as queries.

Our image representation graph contains four types of nodes (image, slogan, knowledge and

a global node), and three types of edges connecting these nodes.

Image nodes. For each image proposal vi ∈ V , we use a pre-trained model to extract

its feature CNN(vi). The embedding of vi, denoted as vi ∈ RD×1, is obtained as a linear

projection vi = WvCNN(vi) where Wv is the parameter.

Slogan nodes. We represent each OCR-detected textual slogan ti ∈ T using a BiL-

STM encoder, then linearly project it into the same feature space as the image: t
(0)
i =

WtBilstm(ψ(ti);θt) ∈ RD×1, where: ψ is the shared word embedding process, θt and Wt

denote the parameters. As OCR may produce noisy detections, model weights β discussed

below (Eq. 10) choose which OCR results to use.

Knowledge nodes. Since the embedded slogans in ads are usually succinct, abbreviated,

or ambiguous [128, 318], an external database will be used as a source of knowledge to

help enriching and clarifying the meaning of the slogans. Specifically, we send each word

in slogan ti to the DBpedia knowledge base [134] as a query. This retrieval process ϕ
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returns a set of related comments. For example, ϕ(“WWF”)1 returns the explanations of

“Windows Workflow Foundation”, “Words with Friends”, “World Wide Fund for Nature”,

and so on. We take the union of the retrieved knowledge entries to enrich a slogan, denoted

as φ(ti) =
⋃
q∈ti ϕ(q). In Fig. 17, the blue boxes show these extended pieces of knowledge for

a specific slogan. The above procedure aims for high coverage rate, thus unavoidably many

of the retrieved knowledge pieces will be irrelevant, but our model will learn to select the

relevant ones, using the weights α in Eq. 9.

For the external knowledge ki,j ∈ φ(ti) retrieved for the slogan (with j ranging over all

retrieved comments for slogan ti), we use a separate encoder ki,j = WkBiLSTM(ψ(ki,j);θk) ∈

RD×1 with parameters θk and Wk, to encode the information. Note that knowledge nodes

share the word embedding process ψ with slogan nodes and human-annotated statements

but not the BiLSTM encoder, because we suppose word meanings in different modalities

(DBpedia comments, slogans, action-reason statements) are the same, but the grammar

structures may differ.

Edges. We build an inference graph (DAG) to capture the relationships for a better

understanding of the image. We treat all the proposals, slogans, and knowledge pieces as

nodes, with the knowledge nodes connected to the associated slogans by IsADescriptionOf

edges. Next, we add a global node as an overall representation and connect all proposals

and slogans to it using ContributesTo edges. The representation of the global node will be

used to facilitate message passing and graph inference (described next). We also add extra

IsIdenticalTo self-looping connections to all slogan nodes. Fig. 17 shows an example.

5.2.4 Image Representation Graph: Inference

Our method propagates information in a bottom-up manner and adjusts edge weights to

optimize the final image representation h (Eq. 8). This inference procedure is similar to the

Graph Convolutional Network (GCN) [120] in that we both use message passing to deduce

the uncertain node embeddings. However, we fuse global context information to compute

the edge weights, while GCN considers only the local information among neighbors.

1http://dbpedia.org/page/WWF
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Updating slogan embeddings. The slogan representation will fuse messages from slogan

and external knowledge. We define a weight vector αi ∈ R1+|φ(ti)| to denote the incoming

edge scores for a slogan node ti, where αi,0 is the weight of the self-loop edge IsIdenticalTo,

and αi,j (j ∈ {1, . . . , |φ(ti)|}) are the weights of IsADescriptionOf edges. We require that∑|φ(ti)|
j=0 αi,j = 1. Eq. 9 defines the policy for updating ti. It requires the slogan ti to

choose a meaning (soft selection using the α weights) among its initial embedding t
(0)
i and

representations of the retrieved DBpedia comments ki,j. We describe how we learn α weights

shortly.

t
(1)
i = αi,0t

(0)
i︸ ︷︷ ︸

original meaning

+

|φ(ti)|∑
j=1

αi,jki,j︸ ︷︷ ︸
descriptions from extra knowledge

(9)

Computing global embedding. We infer the embedding of the global node from the direct

information in image patches and slogans, and the indirect information of knowledge pieces.

Specifically, we define a vector β ∈ R|V |+|T | denoting the weights of different ContributesTo

edges. The first |V | values are the contributions of image proposals and the next |T | denote

slogans. We require
∑|V |+|T |

i=1 βi = 1. The global embedding h is a weighted sum of proposal

and updated slogan embeddings.

h =

|V |∑
i=1

βivi︸ ︷︷ ︸
messages from proposals

+

|V |+|T |∑
i=|V |+1

βit
(1)
i︸ ︷︷ ︸

messages from slogans

(10)

5.2.5 Image Representation Graph: Learning Edge Weights

We use an image-guided attention mechanism to infer α (Eq. 9) hence choose whether

to incorporate the external information or maintain the original slogan feature. This choice

depends (1) the relation between the node and the connected slogan target, and (2) the

relation between the node and the image context. We use a group of three-layer perception

models denoted as MLP(x,y;θ) to model the relations between any two types of feature

vectors (x,y ∈ RD×1). In Eq. 11, [; ] denotes concatenation, and · point-wise multiplica-

tion; θ = (W1,W2) denotes parameters of a specific relation MLP, in which W1, W2 are
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parameters.

MLP(x,y;θ) = W2tanh(W1 [x; y; x · y]) (11)

Eq. 12 defines the edge weights connecting to textual slogans ti. We define the image

context v̄ = 1
|V |
∑|V |

i=1 vi. θ
t
α and θcα are the parameters of the node-slogan and node-context

MLPs. These MLPs measure how strong is the relationship between a node and the target

slogan, and between a node and the image context.

ai,j =

MLP(t
(0)
i , t

(0)
i ;θtα) + MLP(t

(0)
i ,v;θcα) when j = 0

MLP(ki,j, t
(0)
i ;θtα) + MLP(ki,j,v;θcα) when 1 ≤ j ≤ |φ(ti)|

αi = softmax(ai)

(12)

To compute weight vector β, we update the slogan context t
(1)

= 1
|T |
∑|T |

i=1 t
(1)
i , then use

Eq. 13. This is a co-attention mechanism in that we use visual context to determine weights

of slogan nodes, and use slogan context to decide contributions of image proposals. When

there is no slogan detected, the image features will dominate.

bi =

MLP(vi, t
(1)

;θvβ) when 1 ≤ i ≤ |V |

MLP(t
(1)
i ,v;θtβ) when |V |+ 1 ≤ i ≤ |V |+ |T |

β = softmax(b)

(13)

The weight vectors α and β allow our model to choose which knowledge pieces and

slogans to use. We show the knowledge pieces chosen (with α larger than 0.05) in Fig. 18;

thicker arrows correspond to larger values of α, β.
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5.2.6 Masking to Break Shortcuts

As we show in our experiments, combining the knowledge directly with the image and

text, despite the learned edge weights, achieves small gains over using image and text alone.

As we show in Fig. 18, our model as described so far often ascribes small weights α to

external knowledge retrieved. We discussed this “shortcut learning” phenomenon in Sec. 5.1.

Thus, we next focus the model’s attention towards important cues and knowledge pieces for

reasoning, using a set of automatic masking strategies. To cope with this problem, we

propose a simple yet effective masking strategy to break shortcut learning. For example, we

replace the query from the retrieved paragraph with the out-of-vocabulary token. In this

way, the two pieces of knowledge in Fig. 17 become “[oov] is a sportswear company” and

“[oov] is the name of an asteroid”. Then the model can figure out whether “sportswear” or

“asteroid” helps more for understanding the ad. At test time, when the model sees a rare

sportswear company, it can benefit from the retrieved knowledge and not fail due to failed

word-matching.

Our masking is similar to dropout (which we do use for our baseline), but applied over

pieces of evidence in the slogan, knowledge comments, or action-reason statements. It is also

similar to masking in cross-modal transformer methods [152, 37] but (1) we do not train the

method to recover the masked symbol, and (2) transformer methods do not employ external

knowledge, which is the key focus of our work.

We experiment with the following masking strategies:

• Mt randomly drops a detected textual (T) slogan, with a probability of 0.5.

• Ms randomly sets the query words (e.g. “WWF” or “Nike”) in the human-annotated

statements (S) to the out-of-vocabulary token, with probability 0.5.

• Mk replaces the DBpedia queries in the retrieved knowledge contents with the out-of-

vocabulary token.

We found the masking strategy helps to significantly improve the main task of retrieving

an answer. Moreover, when we evaluated the relevance of the knowledge pieces our model

chose using weightsα, we found an even more significant margin. While our masking strategy

is specific to our target domain, masking in general merits exploration as a technique to aid
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in knowledge-based reasoning.

5.3 Experiments

5.3.1 Implementation and Experimental Setup

Dataset. We use the data from the 2018 ad understanding challenge2. There are 51,223

trainval images paired with 161,557 annotated statements; and 12,805 test images, each with

3 correct statements and 12 incorrect distractions (15 in total). We use Google Cloud Vision

OCR3 to recognize the embedded textual slogans. We retrieve DBpedia comments based on

detected slogans; an example SPARQL query is shown in our supplementary file. Eventually

we obtain 443,747 detected textual slogans, and 30,747 unique knowledge descriptions, to

be associated with the 64,028 images (trainval+test). Each image is annotated with, on

average, 6.9 slogans and 27.5 DBpedia comments.

We recruit human annotators to manually verify whether the retrieved knowledge is

helpful for the ad understanding task. Specifically, for a given advertisement, we show all

retrieved knowledge pieces and ask humans to annotate whether each piece is helpful or not

in understanding the ad. These annotations serve as “gold standard” for knowledge selection

evaluation (Sec. 5.3.4). We provide details in supp. We emphasize these annotations are

never used to train.

Metrics and settings. Following the convention in the Ads challenge, we report accuracy

(aka. precision@1) to compare against other methods from the challenge. However, we note

that statement retrieval accuracy on the original task (3 correct with 12 incorrect statements)

is not distinguishable enough, as many methods tie on this metric. To mitigate this issue,

on one hand, we additionally report rank and recall@K scores inspired by [115, 121, 265].

For the rank metrics, we report min, and avg rank of the three correct statements. On the

other hand, we created two additional “harder” test sets named Sampled-100 and Sampled-

500, where each image is accompanied by 3 correct statements and 97 (or 497) incorrect

2http://evalai.cloudcv.org/web/challenges/challenge-page/86
3https://cloud.google.com/vision/
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distracting options. We compare different models on these two challenging tasks as well as

the original Ads challenge.

DBpedia knowledge. To increase recall, we add DBpedia entries that have wikiPageDis-

ambiguates or wikiPageRedirects properties. This results in 17,277 anchored queries, as-

sociated with 30,747 DBpedia comments. We provide more details in the supplementary

file.

Training details. We use a pre-trained object detector [299] to generate 10 proposals per

image. We keep the 20 largest OCR detected regions. Our vocabulary for slogan, knowledge

and statements consists of words that appeared more than 5 times in human-annotated

statements or more than 20 times in OCR slogans or DBpedia comments. vi, t
(0)
i , t

(1)
i , ki,j,

h, s are all 200-D vectors. We use RMSprop with learning rate 0.001, batch size 128, and η

(in triplet loss) of 0.2. More details are provided in supp.

5.3.2 Qualitative Examples

In Fig. 18, we show the graphs learned by our model. In general, with the masking

mechanism we observe that the model focuses more on useful knowledge.

• The weights (width of arrow) from visual objects, slogans and external knowledge towards

the global node (star) reveal their relative contributions.

• The model without masking does not utilize the external knowledge effectively: all knowl-

edge pieces have extremely small weights thus are omitted from the visualization. This

indicates that even though the external knowledge is available, the model still tends to

process superficial word pattern matching. Instead, when the entity information (poten-

tial shortcut) is masked from the retrieved comments, along with other info randomly

sampled and masked, the model learns semantics from the external knowledge.

• These results also show the importance of evaluating knowledge selection explicitly as a

side task, as models may solve the main answering task but not use external knowledge

(which should intuitively be helpful) at all.
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I	should	buy	Chanel	because	I	will	
be	fashionable

I	should	wear	Chanel	because	it	
will	make	me	look	classy

I	should	get	Chanel	because	it	is	
sexy

Image	and	annotated	statements Learned	graph	w/o	masking Learned	graph	w/	masking

I	should	recycle	because	it	will	
ultimately	affect	our	environment

I	should	recycle	because	nature	
cant

I	should	recycle	because	garbage	
can	harm	animals

Figure 18: Examples of the learned graphs (best with zoom). We show the ad image and

annotated action-reason statements on the left, the graph learned without masking in the

middle, and that learned with masking (our approach) on the right. We show slogans in

blue, DBpedia comments in orange, and the global node as a star. Arrow thickness is

correlated with learned weights α,β. For visualization we removed all edges with small

weights (threshold=0.05). Our method effectively leverages external information, as it relies

on appropriate knowledge (in orange) more than the baseline method w/o masking.

5.3.3 Main Result: Effectiveness of Masking

In Tab. 16, let V denote the visual proposals, T the textual slogan information, and K

the knowledge comments from DBPedia. Mt, Ms, and Mk, denote the different masking

strategies described in Sec. 5.2.6. Simply “M” (for mask) means we use all three of them.

The V,T method resembles [297], but uses a graph to represent the image and slogan. By

comparing V,T and V,T+K in each task, we see that simply adding knowledge achieves

very marginal gains because the benefit of knowledge gets drowned-out due to shortcuts.

However, our masking strategy Ours: V,T+K(M) improves results on all tasks and almost

all metrics. Accuracy (P@1) provides limited information because it only measures the
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easy-to-predict cases and all models are doing equally well. However, with the ranking

metric and on the more challenging Sampled-100 and Sampled-500 test sets, we see our

masking strategy brings significant and consistent performance gains. Further, masking in

conjunction with applying external knowledge (last row in each group) achieves better results

compared to not using knowledge (first row). Our method allows better reasoning (through

external knowledge) by mitigating the effect of shallow matches (through masking).

Table 16: Main result using three ranking task setups. The best model in each group is

shown in bold. High Precision and Recall scores, and low Rank scores, are better.

Method P
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Results on the Challenge-15 task

V,T 87.3 76.6 55.1 30.6 28.4 74.2 87.9 97.5 1.26 3.02

V,T+K 87.3 76.6 55.1 30.6 28.4 74.3 87.9 97.6 1.25 3.02

Ours: V,T+K(M) 87.3 77.5 55.9 30.8 28.4 75.2 89.2 98.2 1.23 2.91

Results on the Sampled-100 task

V,T 79.8 66.5 46.9 26.2 26.0 64.4 74.9 83.5 2.38 7.52

V,T+K 80.0 67.0 47.0 26.1 26.0 64.9 75.1 83.4 2.29 7.49

Ours: V,T+K(M) 80.2 67.9 47.9 26.8 26.1 65.8 76.6 85.4 2.14 6.56

Results on the Sampled-500 task

V,T 65.5 52.3 37.8 21.7 21.3 50.5 60.4 69.0 8.18 30.1

V,T+K 65.4 52.3 38.0 21.9 21.3 50.6 60.7 69.6 7.60 30.0

Ours: V,T+K(M) 64.8 52.4 38.3 22.1 21.1 50.7 61.1 70.6 6.89 25.1

Tab. 17 shows an ablation study using the average rank. The table includes results for

all three tasks, and we use the evaluation on the most difficult Sampled-500 to describe

our improvement percentages. First, directly adding knowledge (V,T+K v.s. V,T) does

not help. The +K leads to only 0.5% improvement which is negligible (29.96 v.s. 30.11).
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Table 17: Average Rank on the ranking tasks. Relative improvement is based on Sampled-

500. Lower scores are better. The best method is shown in bold.

Method Challenge-15 Sampled-100 Sampled-500 Relative to V,T+K

V,T 3.02 7.52 30.11

V,T+K 3.02 7.49 29.96

V,T+K(Mt,Ms) 2.97 7.05 27.66 +7.68%

V,T+K(Mt,Mk) 2.93 6.74 26.04 +13.08%

V,T+K(Ms,Mk) 3.00 7.43 29.64 +1.07%

V,T+K(Mt,Ms,Mk) 2.91 6.56 25.14 +16.09%

However, if we apply masking to mitigate the effects of shortcut learning, the performance

is improved by a large margin. As we compare V,T+K(Mt,Ms,Mk) to V,T+K, the average

rank is reduced from 29.96 to 25.14 (-4.82 average rank or +16.09% relative improvement

when we use our proposed masking). Further, we verify that removing any of the mask-

ing mechanisms (V,T+K(Mt,Ms), V,T+K(Mt,Mk), and V,T+K(Ms,Mk)) leads to inferior

performance (27.66, 26.04, 29.64 v.s. 25.14). We conclude the useful information of the

external knowledge is fully unleashed if and only if shortcut learning can be suppressed.

5.3.4 Side Task: Analyzing the Knowledge Utilization

We check whether the methods know the usefulness of the potentially irrelevant retrieved

knowledge for ad understanding. We use a side task which requires no additional training,

to test their knowledge selection and filtering power. Specifically, we use the edge weights

methods learned, with and without our masking strategy. Note that methods did not receive

supervision for this task at training time; instead, our masking strategy helps our method

accomplish the task better than the baseline can. To the best of our knowledge, similar

experiments have not been done in prior visual reasoning work. Even for the latest KBQA
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datasets, all provided knowledge pieces are relevant information without noise. However, in

our setting, the retrieved DBpedia knowledge pieces are usually noisy, while only a few of

them could expand the image’s meaning. Such noisy retrieval is more likely to happen in

real-world applications.

We measure how accurately the model could select the useful knowledge pieces from

the noisy candidate pool. For each image, we take the learned weights for DBpedia com-

ments (Eq. 9) as a knowledge importance score, and select the one with highest score using

argmaxi,j αi,j. Then the model-selected knowledge is compared against human annotations,

for an accuracy score. The procedure is integral to the main task because the weights are

learned automatically in it. The results are shown in Tab. 18. V,T+K(Mt,Ms,Mk)’s im-

proves accuracy to 54.4% compared to 25.2% for V,T+K (+115% improvement!) In other

words, masking doubles the ability of our method to retrieve appropriate external knowledge,

by removing reliance on shortcuts. Further, this result shows the discrepancy of the main

and side metrics (16% gain for our method in Table 17 compared to 115% in Table 18).

Table 18: Accuracy(%) on the knowledge selection task

Methods Accuracy (%)

V,T+K 25.2

V,T+K(Mt,Ms) 54.4

V,T+K(Mt,Mk) 53.0

V,T+K(Ms,Mk) 25.9

V,T+K(Mt,Ms,Mk) 52.6

5.3.5 Comparison with the State-of-the-art

We compare our model to the approaches in the “Automatic Understanding of Visual

Advertisements” challenge and some latest works. Vse trained by [294] uses only the

image-level feature to represent the ad and triplet loss to optimize the model. AdNet [86]

is similar but uses ResNet as the network backbone. Advise [294] aggregates proposal
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feature vectors to get the image representation. It incorporates knowledge from a pre-trained

dense captioning model [107] and a symbol classifier. CyberAgent [195] is the first model

that uses slogan texts embedded in the image. Rhetoric [297] is a hybrid model of both

Advise and CyberAgent; it uses pointwise addition to integrate image and slogan, and

is the current state-of-the-art.

Table 19: Accuracy(%) on the ads-challenge. We compared our method to state-of-the-art

models, using the data split provided in the 2018 ads-challenge

Methods Accuracy (%)

Vse [294] 62.0

AdNet [86] 65.0

Advise [294] 69.0

CyberAgent [195] 82.0

Rhetoric [297] 83.3

Ours 87.3

Tab. 19 shows the comparison to these approaches. Our model outperforms even the

strongest baseline Rhetoric by 4.8% in terms of accuracy (87.3% v.s. 83.3%). While

Rhetoric also incorporates both image and slogan information, our method represents

this information in a more fine-grained manner using the graph. Besides, our method uses

external knowledge from DBPedia.
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5.4 Conclusion

Visual reasoning has attracted much attention, although the “reasoning” process is usu-

ally hidden behind a mixed or decoupled evaluation protocol. One of the main contributions

of this chapter is that we proposed a side task in addition to the ranking of the ads action-

reason pairs - choosing the correct knowledge piece. In the side task, models do no rely on

supervised learning to select knowledge. Instead, they determine based on if the knowledge

is helpful to understand the ad. In other words, knowledge choosing is learned through weak

supervision.

For the thesis topic, this chapter proved the hypotheses H1, H2 (see Tab. 20). This

chapter provides an efficient way to use embedded slogans and external DBpedia comments

- through both a bottom-up graph model and a stochastic masking technique. The graph

model determines the detected noisy slogans and the retrieved unrelated DBpedia descrip-

tions, then down-weigh them by decreasing the graph edge scores. The masking strategy

forces the model to make predictions based on its reasoning over external knowledge pieces

and avoids using unreliable evidence. Our model achieved state-of-the-art performance on

the challenging ads understanding task. It achieved a 5% improvement in terms of accuracy

as compared to Chapter 3.

Table 20: Conclusion - validated hypotheses in this chapter.

Multimodal
features help to

understand
images/videos
with implicit

persuasive intent,
such as visual

advertisements.

Text features can
be unreliable if

not modeled
appropriately.

Text supervision
contains noise,

but can be used
to localize visual
objects in space,

if modeled
properly.

Text supervision
provides contexts
regarding visual
objects, they are
reliable cues for
disambiguating

entities and
relations.

Noisy audio
narrations as a

multimodal
signal can be
modeled to

localize video
actions in

temporal domain.

This Chapter 3 3
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6.0 A Case Study of the Shortcut Effects in Visual Commonsense Reasoning

6.1 Introduction

We explored methods to use multimodal features and external knowledge efficiently in

the last chapter. In this chapter, we focus on a more comprehensive visual reasoning task

(the Visual Commonsense Reasoning) and want to see if unreliable evidence broadly exists.

Specifically, we seek if “shortcuts” exist in another form that also connects inputs and out-

puts, but provides misleading cues. Different from the previous chapter: (1) we quantify

the shortcut effects by constructing adversarial datasets, in which more drop of performance

of existing models means more severe consequences; (2) we do not assume the noisy mul-

timodal inputs scenario; (3) our solution uses the end-to-end-trained transformer models

without mimicking human reasoning.

Models for vision-and-language (VL) tasks, such as visual question answering (VQA) and

visual commonsense reasoning (VCR), perceive the features of an image and provide natu-

ral language responses regarding the visual contents. The comprehensiveness of the VQA

process seems to require complete human-like intelligence, and has inspired great interest.

Unfortunately, in practice, models have many opportunities to bypass “reasoning” and in-

stead find shallow patterns in the data in order to match answers to image-question pairs.

By “reasoning” we mean a generalizable process that analyzes the structure of the world as

demonstrated by training data, pays attention to links between participants in the scene as

well as between entities and their semantic properties, and analyzes how these correspond to

the entities or events indicated in the question. Such a process ideally persists when small

changes are made to the potential answer options without changing their meaning, because

the entities represented by these options remain the same.

To solve visual question answering tasks, studies used feature fusion [12, 326], attention

[154, 62, 7], or question-related modular structures [9, 8]. Recently, transformers model-

ing cross-modal attention [5, 37, 152, 140, 240] have also been applied. These methods are

trained with supervision i.e. the correct answers are provided by human annotators on the
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training set. The nature of supervised training means methods are rewarded for finding any

connection between inputs (image-question) and outputs (answer options). In other words,

methods can do well without performing complex reasoning, if they can find enough “shal-

low” matches between input and output. We refer to such shallow matches as “shortcuts”.

Shortcut effects: Example and definition. Consider the example in Fig. 19 from

the VCR dataset [314]. In the figure, [person1] (male) is on the right and [person2] (female)

is on the left. The correct option has the most overlap with the question: the “[person1]”

and “[person2]” tags, and the word “dress”. Thus, to answer this question, the model need

not perform reasoning or even look at the image. Examples in VCR vary: not all contain

shortcuts of this nature, yet others contain even more severe shortcuts. For example, some

incorrect answer choices mention entities entirely unrelated to question and image, which

are thus easy to eliminate.

Person1

Person2 Correct answer: [person1] thinks [person2] looks 
stunning in her dress.
Incorrect #1: She does not approve.
Incorrect #2: [person2] is a girl and girls like to 
wear makeup.
Incorrect #3: [person1] is confused and annoyed by 
[person2] following her in the store.

Question: What does [person1] think of [person2]'s dress?

Figure 19: Shortcut effects: An example.

We define “shortcuts” as a way of achieving the correct answer by simply matching

repeated references to the same entities in the question and answer options. We find that

in 67.8% samples for the Q→A task in VCR, and 65.2% samples for the QA→R task, the

correct choices have the most overlapped referring tags among the candidates. Further, state

of the art methods’ performance drops significantly when these shortcuts are removed.

One reason for shortcuts is that humans often repeat the keywords or essential entities

of the question to give a complete answer; this is hard to avoid during data collection.

Further, the shortcuts may have broader forms across different modalities. E.g., in language

“excited” is a common association to “feeling”, people often perform action “eating” at
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visual environment “restaurant”, etc. We emphasize that researchers that train models for

VCR should pay more attention given these inevitable shortcuts. Yet, prior methods have

sometimes exacerbated shortcuts. E.g., the “grounding” of objects in [314] enables feature-

level shortcuts since the same object feature may appear in both question and answer. We

specifically examine shortcuts in the case of VCR, while the same phenomenon is likely to

present in other datasets where question-answering is formulated as multiple-choice task and

features full-sentence answers e.g. [249, 311].

While machine learning methods for other tasks also find easy ways to do well at the

target task, we argue that “shortcuts” are a particular type of dataset bias whose reduction

requires specific mechanisms. What exacerbates the problem is that such shortcutting is

easier in the multiple-choice VQA setting compared to classification. In image classification,

a shortcut has to be found across modalities, i.e. pixels to labels. In VQA, a shortcut

between input and output can easily be found within the same modality, i.e. text in the

question and text in answers. However, shortcuts are distinct from prior biases discovered in

VQA datasets [77], because they have more to do with shallow string matches than modes

in the answer distribution. No prior dataset bias work has studied shortcut effects.

In this work, we first quantify the impact of shortcuts on state-of-the-art models. We

propose two methods to augment VCR evaluation. One makes small word-level changes while

maintaining the original meaning, while the other examines which word a VCR method most

depends on. We show the performance of SOTA methods drops significantly on the modified

evaluation data. Second, we propose a novel masking technique to make training more

robust and make models rely on more extensive evidence compared to individual shortcuts.

Because masking may under-utilize useful information, we perform masking on curriculum,

with a large masking ratio initially and gradually reducing it. We show our robustly trained

method collapses less when partial evidence is missing, and curriculum masking is more

effective than prior masking techniques in both the original and modified settings. Our

paper is an initial exploration of shortcut effects in VQA and a case study of VCR. We

expect it to inspire future ideas of overcoming shortcut effects. Our code and data are

available at https://github.com/yekeren/VCR-shortcut-effects-study.

To summarize, our contributions are as follows:
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• We show how to highlight the unreliable evidence in VCR to fool models relying on them.

• We show how to quantify the impact of shortcuts on different state-of-the-art models.

• We explored existing and novel masking techniques to make training more robust.

• We show that our robustly trained method collapses less when partial evidence is missing.

6.2 Approach

First, we develop techniques to quantify the detrimental effect of shortcuts, by removing

some them at test time. Second, we propose a technique to make training more robust.

6.2.1 VCR Task and Basic Model

The visual Commonsense Reasoning (VCR) task involves two subtasks. The first one

(Q→A) requires predicting if an answer choice a fits the context of both visual information

v and question q (i.e., multi-choice VQA). The second subtask (QA→R) predicts the like-

lihood of a rationale r, given v, q, and a∗ (a∗ is the correct answer). For each question,

the dataset provides one correct choice (answer or rationale) as well as three distracting (in-

correct) options. The evaluation protocol also involves a combined Q→AR metric without

separate training. Fig. 21 shows examples of Q→A. Unlike other VQA datasets, VCR mixes

person/object tag annotations with the questions and answers, denoting that the text refers

to a particular image region. We find these tags create problematic shortcuts.

To achieve unified modeling P of both subtasks, we follow [5, 314, 308, 144] to reparam-

eterize the formulation of QA→R (Eq. 14). We concatenate q and a∗ to obtain question

q′ in QA→R, and treat rationale r as answer a′. Thus both VCR models differ only in

parameters θ, θ′.

Q→A : P(v, q,a;θ)

QA→R : P(v, q′,a′;θ′),where q′= [q;a∗] , a′=r
(14)
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For our modified, more challenging evaluation setting (Methods to Evaluate the Shortcut

Effects), we use four recent, diverse methods. To show improvements through robust training,

we focus on B2T2 [5] to implement P . We choose B2T2 because: (1) The architecture is

simple. It is essentially a BERT [50] model with multimodal inputs, with the next sentence

prediction of BERT modified to be the matching prediction of the answer given question-

image pair. (2) BERT-based architectures are popular for the VCR task [5, 37, 152, 240,

138, 65, 306] hence our choice of method is representative. (3) B2T2 achieves good results

without expensive pre-training on external, non-VCR data, while models like UNITER [37]

are more dependent on expensive out-of-domain pre-training.

BERT

+
E[CLS]
E0
0

E[IMG] Eperson Eperson E[SEP] Ewhy Eis Ejessie Esmiling E[SEP] Ehe Esees Ea Efriend E[SEP]
E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12 E13 E14
a 0 0 0 0 0 0 0 0 0 0+

[CLS] [IMG] person person [SEP] why is [2] smiling [SEP] he sees a friend [SEP]

𝑃(𝑣, 𝑞, 𝑎; 𝜃)

FRCNN FRCNN FRCNN FRCNN

Figure 20: Model architecture for our shortcut effects study. We use BERT as the language

model backbone and add the tag sequence features generated by Fast-RCNN to the token and

positional embeddings. The contextualized feature of [CLS] is used to predict the answer-

question matching score.

Fig. 20 shows how we predict the joint probability of v, q, a. Similar to B2T2, we create

a token sequence by concatenating the image object labels (from the VCR dataset, e.g.

“person”) and textual words. We also create a tag features sequence using the associated

Fast-RCNN features [69], adapted to the same dimensions as the word embeddings; for

words not mentioning any visual objects, we pad with zeros. Then, the embeddings of the

token sequence and the tag features are pointwise added and normalized before being fed to

the BERT model to get the contextualized feature vectors. Next, we add a linear layer on

the feature of the [CLS] token to estimate P(v, q,a;θ) (a scalar). We use sigmoid cross-

entropy to optimize the model. Thus, P(v, q,a;θ) approximates a probability which is large
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if the answer is appropriate for this image and question. All models that we train, including

baselines, use BERT-Base (12 layers, 768 hidden units) and ResNet-101 [82] pre-trained on

ImageNet [47], as the language and vision models’ backbones, respectively. We keep all the

layers in BERT-Base trainable while we freeze the ResNet-101 layers until the ROIAlign. We

use 4 GTX1080 GPUs, batch size of 48 (12 images per GPU), learning rate of 1e-5, ADAM

optimizer, and the Tensorflow framework. We train for 50k steps (roughly 11 epochs) on the

212,923 training examples and save the model performing best on the validation set (26,534

samples), for each method in Table 25. Each model took 10 hours to train.

6.2.2 Methods to Evaluate the Shortcut Effects

We propose two methods (rule-based and adversarial) to modify the answer candidate

options in the evaluation set. Both methods keep meanings unchanged in most cases, but

the second does change meaning in some cases and is primarily used to gauge what kind of

words in the answer options a VCR method relies on. The methods highlight shortcuts and

test the models’ capability of utilizing comprehensive features instead of shortcuts.

Rule-based modification. Inspired by the observations in Introduction, we first use

a set of simple rules to modify references to persons. While individual words in the answers

are changed, the meaning of the answer choices remains unchanged or almost unchanged.

We always modify both the distracting and correct options. Depending on whether the

question contains one or multiple person tags, we refer to the rule as Rule-Singular or

Rule-Plural. This method only covers a proportion of the validation data but causes a

significant drop for several recent methods.

For ground-truth options, we turn person tags into pronouns to make the answer less

associated with the question-image pair at the surface (removing tag matches). To choose

the proper gender pronouns, we first check the hints (“his”, “her”, etc.) in both the ques-

tion and answer. For groups of tags (“[person1,person2]”), we replace with the pronoun

“they”. Since the distracting options are semantically unrelated to the image, we assume

the pronouns and person tags do not matter in most cases. We turn pronouns (“he”, “she”,

“they”) and any other person tags, into the person tags asked in the question. Tab. 21 shows
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some examples, where the question is about [person2], and both “he” and [person1] are

changed to [person2].

Table 21: Examples - Modifying distractor answer options.

Question Original Changed to

Why is [person2] in such a

rush?

He used the wrong ingredients

to make the meal.

[person2] used the wrong

ingredients to make the meal.

How is [person2] feeling? [person1] is very excited. [person2] is very excited.

Discussion: Shortcuts vs distribution shifts. Changing the distribution of the

evaluation set compared to the training set naturally causes a drop in performance. What

this modified evaluation allows us to do is measure precisely how much different methods

rely on person tag shortcuts. Further, it creates a more realistic, less inflated setting to

demonstrate the reasoning capacity of different models, including ours which enables robust

training. The shortcuts we highlight through our modified evaluation, are distinct from

distribution shifts. In particular, our robust training algorithm that copes with shortcuts

(next section) improves performance in both the modified evaluation and the original setting.

In contrast, a method that exploits the distribution shifts created with our modification by

training on such modified data, degrades performance in the original setting.

Adversarial modification. We next propose an adversarial modification. First, we

train a B2T2 model P(v, q,a;θ) to solve the VCR problem using unmodified data. Given

ground-truth label information C(v, q,a) ∈ {0, 1} (a is or is not the answer to {v, q}), we

define the potential shortcut evidence in Eq. 15, where | · | denotes the length of the sequence

and Ψ(x, i) is a function to replace the i-th token in sequence x with a special token [MASK].

Eq. 15 looks for the evidence in the answer choices that makes the model most “fragile”,

i.e. the special position in answer a such that after replacing that token with a mask, the
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cross-entropy loss is maximized (because we want to confuse models).

argmaxi∈[1,|a|)][−C(v, q,a) logP(v, q,Ψ(a, i);θ)

−(1− C(v, q,a)) log(1−P(v, q,Ψ(a, i);θ)]
(15)

Intuitively, there should be more than one word in the correct answer (C(v, q,a) = 1)

that allows a method to find that answer. However, compared to the rule-based revisions, we

expect that performance will drop for the adversarial setting because the adversarial method

potentially changes the meaning. Thus, in this setting, we are more interested in what words

cause performance to drop the most when masked, rather than how much performance drops.

We provide statistics regarding the masked words in Experiments. Adversarial modification

mostly attacks word repetitions, pronouns, and word tenses. This supports our intuition

about shortcut effects: models use trivial, content-free hints to make decisions instead of

real reasoning. We expect the rule-based modification to more precisely show the effect of a

specific type of shortcut (person tag), while adversarial revision will show the broader effects

in a less controlled environment (as any word can be chosen in Eq.15).

6.2.3 Robust Training with Curriculum Masking

We propose a new way to make training more robust such that it can overcome shortcut

effects, using masking on a curriculum. We describe two masking baselines, then our new

masking technique. Note the strategies we used to create the modified evaluation sets are

not appropriate to augment the training set because they potentially add new shortcuts, as

we show in experiments.

Masking baselines: Masked VCR and language modeling. We randomly replace

tokens in answers with the [MASK] during training, with a probability of 5%, 10%, 15%, or

30%. We predict whether a masked answer follows the question, and refer to this technique as

Masking in Experiments. The [MASK] token is not applied in inference. We also use masked

language modeling (MLM), where the task is to predict the missing tokens in the masked

sentence. We use a 0.001 coefficient to weigh the MLM softmax-cross-entropy loss; this is

because too large weighting negatively affects the main loss (answer choice cross-entropy).
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We jointly train for the two objectives and refer to the approach as Masking+MLM. Both

of these masking strategies are inspired by BERT [50].

Our method: Masked VCR on a curriculum. There is a tradeoff between masking

to increase robustness and maintaining the required information. We found that the more

masking is applied during training, the better the result in the modified settings, but the

worse it is on the original standard validation. Thus, we propose a new curriculum masking

approach which slowly decays the amount of masking that is applied during training. It uses

a high masking probability at the beginning, then gradually reduces the masking ratio:

Masking ratio = Initial ratio ∗ e−(Decay rate∗Train steps)

We feed hard examples (higher masking ratio) at the start because this regularizes the

model to pay more attention to the inputs as a whole, while in later stages the model

leverages examples that have closer distribution to the unmasked validation data. We refer

to this method as Ours-CL, and show its benefit in Experiments. While curriculum learning

[102, 312, 320, 103] has been tried to decide the order of tasks for pre-training [158, 267, 41],

to our knowledge, ours is the first method to mask using a curriculum.

Discussion. None of our robust training approaches focus on pre-training on large ex-

ternal corpora, because its effect makes it unclear how a method makes its decisions, and this

pre-training incurs a large computational cost. The contribution of pre-training on an exter-

nal dataset gives mixed results: B2T2 [5] show pretraining on Conceptual Captions improves

accuracy by 0.4%, vs 1% (and 2% for second-stage in-domain pre-training) for UNITER [37].

Our experiments with existing masking techniques resemble in-domain pretraining, but we

show these are inferior to masking using a curriculum, in both the original and modified

evaluation settings.
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6.3 Experiments

We qualitatively demonstrate then quantitatively measure the effect of shortcuts through

our modified evaluations, on four recent and competitive VCR methods. We then test how

well our robust training strategy copes with the challenge.

6.3.1 Qualitative Results on the Modified Options

We show that R2C [314] (checkpoint by authors) is confused once the expected shortcuts

are no longer available. In Fig. 21, we show the option chosen by the method in bold, and

the correct one is underlined. In Fig. 21 top, in the original setting, only options A0 and

A1 contain the person tag [2], hence the model only had to rule out “carriage”. In the

rule-modified setting, the model confused “store” with “bathroom” once the easy way of

ruling out non-matching references ([person1] v.s. [person2]) is no longer applicable.

The adversarial method has detected the same shortcut, replaced [person2] with [MASK]

and tricked the model. In Fig. 21 bottom, the model relied too much on detecting the

incompatibility between the image and concept “restaurant”: when the word “restaurant”

is masked in the adversarial setting, the model chooses the incorrect option A0 rather than

detecting the “happy” people.

The rule-based method, targeting the over-relying of person tags, is focused and precise.

In comparison, it is not that intuitive what the adversarial method attacks. We hence show

statistics of the top-20 masked words. In Tab. 22, p(mask x) denotes the frequency the

adversarial method chose the token x to mask;
∑

x p(mask x)=1. Since token appearance

frequency varies, we also report p(mask x|exist x). We observe that the adversarial method

chose to hide the top-20 words in most cases (
∑

x∈top-20 p(mask x)=45.37%). However, it

is hard to say these words are crucial for human reasoning. For example, “#PERSON”,

“he”, “they”, “she” are pronouns referring to persons; “is”, “a”, “are” are articles with hints

regarding numbers; “will”, “going” involve tense information. “Not” and “yes” are two

exceptions, and hiding them will change the meaning. However, the proposed adversarial

method relies on no human intervention and such simple cases can be ruled out by extra
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[val-54]

Q:	Where	is	[2]	going	?
A0	[2]	is	going	into	the	store	.
A1	[2]	is	getting	into	a	carriage	.

A0	[MASK]	is	going	into	the	store	.
A1	[2]	is	getting	into	a	[MASK]	.

Modified	by	an
adversarial	model

Original	Val	data

A0	He	is	going	into	the	store	.
A1	[2]	is	getting	into	a	carriage	.

Modified	by	rule
(A	single	person)

[val-270]

A2	They	are	both	feeling	happy	.
A3	[1,	2]	are	feeling	drunk	.

A0	[1,	2]	do	not	like	the	restaurant	.
A1	[1,	2]	are	apprehensive	.

A0	[1,	2]	do	not	like	the	[MASK]	.
A1	They	are	apprehensive	[MASK]

Modified	by	rule
(A	group	of	people)

Original	Val	data

Modified	by	an
adversarial	model

A2	[1]	is	going	to	the	bathroom	.
A3	[1]	is	going	outside	to	play	after

the	conversation	with	[2]	is	over	.
A2	[2]	is	going	to	the	bathroom	.
A3	[1]	is	going	outside	to	play	after

the	conversation	with	[2]	is	over	.
A2	[MASK]	is	going	to	the	bathroom	.
A3	[1]	is	[MASK]	outside	to	play	after

the	conversation	with	[2]	is	over	.	

Q:	What	are	[1,	2]	feeling	?
A0	[1,	2]	do	not	like	the	restaurant	.
A1	They	are	apprehensive	.

A2	They	are	both	feeling	happy	.
A3	[1,	2]	are	feeling	drunk	.

A2	They	are	[MASK]	feeling	happy	.
A3	[1,	2]	are	feeling	[MASK]	.

Figure 21: Qualitative study of shortcuts. We underline the ground-truth and bold the

prediction of R2C. R2C was fooled by negligible changes in the answer options.

rules. Besides, they only constitute 2% of the revised evaluation data while the person tags

are the leading choice of masking.

Many words in Table 22 are “content-free”, in the sense that other nouns and verbs

should intuitively be more important. We conclude that meaning does not change greatly

when a single, however important, word is removed, yet method performance drops by 14-

34%. We thus emphasize that researchers should pay special attention to the issue at both
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Table 22: Statistics of top-20 words removed by the adversarial revision. Note how often

content-free words (e.g. pronouns) are key for answering, hence removed.

Token x p(mask x)
p(mask x|

exist x)
Token x p(mask x)

p(mask x|

exist x)

#PERSON 25.71% 27.84% will 0.77% 11.33%

. 3.82% 3.79% to 0.65% 2.04%

he 2.53% 12.09% going 0.59% 14.13%

is 1.56% 2.78% are 0.59% 3.72%

they 1.54% 11.70% feeling 0.56% 22.25%

not 1.29% 24.36% him 0.47% 12.09%

she 1.20% 12.86% it 0.41% 7.27%

yes 0.86% 22.47% her 0.40% 8.99%

the 0.82% 2.97% something 0.40% 11.62%

a 0.80% 3.06% someone 0.39% 15.43%

the data acquisition and model learning phases. Besides VCR, shortcuts may also arise in

other multiple-choice VQA tasks, e.g. MovieQA [249] and Social-IQ [311], when fragments

of the question and answer can be trivially matched.

6.3.2 Shortcut Effects on Rule-based Modified Setting

We next quantitatively demonstrate how our modified evaluation setting affects the fol-

lowing four VCR methods.

• B2T2 [5] proposes early integration of visual features in BERT to benefit from stacked

attention

• HGL [308] uses vision-to-answer and question-to-answer graphs using BERT/CNN em-

beddings

• TAB-VCR [144] incorporates objects and attributes into the R2C tag matching
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• R2C [314] builds RNN layers on the pre-extracted BERT embeddings and uses attention

mechanisms to highlight important visual/language elements

For HGL, TAB-VCR and R2C, we download the best-trained checkpoints provided

by the authors and run inference using our modified validation. We refer to the reference

implementation to implement B2T2, since no checkpoint was provided. Note B2T2, HGL

and TAB-VCR are competitive in the VCR leaderboard, achieving ranks 17, 20, and 24.

The better ranks are occupied by other BERT-based models [37, 152, 240, 138, 306, 65]

focusing on pre-training using large external VL datasets and even object, attribute and

relationship predictors [306]. These settings incur significant additional data collection cost.

Table 23: Shortcuts in VCR: rule-based modified evaluation.

Questions regarding Count Method
Q→A QA→R

Std Val Mod Val Std Val Mod Val

A single person

e.g., Where is [2]

going ?

(Rule-Singular)

16,154

R2C 64.5 58.5 67.8 62.0

HGL 69.8 66.1 70.8 64.5

TAB-VCR 70.5 65.4 72.4 66.3

B2T2 69.9 63.3 69.1 64.9

A group of people

e.g., What are [1,2]

feeling ?

(Rule-Plural)

3,657

R2C 62.2 59.7 66.9 65.4

HGL 69.2 67.5 70.7 69.8

TAB-VCR 69.8 66.8 71.3 70.9

B2T2 67.6 65.3 69.3 67.9

We observe that merely replacing the pronouns and person tags confuses the state-of-the-

art models. Tab 23 shows the results. For Rule-Singular, the average drop in accuracy,

between the standard and modified validation sets, is 5% for Q→A and 6% for QA→R.

Although the performance of QA→R is better than that of Q→A in the original setting, the

performance drop was higher on QA→R. Thus, we question if models have learned to reason

instead of utilizing the shortcuts. The average drops for Rule-Plural are 2% and 1%,

respectively, likely because annotators were less willing (lazy) to point out each individual
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if there are too many of them. Thus the referring preference of the correct and distracting

choices are similar in the Rule-Plural (both options prefer “they” to the person tags).

6.3.3 Shortcut effects on Adversarially-Modified Setting

We constructed the following validation sets to check the shortcut effects. AdvTop-1

removes the most probable evidence (see Fig. 21), while in contrast KeepTop-K only uses

the top-K potential pieces of evidence. Tab. 24 shows the results. Compared to Std Val,

AdvTop-1 is more challenging since one important piece of evidence is masked out, thus

performance drops by 14-32% accuracy on Q→A and 18-34% on QA→R. Given that the

average length of the answer choices in both tasks are 7.65 and 16.19 tokens respectively, it

is not understandable that masking out one token shall have such a big impact unless the

models are fragile and base their decisions on single tokens. Finally, the strong performance

in the KeepTop-K setting further shows models made decisions based on little facts instead

of comprehensive thinking. For example, based on carefully chosen1 three tokens, R2C is

able to improve accuracy from 63.8% (full answers) to 65.9% (3-word answers). Note that we

used a single B2T2 model (different initialization) to generate the same adversarial evaluation

data for all models. This is why the performance drop is larger on B2T2 in Tab. 24.

6.3.4 Contribution of Our Robust Training

We next verify the extent to which robust training enables us to recover some of the

lost performance. We train B2T2 based on the authors’ reference implementation, but skip

the expensive pre-training stage (contributing only 0.4% in [5]). We refer to this method

as Baseline, and compare it to the strategies described in Approach: Robust Training.

Tab. 25 shows the results. First, we found using the rule-based and adversarial strategies

(Aug Rule, Aug AdvTop-1) to augment the training data achieved better performance in

the corresponding evaluation settings (as expected), but did not perform well in the original

nor the other modified setting. On the Q→A task (first 13 rows), when the probability of

replacing a random token is small (e.g., Masking 0.05), it leads to robust results in both

1The adversarial model used the label information to look for the token positions (see Eq. 15).
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Table 24: Shortcuts in VCR: adversarially-modified evaluation.

Method Std Val
Rm. a shortcut Utilizing the potential shortcuts

AdvTop-1 KeepTop-1 KeepTop-3 KeepTop-5

Q
→

A

R2C 63.8 49.8 51.8 65.9 67.5

HGL 69.4 54.5 51.8 68.4 71.5

TAB-VCR 69.9 54.9 49.6 65.1 69.7

B2T2 68.5 37.0 51.0 75.0 80.4

Q
A
→

R

R2C 67.2 47.0 31.3 44.5 55.3

HGL 70.6 51.6 33.7 48.8 60.2

TAB-VCR 72.2 53.9 32.6 44.5 55.7

B2T2 68.5 34.7 28.1 37.6 54.5

the original and rule-modified settings (69.3% vs. 68.5%, 63.9% vs 63.3%, etc.) However,

performance degrades (64.1% v.s. 68.5%, 56.6% vs 63.3%) once too few pieces of evidence

are used in training (Masking 0.30). Masking 0.10 + MLM slightly outperforms the

baseline in some settings, but is worse than Masking 0.05. In contrast, our best curriculum

learning method, Ours-CL Init0.30 Decay5e-5, outperforms all masking/MLM methods

and the B2T2 baseline. We observe the benefit of dynamic, curriculum masking, compared

to static masking from prior work, in both the original and modified settings.

6.3.5 Attention Weights Show Broader Use of Evidence

Next, we show that robust training leads to models’ broader attention to various evi-

dence. We use BertViz [264] and examine attention strength. In Fig. 22, we observe that to

determine the effect of “turned around”, Ours-CL (right) pays attention to more tokens in

the question, and determines “walk away” to be important as the result of “turned around”.

In contrast, the baseline without robust training (middle) based the prediction of “turned”

on “would” because this content-free word is in the question (a shallow match), thus did not
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Table 25: Our method enables the most robust training. All results show Q→A except for

the bottom two which show QA→R. The best method per group on Q→A is bolded, and

the best method per task is underlined.

Method Std Val
Rule-

Singular

Rule-

Plural
AdvTop-1

Baseline (B2T2) 68.5 63.3 65.3 37.0

Aug Rule 67.0 78.8 69.9 31.6

Aug AdvTop-1 64.4 57.3 57.0 81.4

Masking 0.05 69.3 63.9 66.0 48.8

Masking 0.10 68.7 62.8 64.7 50.1

Masking 0.15 68.2 62.0 63.3 50.6

Masking 0.30 64.1 56.6 56.8 47.5

Masking 0.05 + MLM 68.5 62.9 64.8 47.3

Masking 0.10 + MLM 69.1 63.8 65.0 50.6

Ours-CL Init0.30 Decay1e-4 69.6 64.5 64.7 51.7

Ours-CL Init0.30 Decay5e-5 69.9 65.9 66.8 54.5

Ours-CL Init0.50 Decay1e-4 69.4 65.0 65.0 53.0

Ours-CL Init0.50 Decay5e-5 69.8 65.4 66.3 54.9

Baseline (B2T2) 68.5 64.9 67.9 34.7

Ours-CL Init0.30 Decay5e-5 70.6 66.6 70.4 47.9

learn to reason.

Quantitatively, we compute the attention distribution on the validation set and the

average entropy per BERT layer (from different attention heads and image examples). We

show in Tab. 26 the ratio of entropy for Ours-CL vs Baseline. In the last layers (11 and

10), which are used to compute the answers, the entropy of Ours-CL is larger, which means

our model pays attention to broader evidence.
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[val-2544]

BASELINE ATTENTION OURS-CL ATTENTIONIMAGE

Q: What would [1] do 
if [2] turned around?
A0:  [1] would hide her 
face and walk away.

Person1

Person2

Figure 22: Learned attention of the baseline and Ours-CL. Attention strength is denoted by

darker/lighter shaded boxes under word “Layer”. We show weights in BERT-Base Layer-9,

which is potentially the last layer of interpretable high-level reasoning. In Layer-10, word

features are aggregated in [SEP], while in the last Layer-11, [SEP] is gathered in [CLS].

Please zoom figure to 300%.

Table 26: Our model pays attention to broader evidence: The numbers shown are the ratios

of attention entropies for Ours-CL and those corresponding to Baseline.

Entropy of Layer11 Layer10 Layer9 Layer8 Layer7 Layer6

Ours-CL/Baseline 104.62% 105.20% 98.97% 98.07% 102.13% 101.83%

Entropy of Layer5 Layer4 Layer3 Layer2 Layer1 Layer0

Ours-CL/Baseline 102.53% 99.61% 100.67% 101.52% 97.74% 98.93%
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6.4 Conclusion

This chapter proved the thesis hypotheses H2 in a general setting, in which only vision

and text modalities exist. We evaluated the effect of the observed shortcuts, i.e., shallow

matching between questions and answers in the VCR dataset. This shows that some evidence

can be unreliable — We demonstrated subtle changes to the answer options, which should

not change the meaning or correct choice, do successfully trick methods, causing significant

drops in performance for four recent models. We further proposed a novel technique for

robust training, which applies masking on a curriculum, starting with a large amount of

masking and gradually reducing it. We showed that our method was more successful in

undoing the harmful effect of shortcuts, compared to techniques that have been previously

used for achieving robustness through pre-training.

In the next chapter, we shall explore the unreliable multimodal supervision and still use

the text captions as our research target. We will show that through a serials of processes of

denoising, filtering, distillation, text captions can be used to learn reliable and robust object

detection models.

Table 27: Conclusion - validated hypotheses in this chapter.

Multimodal
features help to

understand
images/videos
with implicit

persuasive intent,
such as visual

advertisements.

Text features can
be unreliable if

not modeled
appropriately.

Text supervision
contains noise,

but can be used
to localize visual
objects in space,

if modeled
properly.

Text supervision
provides contexts
regarding visual
objects, they are
reliable cues for
disambiguating

entities and
relations.

Noisy audio
narrations as a

multimodal
signal can be
modeled to

localize video
actions in

temporal domain.

This Chapter 3
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7.0 Cap2Det: Learning to Amplify Weak Caption Supervision for Object

Detection

7.1 Introduction

Thus far, we discussed multimodal knowledge integration for visual reasoning and ways

to use and model them efficiently, i.e., the utilization of multimodal inputs. Since the

multimodal perception lies in both the inputs and supervision signals, we start to explore

the next topic of using multimodal supervision from this chapter. The particular weakly

supervised detection task we study is similar to human beings learning visual concepts from

conversations. Much like visual reasoning, the major challenge is to learn robust and reliable

models from noisy and sometimes unrelated data.

We are most interested in detecting visual objects, so we start from this chapter to learn

object detectors from noisy captions. We will show in this chapter a series of processes to

filter, amplify, and distill object knowledge from text captions. Then, Chapter 8 shall further

utilize the object contexts from captions, to provide more reliable information regarding

objects. Finally, Chapter 9 shall learn action detection model from multimodal cues in

videos.

Learning to localize and classify visual is a fundamental problem in computer vision. It

has a wide range of applications, including robotics, autonomous vehicles, intelligent video

surveillance, and augmented reality. Since the renaissance of deep neural networks, object

detection has been revolutionized by a series of groundbreaking works, including Faster-

RCNN [211], Mask-RCNN [81] and YOLO [209]. Modern detectors can run in real-time on

mobile devices, and have become the driving force for future technologies.

Despite these achievements, most modern detectors suffer from an important limitation:

they are trained with expensive supervision in the form of large quantities of bounding boxes

meticulously drawn by a large pool of human annotators. According to [19], the average an-

notation time per image is 239.7 seconds. Due to the well-known domain shift problem

[38, 253, 137, 246, 76] and imperfect domain adaptation techniques, this means when de-
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tection is to be performed in a novel domain, the expensive annotation procedure needs

to be repeated. Weakly supervised object detection (WSOD) techniques aim to alleviate

the burden of collecting such expensive box annotations. The classic WSOD problem for-

mulation [22, 275, 248, 247] treats an image as a bag of proposals, and learns to assign

instance-level semantics to these proposals using multiple instance learning (MIL). WSOD

has shown great potential for object detection, and the state-of-the-art model has reached

40% mAP [247] on Pascal VOC 2012. However, one critical assumption in WSOD is that

the image-level label should be precise, indicating at least one proposal instance in the im-

age needs to associate with the label. This assumption does not always hold especially for

real-world problems and real-world supervision.

Weakly supervised detection methods need large-scale image-level object category labels.

These labels require human effort that is provided in an unnatural, crowdsourced environ-

ment. However, more natural supervision for objects exists—for example, in the form of

natural language descriptions that web users provide when uploading their photos to social

media sites such as YouTube or Instagram. There are tens of millions of photos uploaded

to Instagram every day, and a majority of them have titles, tags, or descriptions. Abundant

videos with subtitles are similarly available on YouTube. These annotations are “free” in

that no user was paid to provide them; they arise out of innate needs of users to make their

content available to others.

However, existing WSOD methods cannot use such supervision. First, these natural

language descriptions are unstructured; they need to be parsed and words relevant for ob-

ject recognition need to be extracted, while non-object words are removed. Second, these

descriptions are both imprecise and non-exhaustive—they might mention content that is not

in the image (e.g. what event the user was attending or who they met after the photo was

taken), and also omit content that actually is in the image but is not interesting. Consider

the image in the bottom-right of Fig. 23. It contains numerous objects, many of which fairly

large—e.g. dining table and bowls—yet the human providing the description did not men-

tion these objects. Thus, directly feeding web data to the state-of-the-art WSOD system

contains numerous limitations—at the very least, it under-utilizes the rich supervision that

captions can provide.
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Training dataa small white dog is 
looking at ducks on water

Pseudo label inference bottle
bowl
cup 

dining table
oven

person
…

spoon

man in apron standing in 
front of oven with pans

and bakeware

Weakly supervised detection
from captions

bo
ttl
e

bo
wl

cu
p

Proposal detection scores

a small white dog is 
looking at ducks on water

man in apron standing in 
front of oven with pans and 

bakeware

a traffic light showing the 
symbols for stop and go

a brightly colored bus 
stopped at an intersection

a display of fabrics in 
different colors and patterns

a person riding a wave on 
top of a surfboard

a pizza sits on a plate ready 
for someone's meal

a woman dressed in all 
white is playing tennis at 

the tennis courts

a person riding a wave on 
top of a surfboard.

man in apron standing in 
front of oven with pans 

and bakeware

Filtering or weighting the image-caption pairs

Measuring the degree of image-text alignment

Figure 23: An overview of our approach. We first determine the potential for strong object

supervision signal from image-caption pairs (sorted from strongest to weakest signal). After

selecting or weighting these pairs, we extract discrete object labels from the captions, and

train a weakly-supervised object detection model with these pseudo labels at the image level.

The model training part (bottom) is accepted by the ICCV [299], while we wrap the whole

pipeline (+ filtering/weighting) in a journal under submission.
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This chapter tackles the above challenge. We first explore the ways to filter captions

to potentially benefit object detection models (Fig. 23 top). We adopt the scoring method

proposed in [254] to estimate to what extent an image caption and the image provide over-

lapping information and propose two techniques to apply the scoring: one filters out noisy

data, and the other one uses the scores to weigh object detection losses.

We then learns weakly supervised object detectors from images paired with noisy textual

captions (Fig. 23 bottom). The key idea of applying such a multimodal cue as supervision

is to bridge human-written free-form texts and visual objects. Our method relies on two key

components. First, we train a textual classifier to map captions to discrete object labels.

This classifier is not dataset-dependent, requires only a small set of labels, and generalizes

beyond dataset boundaries. It enables us to bridge the gap between what humans mention

in a caption, and what truly is in an image. Second, we use the pseudo ground truth labels

predicted by this textual classifier, to train a weakly supervised object detection method.

The method we propose extracts region proposals off-the-shelf, then for each proposal and

each class, learns both a class score and a detection score. These scores are then refined

using an iterative approach, to produce final detection results.

To summarize, our contributions are as follows:

• We propose a new task of learning visual concepts from noisy textual captions, a type

of multimodal cues. Rather than treating object categories as IDs only, we also leverage

their semantics, as well as synonyms of those object names.

• We show that we outperform alternative uses of captions, e.g. exactly matching the

captions to object category words, or retrieving hand-annotated or predicted synonyms

to the object categories from the captions. We show competitive WSOD performance by

learning on COCO or Flickr30K captions. We further validate the benefit of our COCO-

trained text classifier by applying it on Flickr30K, and leveraging training on Flickr30K

then evaluating on PASCAL.

• In a side-by-side comparison under the classic WSOD setting, our model demonstrates

superior performance with image-level supervision and achieves state-of-the-art perfor-

mance on all three WSOD benchmarks (48.5% mAP@0.5 for VOC 2007, 45.1% mAP@0.5

on VOC 2012 and 23.4% mAP@0.5 on COCO).

105



• We demonstrate the success of explicitly modeling which image-caption pairs provide a

strong signal for supervision, using new metrics that capture how closely the text follows

the image. These metrics allow us to improve performance by up to 10%.

7.2 Approach

We train object detectors from supervision only consisting of noisy captions and corre-

sponding images. In realistic scenarios, captions and images may contain complementary

information. We hypothesize that even for crowdsourced, descriptive captions which closely

follow the image (e.g. COCO), not all caption-image pairs provide equally strong supervi-

sion, as some captions will overlap with the image to a stronger degree. Figure 23 (top) shows

example images sorted in descending order of image-text alignment, with the dog image and

its caption being most aligned as all objects shown are also mentioned, while the bus, pizza,

traffic and fabrics captions also contain concepts that are visually not shown or are visually

ambiguous (intersection, meal, stop and go, display); hence extracting concrete nouns (ob-

jects) from these captions is more challenging. Thus, the first step in our framework is to

automatically determine which image-caption pairs to use as supervision; we propose two

alternative approaches, one which uses a hard cutoff over the image-text alignment score,

and another which uses all image-caption pairs but gives them different weight. This part

of the method is described in Section 7.2.1.

After selecting image-caption pairs for training, we next extract discrete labels at the

image level (Section 7.2.2). We do so through a variety of techniques, the simplest of which

is looking for exact string match between nouns in the caption and object words, and the

most complex being training a classifier which takes in a caption (without a paired image)

and maps this caption to a discrete set of labels (which may or may not be mentioned in

the caption). Finally, given these pseudo ground-truth image-level labels, we train a variant

of a prior weakly-supervised object detection technique: it first computes initial scores for

each region and each object class, then refines these iteratively (Section 7.2.3). The overall

architecture of training using image-level text annotations is shown in Fig. 24.
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7.2.1 Filtering by Supervision Purity

We propose techniques for filtering image-caption pairs that are unlikely to be useful

for training. The key idea is to estimate to what extent an image caption and the image

provide overlapping (redundant) or complementary information. While complementarity is

useful in general, for detection, we require redundancy, i.e., the same objects being both

shown in the image and mentioned in the caption. We base our redundancy measurement

on our group’s prior work [254], which grants a score for each image-caption pair. This

score measures how well-aligned the image and text modalities are, by capturing polysemy

or multiple illustrations for the same semantic concept. In particular, if the images that

co-occur with semantically similar texts are not visually similar, then either the texts have

multiple meanings, or there are different ways to illustrate the same semantic concept. This

diversity in illustration leads to low alignment between images and text.

Filtering. We hypothesize that selecting training data and filtering out noisy image-

caption pairs will improve the detection model training. We provide an experiment in

Sec. 7.3.4, which selects the 30,000 image-caption pairs from COCO that have the high-

est image-caption matching scores. As compared to random selection, our method provides

significantly better detection results (Tab. 32).

Weighting. Hard-cutoff filtering requires finding the right cutoff value (e.g. top-30k),

and it means discarding some potentially useful data. Compared to the filtering strategy,

weighting does not require a hard cutoff and is more data-efficient. It applies different

weights to image-caption pairs. For image-caption pairs that are more overlapped, weighting

assigns large weight to the loss term in that these examples will likely be useful for training

detection models. For image-caption pairs that are more complementary, weighting assigns

small weights because the information may not well-aligned. In Eq. 21, we use normalized

image-caption matching scores as the heuristic weighting factor to weigh different training

examples. We provide an ablation in Sec. 7.3.4, and Tab. 33 shows the impact of using

weighting mechanism.
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Figure 24: Cap2Det: harvesting detection models from free-form text. We propose to use

a label inference module (bottom-center) to amplify signals in the free-formed texts to su-

pervise the learning of the multiple instance detection network (top). The learned detection

model is then refined by an online refinement module (right) to produce the final detection

results.

7.2.2 Label Inference from Text

After getting the image-caption pairs estimated to be well-aligned, we now proceed to

extract pseudo object labels from the selected noisy captions, to benefit weakly-supervised

object detection. The foundation of WSOD builds on an important assumption from MIL

(Eq. 19), which suggests that precise image-level labels should be provided. However, gather-

ing such clean annotations is not trivial. In most real-life cases, the semantic counterpart for

visual content appears in the form of natural language phrases, sentences, or even paragraphs

(in newspapers), which is noisier than object labels.

The straightforward solution of extracting object labels from captions via lexical match-

ing, does not work well. Consider an image with three sentence descriptions:

“a person is riding a bicycle on the side of a bridge.”

“a man is crossing the street with his bike.”

“a bicyclist peddling down a busy city street.”
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However, only the first sentence exactly matches the categories “person” and “bicycle”.

Even if we allow synonyms of “man” and “person” or “bicycle” and “bike”, only the first

two precisely describe both objects, while the last one still misses the instance of “bicycle”

unintentionally.

When using these examples to train object detectors, the first two instances may bring

positive effect, but the last one will be wastefully discarded as false negative i.e. not relevant

to the categories “person” or “bicycle”. Even worse, in the example shown in Fig. 23, none

of the captions (one shown) mention the “bowls” or “spoons” that are present, and only

some mention the “oven”.

This observation inspires us to amplify the supervision signal that captions provide, and

squeeze more information out of them. Fig. 24 (bottom) shows the approach we use to

amplify the signal. This text-only model takes free-form texts as input, embeds individual

words to a 300D space using GloVe [200], and projects the embedded features to a 400D

latent space. We then use max-pooling to aggregate the word-level representations. Then,

we use this intermediate representation to predict the implied instances (e.g. 80 classes as

defined in COCO, or any other categories); this prediction answers “what’s in the image”

and serves as pseudo image-level labels in training object detectors.

It is worth noting that there exists a subtle balance when using pseudo labels to train

object detectors. Admittedly, our strategy increases the recall rates thus more data could be

utilized. However, with the increased recall, precision will drop inevitably thus the funda-

mental assumption in MIL is threatened. Specifically, the precise label assumption makes the

model very sensitive to false positive cases: when inappropriate labels are given where none

of the proposals have a good response, the model gets confused, resulting in non-optimal

detections.

We finally adapt a two-steps procedure: first we look for an exact match of object labels

from captions, following the intuition that explicitly mentioned objects should be significant

and obvious enough in the image; second, when no object can be matched, we use our label

inference model to predict labels as unspoken intended objects to guide the object detection.

We show our method outperforms several strong alternatives that also infer pseudo labels.

Discussion. Our text classifier relies on both captions and category labels. However,
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once the bridge between captions and labels is established, this classifier generalizes to other

datasets, as we show in Tab. 28. Importantly, we only need a small fraction of labels to train

this text classifier; as we show in Fig. 25, precision ranges between 89% and 92% when we

use between only 5% and 100% of the COCO data, while recall is stable at 62%. Thus, our

text model could learn from a single source dataset with a few labels, then it could transfer

the knowledge to other target datasets, requiring only free-form text as supervision.

7.2.3 Detection from Inferred Labels

We next describe how we use the inferred pseudo labels to train an object detection model.

As shown in Fig. 24, we first extract proposals with accompanying features. An image is fed

into the pretrained (on ImageNet [47]) convolutional layers. Then, ROIAlign [81] is used for

cropping the proposals (at most 500 boxes per image) generated by Selective Search [259],

resulting in fixed-sized convolutional feature maps. Finally, a box feature extractor is applied

to extract a fixed-length feature for each proposal. If [r1, . . . , rm] are the proposals of a

given image x, this process results in proposal feature vectors [φ(r1), . . . , φ(rm)] where each

φ(ri) ∈ Rd. Note that while our model is pretrained on ImageNet, it does not leverage any

image labels at all on the datasets on which we train and evaluate our detection models

(PASCAL and COCO).

Weakly Supervised Detection. We next introduce the prediction of image-level labels p̂c

(c ∈ {1, . . . , C}, where C is the number of classes) and of detection scores as a by-product.

The proposal features φ(ri) are fed into two parallel fully-connected layers to compute the

detection scores odet
i,c ∈ R1 (top branch in the green MIL module in Fig. 24) and classification

scores ocls
i,c ∈ R1 (bottom branch), in which both scores are related to a specific class c and

the particular proposal ri:

ocls
i,c = wclsᵀ

c φ(ri) + bcls
c , odet

i,c = wdetᵀ
c φ(ri) + bdet

c (16)

We convert these scores into: (1) pcls
i,c , the probability that object c presents in proposal
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ri; and (2) pdet
i,c , the probability that ri is important for predicting image-level label yc:

pcls
i,c = σ(ocls

i,c), pdet
i,c =

exp(odet
i,c )∑m

j=1 exp(odet
j,c )

(17)

Finally, the aggregated image-level prediction is computed as follows, where greater

values of p̂c ∈ [0, 1] mean higher likelihood that c is present in the image:

p̂c = σ

( m∑
i=1

pdet
i,c o

cls
i,c

)
(18)

Assuming the label yc = 1 if and only if class c is present, the multiple instance detection

loss used for training the model is defined as:

Lmid = −
C∑
c=1

[
yc log p̂c + (1− yc) log(1− p̂c)

]
(19)

Preliminary detection scores. The weakly supervised detection score given both proposal

ri and class c is the product of pcls
i,c and pdet

i,c which is further refined as described in Online

Instance Classifier Refinement.

Online Instance Classifier Refinement. The third component of our WSOD model is

Online Instance Classifier Refinement (OICR), as proposed by Tang et al. [248]. The main

idea behind OICR is simple: Given a ground-truth class label, the top-scoring proposal,

as well as proposals highly overlapping with it, are selected as references. These proposals

are treated as positive examples for training the box classifier of this class while others are

treated as negatives. The initial top-scoring proposal may only partially cover the object, so

allowing highly-overlapped proposals to be treated as positives gives them a second chance to

be considered as containing an object, in the subsequent model refinement. This reduces the

chance of propagating incorrect predictions. In addition, sharing the convolutional features

between the original and refining models makes the training more robust.

Following [248], we stack multiple refining classifiers and use the output of the previous

one to generate instance-level supervision to train the successor. The detection score at the

0-th iteration is computed using s
(0)
i,c = pclsi,c p

det
i,c , s

(0)
i,C+1 = 0 (where C + 1 is the background

class). Given the detection score s
(k)
i,c at the k-th iteration, we use the image-level label to
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get the instance-level supervision y
(k+1)
i,c at the (k+ 1)-th iteration. Assume that c′ is a label

attached to image x, we first look for the top-scoring box rj (j = arg max
i
s

(k)
i,c′). We then let

y
(k+1)
i,c′ = 1,∀i ∈ {l|IoU(rl, rj) > threshold}. When k > 0, s

(k)
i,c is inferred using a (C + 1)-way

FC layer, as in Eq. 16. The OICR training loss is defined in Eq. 20.

Lkoicr = − 1

m

m∑
i=1

C+1∑
c=1

ŷ
(k)
i,c log s

(k)
i,c , k = 1, . . . , K (20)

Unlike the original OICR, our WSOD module aggregates logits instead of probability

scores, which in our experience stabilizes training. We also removed the reweighing of un-

trustworthy signals emphasized in [248] since we found it did not contribute significantly.

The final loss we optimize is Eq. 21. We refine our model for 3 times (K = 3) if not

mentioned otherwise.

L = Lmid +
K∑
k=1

Lkoicr (21)

7.3 Experiments

We evaluate all components of our method: the text classifier that learns to map captions

to object labels, the weakly supervised detection module, and the refinement. We show that

compared to alternative strategies, our approach extracts the most accurate and expansive

information from the captions (Sec. 7.3.2). By training on COCO captions, we achieve close

to state-of-the-art results on weakly supervised detection on PASCAL, even though the su-

pervision we leverage is weaker than competitor methods. Importantly, our text classifier

allows us to excel at the task of training on Flickr30K to detect on PASCAL, even though

that classifier was trained on a different dataset (COCO). We show our approach outper-

forms prior methods on the task of learning from image-level labels (Sec. 7.3.3). Finally,

we show the improvements achieved by filtering and weighing noisy image-caption examples

(Sec. 7.3.4). We conclude that the redundancy between image and text is key to train a

successful weakly supervised detection model.
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7.3.1 Implementation Details

Before training the detector, we use [254] to measure the redundancy between the image

and text and offline compute four scores for each image-text pair. We use Selective Search

[259] from OpenCV [23] to extract at most 500 proposals for each image. We follow the

“Selective search quality” parameter settings in [259]. We prefer Selective Search because

it is a generic, dataset-independent proposal generation procedure, as opposed to other

CNN-based alternatives which are trained end-to-end from a specific dataset in a supervised

fashion. We also experimented with Edge Boxes [329] but got inferior performance. We use

TensorFlow [1] as our training framework. To compute the proposal feature vectors, we use

the layers (“Conv2d 1a 7x7” to “Mixed 4e”) from Inception-V2 [244] to get the conv feature

map, and the layers (“Mixed 5a” to “Mixed 5c”) from the same model to extract the proposal

feature vectors after the ROIAlign [81] operation. The Inception-V2 model is pretrained on

ImageNet [47]; the supervised detector counterpart of our model, using this architecture,

was explored by [89]. To augment the training data, we resize the image randomly to one of

the four scales {400, 600, 800, 1200}. We also randomly flip the image left to right at training

time. At test time, we average the proposal scores from the different resolution inputs. We

set the number of refinements to 3 for the OICR since it gives the best performance. For

post-processing, we use non-maximum-suppression with IoU threshold of 0.4. We use the

AdaGrad optimizer, a learning rate of 0.01, and a batch size of 2 as commonly used in

WSOD methods [248, 247]. The models are usually trained for 100K iterations on Pascal

VOC (roughly 40 epochs on VOC2007 and 17 epochs on VOC2012) and 500K on COCO

(8.5 epochs), using a validation set to pick the best model. Our implementation is available

at https://github.com/yekeren/Cap2Det.

7.3.2 Using Captions as Supervision

In this section, we first evaluate our method (Sec. 7.2.2 - 7.2.3), including our proposal

for how to squeeze the most information out of the weak supervision that captions provide

(Sec. 7.2.2). We also experiment with alternative strategies of generating pseudo labels, and

evaluate the performance in terms of precision and recall by comparing with ground-truth
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labels. We shall leave the evaluation of our filtering component in the last experiement

(Sec. 7.3.4).

Alternative Strategies. We compared with multiple pseudo-label generation base-

lines when lexical matching (ExactMatch) fails to find a match. As previous exam-

ples show, considering synonyms can effectively reduce off-target matching rates. Thus

our first baseline adopts a manually constructed, hence expensive COCO synonym vocabu-

lary list (ExtendVocab) which maps 413 words to 80 categories [155]. Another variant,

GloVePseudo, takes advantage of GloVe word embeddings [200], assigning pseudo-labels

for a sentence by looking for the category that has the smallest embedding distance to

any word in the sentence. We also follow a similar strategy with [294] to finetune the

GloVe word embeddings on COCO using a visual-text ranking loss, and use the pseudo

labels retrieved by the resultant LearnedGloVe as a stronger baseline. The final refer-

ence model of using ground-truth image-level labels GT-Label is an upper bound. Note

that apart from the strategy used to mine image-level labels, these strategies all use the

same architecture and WSOD approach as our method (Sec. 7.2.3). In later sections, we

show combinations of the exact match strategy with these methods (when exact match

fails), resulting in EM+GloVePseudo, EM+LearnedGloVe, EM+ExtendVocab

and EM+TextClsf. We examine how well these and other strategies leverage captions

from COCO and Flickr30K [305] to produce accurate detection.

Analysis of Textual Supervision. In Fig. 25 we show the precision and recall of

these label inference methods evaluated directly on the COCO image-level labels (5,000

examples of the val2017 set). We observe that ExtendVocab, which uses the hand-

crafted word-synonyms dictionary, provides the best recall (60.6%) among all methods but

provides the worst precision of 81.1%. The word-embedding-based top-scoring matching

methods of GloVePseudo and LearnedGloVe provide precise predictions (84.5% and

84.7% respectively, which are the highest). However, our TextClsf achieves significantly

improved precision compared to these. We would like to point out that while in Tab. 28 and

29, our method uses the full COCO training set (118,287 concatenated captions), it achieves

very similar performance with even a small fraction of the data. With 5% of the data, the

method achieves 89% precision (vs 92% precision with 100% of the data), both of which are
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much higher than any other baselines; recall is about 62% for both 5% and 100% training

data. In other words, it is sufficient to use a small portion of precise text labels to train a

generalizable label inference classifier, and the knowledge can transfer to other datasets as

we show in Tab. 28.

EXTENDVOCAB
P 81.1% R 60.6%

EXACTMATCH
P 83.1% R 40.6%

LEARNEDGLOVE
P 84.7% R 28.9%

GLOVEPSEUDO
P 84.5% R 28.9%

TEXTCLSF 5% DATA
P 89.4% R 62.3%

TEXTCLSF 100% DATA
P 92.2% R 61.7%

Figure 25: Analysis of different text supervision. We compare the pseudo labels (Sec. 7.2.2)

to COCO val ground-truth.

Table 28: Average precision (in %) on the VOC 2007 test set (learning from COCO and

Flickr30K captions). We learn the detection model from the COCO captions describing the

80 objects, but evaluate on only the overlapping 20 VOC objects.
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Training on different datasets using ground-truth labels:
GT-Label VOC 68.7 49.7 53.3 27.6 14.1 64.3 58.1 76.0 23.6 59.8 50.7 57.4 48.1 63.0 15.5 18.4 49.7 55.0 48.4 67.8 48.5
GT-Label COCO 65.3 50.3 53.2 25.3 16.2 68.0 54.8 65.5 20.7 62.5 51.6 45.6 48.6 62.3 7.2 24.6 49.6 34.6 51.1 69.3 46.3

Training on COCO dataset using captions:
ExactMatch (EM) 63.0 50.3 50.7 25.9 14.1 64.5 50.8 33.4 17.2 49.0 48.2 46.7 44.2 59.2 10.4 14.3 49.8 37.7 21.5 47.6 39.9
EM + GloVePseudo 66.6 43.7 53.3 29.4 13.6 65.3 51.6 33.7 15.6 50.7 46.6 45.4 47.6 62.1 8.0 15.7 48.6 46.3 30.6 36.4 40.5
EM + LearnedGloVe 64.1 49.9 58.6 24.9 13.2 66.9 49.2 26.9 13.1 57.7 52.8 42.6 53.2 58.6 14.3 15.0 45.2 50.3 34.1 43.5 41.7
EM + ExtendVocab 65.0 44.9 49.2 30.6 13.6 64.1 50.8 28.0 17.8 59.8 45.5 56.1 49.4 59.1 16.8 15.2 51.157.8 14.0 61.8 42.5
EM + TextClsf 63.8 42.6 50.4 29.9 12.1 61.2 46.1 41.6 16.6 61.2 48.3 55.1 51.5 59.7 16.9 15.2 50.5 53.2 38.2 48.2 43.1

Training on Flickr30K dataset using captions:
ExactMatch (EM) 46.642.9 42.0 9.6 7.7 31.6 44.8 53.2 13.1 28.0 39.1 43.2 31.9 52.5 4.0 5.1 38.0 28.7 15.8 41.1 31.0
EM + ExtendVocab 37.8 37.6 35.5 11.0 10.3 18.0 47.9 51.3 17.7 25.5 37.0 47.9 35.2 46.1 15.2 0.8 27.8 35.6 5.8 42.0 29.3
EM + TextClsf 24.1 38.8 44.513.3 6.2 38.949.960.4 12.4 47.439.259.3 34.8 48.1 10.7 0.3 42.439.4 14.1 47.333.6

To better understand the generated labels, we show two qualitative examples in Fig. 26.

The image on the right shows that our model infers “tie” from the observation of “presenter”,

“conference” and “suit”, while all other methods fail to extract this object category for visual
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Table 29: COCO test-dev results (learning from COCO captions). We report these numbers

by submitting to the COCO evaluation server. The best method is shown in bold.

Methods
Avg. Precision, IoU Avg. Precision, Area

0.5:0.95 0.5 0.75 S M L

GT-Label 10.6 23.4 8.7 3.2 12.1 18.1

ExactMatch (EM) 8.9 19.7 7.1 2.3 10.1 16.3

EM + GloVePseudo 8.6 19.0 6.9 2.2 10.0 16.0

EM + LearnedGloVe 8.9 19.7 7.2 2.5 10.4 16.6

EM + ExtendVocab 8.8 19.4 7.1 2.3 10.5 16.1

EM + TextClsf 9.1 20.2 7.3 2.6 10.8 16.6

detection. We argue the capability of inferring reasonable labels from captions is critical for

learning detection model from noisy captions.

Training with COCO Captions. We next train our detection model using the COCO

captions [36]. We use the 591,435 annotated captions paired to the 118,287 train2017 images.

For evaluation, we use the COCO test-dev2017 and PASCAL VOC 2007 test sets. In our

supplementary file, we show qualitative examples from the COCO val set.

Tab. 28 shows the results on PASCAL VOC 2007. At the top are two upper-bound

methods that train on image-level labels, while the rest of the methods train on image-level

captions. ExactMatch (EM) performs the worst probably due to its low data utiliza-

tion rate, as evidenced by the fact that all methods incorporating pseudo labels improve

performance notably. Specifically, EM+GlovePseudo uses free knowledge of the pre-

trained GloVe embeddings. It alleviates the synonyms problem to a certain extent, thus it

improves the mAP by 2% compared to ExactMatch. However, the GloVe embedding is

not optimized for the specific visual-captions, resulting in noisy knowledge transformation.

EM+LearnedGloVe learns dataset-specific word embeddings. Its performance, as ex-

pected, is 3% better than EM+GloVePseudo in terms of mAP. The strongest baseline is
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EM+ExtendVocab, as the manually picked vocabulary list covers most frequent occur-

rences. However, collecting such vocabulary requires human effort, and is not a scalable and

transferable strategy. Our EM+TextClsf outperforms this expensive baseline, especially

for categories “cat”, “cow”, “horse”, and “train”.

397133

A man is in a kitchen making pizzas .
Man in apron standing on front of oven with pans and 
bakeware .
A baker is working in the kitchen rolling dough .
A person standing by a stove in a kitchen .
A table with pies being made and a person standing 
near a wall with pots and pans hanging on the wall .

GROUNDTRUTH: dining table, oven, person, bottle, 
bowl, broccoli, carrot, cup, knife, sink, spoon
EXACTMATCH: dining table, oven, person
EXTENDVOCAB: dining table, oven, person, pizza
GLOVEPSEUDO: oven
LEARNEDGLOVE: dining table
TEXTCLSF: person, oven, bowl, dining table, bottle, 
cup, spoon, knife, chair, refrigerator, pizza

8021

A presenter projected on a large screen at a conference
People watching an on screen presentation of a 
gentleman in a suit .
People watch a man delivering a lecture on a screen .
A large screen showing a person wearing a suit
An audience is looking at an film of a man taking that is 
projected onto a wall .

GROUNDTRUTH: person, tie, bottle

ExACTMATCH: person
EXTENDVOCAB: person
GLOVEPSEUDO: person
LEARNEDGLOVE: person
TEXTCLSF: person, tie, chair, handbag, tv

Figure 26: Demonstration of different pseudo labels. Our method fills the gap between what

is present and what is mentioned, by making inferences on the semantic level. Matches to

the ground truth are shown in blue.

At the top of Tab. 28 are two upper-bound methods which rely on ground-truth image-

level captions. Despite the noisy supervision, our EM+TextClsf almost bridges the gap

to the COCO-labels upper bound.

For the results on COCO (Tab. 29), the gaps in performance between the different meth-

ods are smaller, but as before, our proposed EM+TextClsf shows the best performance.

We believe the smaller gaps are because many of the COCO objects are not described pre-

117



cisely via natural language, and the dataset itself is more challenging than PASCAL thus

gain may be diluted by tough examples.

Qualitative results on COCO. We provide qualitative examples on the COCO val

set. We compare the ExactMatch and our EM+TextClsf side-by-side in Fig. 27.

Qualitatively, our proposed method EM+TextClsf provides better detection results than

the baseline ExactMatch. Thus, we conclude that it has squeezed more useful and precise

information than the ExactMatch baseline.

EXACTMATCH EXACTMATCH EXACTMATCHEM + TEXTCLSF EM + TEXTCLSF EM + TEXTCLSF

Figure 27: Visualization of our Cap2Det model results on COCO val set. We show boxes

with confidence scores > 5%. Green boxes denote correct detection results (IoU > 0.5) while

red boxes indicate incorrect ones. Best viewed with 300% zoom-in.

Training with Flickr30K Captions. We also train our model on the Flickr30K

dataset [305], which contains 31,783 images and 158,915 descriptive captions. Training on

Flickr30K is more challenging: on one hand, it includes less data compared to COCO; on

the other hand, we observe that the recall rate of the captions is only 48.9% with Exact-

Match which means only half of the data can be matched to some class names. The results

are shown in the bottom of Tab. 28. We observe that due to the limited training size,
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the detection models trained on Flickr30K captions achieve weaker performance than those

trained on COCO captions. However, given the “free” supervision, the 33.6% mAP is still

very encouraging. Importantly, we observe that even though our text classifier is trained on

COCO captions and labels, it generalizes well to Flickr30K captions, as evidenced by the

gap between EM+TextClsf and EM+ExtendVocab.

Data v.s. Performance. We show the potential of our model using Flickr30K and

MIRFlickr1M [92]. For the latter, we concatenate the title and all user-generated content

tags to form caption annotation. We then use our text classifier learned on COCO to rule

out examples unlikely to mention our target classes. This filtering results in a dataset with

around 20% of the original data, and we refer to it as Flickr200K. We use 10%, 20%, 50%,

100% data from both datasets, and report average precision on VOC 2007. We see from

Fig. 28 that as training data increases, mAP increases accordingly. To estimate model

potential, we fit a square root function to the rightmost four points in the figure and use it

to estimate 54.4 mAP at 1 million samples.
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Figure 28: Data v.s. Performance. Our text classifier learned on COCO generalized well on

Flickr30K and the noisier Flickr200K data formed by user-generated content tags.

7.3.3 Using Image Labels as Supervision

We finally show the performance of our method in the classic WSOD setting where

image-level supervision is available. These results validate the method component described

in Sec. 7.2.3. They also serve as an approximate upper bound for the more challenging task

in Sec. 7.3.2.

Results on PASCAL VOC. For each image, we extract object categories from all
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the ground-truth bounding boxes, and only keep these image-level labels for training, dis-

carding box information. For VOC 2007 and 2012, we train on 5,011 and 11,540 trainval

images respectively and evaluate on 4,952 and 10,991 test images.1 We report the standard

mean Average Precision (mAP) at IoU > 0.5. We compare against multiple strong WSOD

baselines. The results are shown in Tab. 30, and our single model outperforms the baseline

methods (sometimes even ensemble methods) by a large margin. On VOC 2007, our model

improves the mAP of the state-of-the-art single method TS2C method by 9%. On VOC

2012, our method outperforms the strongest single-model baseline PCL-OB-G VGG16 by

11%. Some prior work uses their WSOD detection results to further train an Fast-RCNN [69]

detector (denoted as “+FRCNN” in Tab. 30) and obtain an additional 3 to 4 percents im-

provements on mAP. Even without such post-processing or ensemble, our model still achieves

competitive performance on both VOC 2007 and 2012.

Table 30: Average precision (in %) on the Pascal VOC test set using image-level labels. The

top shows VOC 2007 and the bottom shows VOC 2012 results. The best single model is in

bold, and best ensemble in italics.
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VOC 2007 results:
OICR VGG16 [248] 58.0 62.4 31.1 19.4 13.065.162.2 28.4 24.8 44.7 30.6 25.3 37.8 65.5 15.724.141.7 46.964.362.6 41.2
PCL-OB-G VGG16 [247] 54.469.039.3 19.215.762.964.430.025.152.5 44.4 19.6 39.367.717.822.9 46.657.558.6 63.0 43.5
TS2C [275] 59.3 57.5 43.7 27.3 13.5 63.9 61.7 59.9 24.1 46.9 36.7 45.6 39.9 62.6 10.3 23.6 41.7 52.4 58.7 56.6 44.3
OICR Ens.+FRCNN [248] 65.5 67.2 47.2 21.6 22.1 68.0 68.5 35.9 5.7 63.1 49.5 30.364.7 66.1 13.025.6 50.0 57.1 60.2 59.0 47.0
PCL-OB-G Ens.+FRCNN [247] 63.269.9 47.9 22.627.3 71.0 69.1 49.6 12.0 60.151.5 37.3 63.3 63.9 15.8 23.6 48.8 55.3 61.2 62.1 48.8

Ours 68.749.753.327.614.1 64.3 58.176.023.659.850.757.448.163.0 15.5 18.449.755.0 48.467.848.5

VOC 2012 results:
OICR VGG16 [248] 67.7 61.2 41.5 25.6 22.2 54.6 49.7 25.4 19.9 47.0 18.1 26.0 38.9 67.7 2.0 22.6 41.1 34.3 37.9 55.3 37.9
PCL-OB-G VGG16 [247] 58.266.041.8 24.827.255.755.228.5 16.651.017.5 28.649.770.5 7.1 25.747.5 36.6 44.159.240.6
TS2C [275] 67.4 57.0 37.7 23.7 15.256.949.1 64.8 15.1 39.4 19.348.444.5 67.2 2.1 23.3 35.1 40.246.645.8 40.0
OICR Ens.+FRCNN [248] 71.4 69.4 55.1 29.828.1 55.057.9 24.4 17.259.1 21.8 26.6 57.8 71.3 1.0 23.152.7 37.5 33.5 56.6 42.5
PCL-OB-G Ens.+FRCNN [247] 69.071.3 56.1 30.3 27.3 55.2 57.6 30.1 8.6 56.6 18.4 43.964.6 71.8 7.5 23.0 46.0 44.1 42.6 58.8 44.2

Ours 74.249.856.032.522.0 55.1 49.873.420.447.832.039.7 48.0 62.6 8.6 23.752.152.542.9 59.145.1

Effects of the Basic Network and OICR. The performance gain in our model comes

from the following two aspects: (1) a more advanced detection model backbone architecture

and (2) the online instance classifier refinement (OICR). Fig. 29 shows the performance of

1VOC 2012 result: http://host.robots.ox.ac.uk:8080/anonymous/NOR9IV.html
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our method and that of Tang et al. [248] (OICR VGG M), both refining for 0, 1, 2, 3 times.

With no (0) refinement, our basic network architecture outperforms the VGG M backbone

of Tang et al. by 27% in mAP. But the basic architecture improvement is not sufficient to

achieve top results. If we use OICR to refine the models 1, 2, or 3 times, we gain 24%, 29%,

and 30% respectively while Tang et al.achieve smaller improvement (22%, 28%, and 29%

gains).
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Figure 29: Analysis of our basic network and OICR components on VOC 2007. Comparison

of the performance of our model and OICR VGG M after iterative refinement.

Results on COCO. We train our model on the 118,287 train2017 images, using the

image-level ground truth labels. We report mAP at IoU=.50:.05:.95 and mAP@0.5, on

the 20,288 test-dev2017 images. We compare to a representative fully-supervised detection

model [211]; “Faster Inception-V2” [89] which is our method’s supervised detection counter-

part, and a recent WSOD model [247]. As demonstrated in Tab. 31, our model outperforms

the previous state-of-the-art WSOD method (PCL-OB-G Ens + FRCNN) by 15% in terms

of mAP, but the gap between general WSOD methods (including ours) and the supervised

methods is still large due to the disparate supervision strength.

7.3.4 Impact of Filtering Noisy Captions

We next show that the potential purity of objects mentioned is the key to train a good

weakly supervised object detector. We validate the two proposed methods in Sec. 7.2.1:

Detection results using image-caption filtering. We use a limited 30,000 image-

caption pairs (a subset) from COCO train2017 split for training, assuming a setting of
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Table 31: COCO detection using image-level labels, with supervised detection models at the

top, best WSOD in bold.

Methods
Avg. Precision, IoU

0.5:0.95 0.5

Faster RCNN [211] 21.9 42.7

Faster Inception-V2 [89] 28.0 -

PCL-OB-G VGG16 [247] 8.5 19.4

PCL-OB-G Ens.+FRCNN [247] 9.2 19.6

Ours 10.6 23.4

restricted computation resources and training time. To trim the large amount of data, we

keep the most useful examples while removing the others. Specifically, we use the metrics of

homogeneity and symmetry to measure the image-caption relevance, which inherited from

[254]’s diversity and discrepancy but take the reverse because we want to assign high scores

to image-caption pairs that mention the same objects. Homogeneity measures how similar

the images paired with a text are visually. Symmetry measures cycle consistency: how close

the neighbor-of-neighbors of an image or text sample are to the original query.

The higher the homogeneity and symmetry, the better alignment between the image and

text, and more likely the captions describe the visual objects in detail. We use random

sampling of 30K examples as a baseline. Hom-Image, Hom-Text, Sym-Image, Sym-

Text use both the homogeneity and symmetry metrics applying on both the image and

text modalities to filter examples, accordingly.

Tab. 32 shows the results. We see that the performances of ExtendVocab, GloVe,

and TextClsf are improved (in most cases) using the filtered training data. If we use a

random selection of 30K examples, the performances are 36.7%, 38.6%, 40.4%, respectively.

Using image homogeneity score (Hom-Image) for filtering improved these methods by 9%

(40.1% v.s. 36.7%), 7% (41.3% v.s. 38.6%), 0.2% (40.5% v.s. 40.4%) while using Sym-
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Table 32: Comparing the filtering strategies with the random sampling baseline, using AP

(in %) on VOC 2007 test.

Im-cap scoring

Label inference
ExtendVocab GloVe TextClsf

Random 36.7 38.6 40.4

Hom-Image 40.1 41.3 40.5

Hom-Text 40.4 40.8 39.9

Sym-Image 40.6 40.2 41.2

Sym-Text 38.6 37.9 37.9

Image improved 11% (40.6% v.s. 36.7%), 4% (40.2% v.s. 38.6%), 2% (41.2% v.s. 40.4%).

Besides, we find that the filtering helps more for the ExtendVocab and GloVe while

seems to be not that helpful for TextClsf. We suspect the reason is that TextClsf had

already explained the gap between the image and text thus is not sensitive to the improved

filtered training data. However, this text classifier requires some small number of ground-

truth labels. In contrast, Hom-Image, Hom-Text and Sym-Image with Glove achieve

competitive results to the basic TextClsf (with Random), but do not require any labels.

Thus, homogeneity and symmetry could be used to determine which captions provide strong

supervision for object detection, without the need for any ground-truth labels.

Results using image-caption weighting. One weakness of the filtering approach is

that it requires a hard cutoff of the dataset examples. In comparison, weighting applies a soft

“cutoff” to the data. It never drops data, thus is data-efficient. We use the Home-Image

score as the per-example weighting factor in Eq. 21.

Tab. 33 shows the results. The top shows the performance of filtering approaches. Since

the filtering strategy had to trade-off between the image-text relevance and efficient data

utilization, it is not easy to find the perfect balance. It shows that even with a good filtering

strategy (e.g., Hom-Image Filtering (30K)), using 30K “clean” training examples is still
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Table 33: Comparing the weighting strategy with the filtering alternates, using AP (in %)

on VOC 2007 test.

Im-cap scoring

Label inference
ExtendVocab GloVe TextClsf

Random (30K) 36.7 38.6 40.4

Hom-Image Filtering (30K) 40.1 41.3 40.5

No weighting (118K) 42.5 40.5 43.1

Hom-Image Weighting (118K) 43.5 42.6 42.2

inferior than training on the full COCO dataset (No weighting (118K)), for two of the three

label inference methods (columns). However, if we apply the Hom-Image weighting on the

loss term, the performance (Hom-Image Weighting (118K)) is generally improved (43.5%

v.s. 42.5%, 42.6% v.s. 40.5%, 42.2% v.s. 43.1%), except for TextClsf which requires

annotations.

This shows that homogeneity computation, which requires no ground-truth labels, can

be used to boost the performance of the text classifier, without discarding any of the original

data. This is an important finding with important ramifications for multimodal learning.

Approaches to learn visual representations have benefited greatly from widely available videos

with narrations, and our method suggests how the useful signal and the noise in such data

can be distinguished to boost the quality of the learned representations, without requiring

annotations.

Image-caption pairs with high/low scores. In Fig. 30, we observe that image-

caption pairs with high homogeneity scores usually have a simple background and feature a

single object in the center. In contrast, the images with low homogeneity scores are usually

more complicated, not all objects shown are mentioned, and mentioned concepts may be

abstract. Thus, we qualitatively proved that the homogeneity scores measure the relevance

and redundancy between the image and text modalities. It helps to rule out less useful
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a person riding a wave on a surfboard
a person riding a wave on top of a surfboard.
surfer riding a wave on the ocean we much white waves.
the surfer has the right stance on his surfboard.
the surfer is riding the wave on his surf board.

side by side images of a traffic signal, one with the light red 
and the other with the light green.
a traffic light showing the symbols for stop and go.
a couple of traffic lights, one red and one green.
two pictures of traffic lights on that is red and the other green.
two views of the same intersection with different colored 
traffic lights.

a very colorful and cool looking bus coming down the street.
a brightly colored bus stopped at an intersection
a bus painted in vivid colors reads "angel" on the front.
a colorful jeepney is transporting some passengers somewhere.
a colorful truck and white car are waiting at a crosswalk.

a picture of five different types of colorful clothes.
a display of fabrics in different colors and patterns.
a group of colorful items sitting next to each other.
display of colors in red, browns,green,black gold blue and yellow
this is a variety of multicolored fabric.

Examples with high
Hom-Image scores

Examples with low
Hom-Image scores

a woman tennis player on the tennis court
a tennis player holding a racket on the court
lady dressed in a white uniform playing tennis.
a woman dressed in all white is playing tennis at the tennis courts.
a person on a court with a tennis racket.

26031

a pizza sits on the table waiting to be served.
a pizza sits on a plate ready for someone's meal.
a small pizza is sitting next to an order or fries.
a pizza sitting on top of a white plate next to a bowl of fries.
a plate of pizza and french fries served on white plates

159299377816

Figure 30: Image-caption pairs with high homogeneity scores on the top, and low scores on

the bottom.

examples to better train a detector.
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7.4 Conclusion

In this chapter, we proved the thesis hypotheses H3 (see Tab. 34). We showed how we

could successfully leverage naturally arising, weak supervision in the form of captions. We

explicitly deal with noise in the captions and propose the filtering solution based on the

supervision purity metrics (Sec. 7.2.1). Furthermore, we amplify the signal that captions

provide by learning to bridge the gap between what human annotators mention, and what is

present in the image (Sec. 7.2.2). Both solutions provide ways for training a robust weakly

supervised object detetion model. As compared to using the ideal image-labels requiring

human labor, we show the difference in terms of performance is small (40.4 v.s. 48.5), and

our method can benefit from more data hence further be improved.

One weakness regarding the current approach is that we merely turn captions into class

vectors while ignoring the abundant information hidden in the textual structures. In the next

chapter, we explore textual structures (planned to use constituency parsing and context-free

grammars) to use them to: (1) better disambiguate the referring objects (e.g., “girl in a hat”

v.s. “man in white shirt”); (2) analyze the relationship between objects (e.g., “a man holding

a baseball bat”). We expect the textual structures to make the use of text supervision more

reliable.

Table 34: Conclusion - validated hypotheses in this chapter.

Multimodal
features help to

understand
images/videos
with implicit

persuasive intent,
such as visual

advertisements.

Text features can
be unreliable if

not modeled
appropriately.

Text supervision
contains noise,

but can be used
to localize visual
objects in space,

if modeled
properly.

Text supervision
provides contexts
regarding visual
objects, they are
reliable cues for
disambiguating

entities and
relations.

Noisy audio
narrations as a

multimodal
signal can be
modeled to

localize video
actions in

temporal domain.

This Chapter 3
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8.0 Linguistic Structures as Weak Supervision for Visual Scene Graph

Generation

8.1 Introduction

The previous chapter provides a simple way to learn visual object detectors using the

captions. However, the proposed Cap2Det model has two disadvantages: (1) it did not

fully utilize captions in that it pays attention to only the amplified entities; (2) the entities

focused on may be unreliable, if not considering the contexts (Fig. 31 shows people under

different contexts). In this chapter, we additionally detect the relations among entities in a

weakly supervised manner and attempt to strengthen the robustness of our model using the

enlightening textual contexts. We aim at the joint task of object detection (OD) and visual

relation detection (VRD) in the weakly supervised scenario — weakly supervised scene graph

generation (WS-SGGen). We found that captions provide enough hints to solve both the

OD and VRD tasks.

We start our discussion with an observed discrepancy. While scene graphs are a holis-

tic, contextual representation of an image, the types of supervision that have been used

capture context in an impoverished way. In particular, prior methods use supervision in

the form of either subject-predicate-object triplets with bounding boxes for the subject and

object [151, 187, 289] or subject-predicate-object triplets at the image level only [313, 317].

Thus, information in the supervision is local (separate triplets) while the scene graph to be

output captures the entire image. This discrepancy between the properties of the desired

output (global) and training data (local) becomes problematic due to potential ambiguity

in the visual input. For example, in Fig. 31, multiple persons are standing on the rails.

Thus, standard supervision (top) which breaks down a scene graph into triplets, may create

confusion.

In contrast, captions capture global context that allows us to link multiple triplets, and

localize a man who is both standing on the rails, and wearing a (checkered) shirt. Cap-

tions are linguistic constructs, and language could be argued to capture common sense (e.g.,
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Standard crowdsourced 
supervision:

(man, standing on, rails)
(man, in, shirt)

Output: Scene graph (part shown)

man

shirt

rails

shirt? rails?

man?

Our supervision:
“Man in checkered shirt is 
standing on the rails.”

man rails

shirt

standing on

checkered is

Figure 31: We tackle the problem of generating scene graphs with supervision in the form of

captions at training time. Parsing from captions enables utilization of the huge amount of

image-text data available on the internet. The linguistic structure extracted maintains the

relational information described in the caption without the loss of cross-triplet references,

and facilitates disambiguation.

BERT [50] models are good at question-answering and commonsense tasks). Captions are

also advantageous in terms of cost: humans naturally provide language descriptions of visual

content they upload, thus caption-like supervision can be seen as “free”. However, caption

supervision contains noise, which presents some challenges. First, captions provide supervi-

sion at the image level, similar to prior work in weakly-supervised scene graph generation

[313]. Second, prior work [175, 299] shows that captions do not cover all relevant objects:

not all content is mentioned, and some of the mentioned content is not referring to the image

explicitly or is not easily localizable. Because captions are noisy, the supervision we use is

even weaker than prior work [313].

In this chapter, we propose an approach that leverages global context, using captions as

supervision. Our approach models context for scene graphs in two ways. First, it extracts

information from captions beyond the subject-predicate-object entities (e.g., in the form of

attributes like “checkered”, in Fig. 31). This context enables more accurate representations

of concepts, and thus more accurate localization of each subject-predicate-object triplet.

Second, visuo-linguistic context provides a way to reason about common-sense relationships

within each triplet, to prevent non-sensical triplets from being generated (e.g., “rails standing
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on man” is unlikely, while “man standing on rails” is likely). To cope with the challenges

of the noise contained in captions, we rely on an iterative detection method which helps

prune some spurious relations between caption words and image regions, via boostrapping.

While the captions we use are crowdsourced, our method paves the road for using image-

caption pairs harvested from the internet for free, using text accompanying images on the

web, from blogs, social media posts, YouTube video descriptions, and instructional videos

[172, 226, 305]. Note that our method internally uses a graph with broad types of nodes,

including adjectives, even though these are not part of the graph that is being output at

test time. A side contribution is an adaptation of techniques from weakly-supervised object

detection to improve localization of subject and object through iterative refinement, which

has not been used for scene graph generation before.

To isolate the contribution of global context from the noise contained in captions (i.e.,

objects not being mentioned), we verify our approach in two settings. First, we construct

a ground-truth triplet graph by connecting triplets with certain overlap. We show that our

full method greatly outperforms prior work (it boosts the performance of [313] by 59%-67%).

Second, we use two types of actual captions. This causes overall performance to drop, but

we observe that modeling phrasal (cross-triplet) and sequential (within-triplet) linguistic

context achieves strong results, significantly better than more direct uses of captions, and

competitive with methods using clean image-level supervision.

To summarize, our contributions are as follows:

• We examine a new mechanism for scene graph generation using a new type of weak

supervision.

• We contextualize embeddings for subject/object entities based on linguistic structures

(e.g. noun phrases).

• We propose new joint classification and localization of subject, object and predicate

within a triplet.

• We leverage weakly-supervised object detection techniques to improve scene graph gen-

eration.
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8.2 Approach

8% 60% 31% … 1%

70% 10% 20% … 0%

5% 0% 0% 95%

99% 0% 1% …

Sec 3.4 ITERATIVE

𝜙(𝑣!) 𝜙(𝑣") 𝜙(𝑣#) 𝜙(𝑣$!)

ROI Pooling and FC Layers

…

…

Proposal feature extraction

“a	girl	wearing	sunglasses	is	sitting	
on	the	sofa,	eating	a	banana”

Sec 3.1 PHRASAL context

Message passing 
on the text graph

“𝑔𝑙𝑎𝑠𝑠𝑒𝑠”

“𝑔𝑖𝑟𝑙”

“𝑏𝑎𝑛𝑎𝑛𝑎”

“𝑠𝑜𝑓𝑎”

“𝑠𝑖𝑡 𝑜𝑛”
“𝑒𝑎𝑡”

“𝑤𝑒𝑎𝑟”
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𝜓(“𝑔𝑙𝑎𝑠𝑠𝑒𝑠”; 𝐺!)

𝜓(“𝑔𝑖𝑟𝑙”; 𝐺!)

𝜓(“𝑏𝑎𝑛𝑎𝑛𝑎”; 𝐺!)

𝜓(“𝑠𝑜𝑓𝑎”; 𝐺!)
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…
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“𝑒𝑎𝑡”

“𝑔𝑖𝑟𝑙” “𝑠𝑜𝑓𝑎”

“𝑠𝑖𝑡 𝑜𝑛”

Sec 3.2 Associating visual boxes
𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝑚𝑜𝑑𝑒𝑙 (𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝑎𝑐𝑟𝑜𝑠𝑠 𝑣𝑖𝑠𝑢𝑎𝑙 𝑎𝑥𝑖𝑠),

predict: ”glasses”, “girl”, “banana”, “sofa”

RNN RNN

“𝑔𝑖𝑟𝑙”,/start/, “𝑔𝑙𝑎𝑠𝑠𝑒𝑠”, ∅

“𝑔𝑖𝑟𝑙”

RNN

“𝑔𝑙𝑎𝑠𝑠𝑒𝑠” “𝑤𝑒𝑎𝑟”

Sec. 3.5 SEQUENTIAL context

banana

glasses

girl

“𝑔𝑙𝑎𝑠𝑠𝑒𝑠”

“𝑔𝑖𝑟𝑙”

“𝑏𝑎𝑛𝑎𝑛𝑎”

“𝑒𝑎𝑡” “𝑤𝑒𝑎𝑟”

During inference, our model 
generates the scene graph for the 

image without the help from captions

Sec 3.3 Initial scene graph

Figure 32: Model overview. Our model uses the image’s paired caption as weak supervision to

learn the entities in the image and the relations among them. At inference time, it generates

scene graphs without help from texts. To learn our model, we first allow context information

to propagate on the text graph to enrich the entity word embeddings (Sec. 8.2.1). We found

this enrichment provides better localization of the visual objects. Then, we optimize a

text-query-guided attention model (Sec. 8.2.2) to provide the image-level entity prediction

and associate the text entities with visual regions best describing them. We use the joint

probability (Eq. 27) to choose boxes associated with both subject and object (Sec. 8.2.3),

then use the top scoring boxes (Eq. 28) to learn better grounding (Sec. 8.2.4). Finally, we use

an RNN (Sec. 8.2.5) to capture the vision-language common-sense and refine our predictions.

Our code is available at https://github.com/yekeren/WSSGG.

Inputs. Our method does not rely on dense human-annotated instances and relations,

but takes in linguistic structures as supervised signals (Fig. 32 top-left). Such structural

text information is abandoned in other weakly-supervised methods [313, 316, 317]. We

first convert captions paired with images into text graphs using a language parser [219].

The resulting graphs describe the entities in the caption and the relations (e.g., verbs or

prepositions) among them. We call this setting Cap-Graph. Our method’s performance

depends on how exhaustive the caption is, and how robust is the parser chosen. Thus,

we also design a setting where we extract a ground-truth text graph from the scene graph

annotations, ignoring bounding boxes (GT-Graph).
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Table 35: Overview of notation for the visual features, linguistic structureGL and supervision

parsed from GL.

Visual features
Vprop Region proposals nv × 1
Vfeat Region proposal features nv × dcnn
nv = 20 Number of region proposals
dcnn = 1536 Feature dimension

Text graph GL(E,R), parsed from caption
E = [ei]

ne
i=1 Entities (graph nodes) |E| = ne

R = [(ri, si, oi)]
nr
i=1 Relations (graph edges) |R| = nr

ne, nr Number of entities/relations in a graph
ce, cr Number of entity/relation classes (vocab size)
ei The i-th entity node, ei ∈ {1 · · · ce}
ri The i-th relation edge, ri ∈ {1 · · · cr}
si, oi Subject/object index of i-th relation, si, oi ∈ {1 · · ·ne}, esi , eoi refer to

subject/object
Frozen GloVe embeddings

Went Entity embedding matrix ce × d
Wrel Relation embedding matrix cr × d

Image-level labels parsed from GL

Yent Yent[i, :] is the one-hot representation of ei ne × ce
Yrel Yrel[i, :] is the one-hot representation of ri nr × cr
Ycssub, Ycsobj Ycssub[i, :], Ycsobj [i, :] are one-hot repr of esi , eoi nr × ce
Ycspred Alias of Yrel nr × cr

Instance-level pseudo labels
nt Number of iterations to improve g
g(t), t ∈ {0 · · ·nt} Grounding vector, if E=[girl, banana], g=[10, 17] means proposal v10 is

class girl and v17 is banana
ne × 1

Y
(t)
det , t ∈ {0 · · ·nt} Entity detection label, Ydet[i, j]=1 means the proposal vi involves the

j-th entity class
nv × ce

Yrelsub, Yrelobj Relation detection label, Yrelsub[i, j]=1 means the proposal vi may serve
as a subject, and can apply the j-th relation to an unknown object;
Yrelobj [i, j]=1 means the proposal vi may serve as an object, some un-
known subject can apply the j-th relation to vi

nv × cr

Training pipeline overview (Fig. 32): We extract the visual object proposals using

FasterRCNN [211]. We extract the text graph from paired captions (Cap-Graph) or directly

read the ground-truth text graph (GT-Graph). We use a graph neural network based on the

phrasal structure to enrich the text node representation (Fig. 32 top-left, Sec. 8.2.1). This

enrichment simplifies the later localization step because we can search for more specifically

described regions (e.g., “girl eating banana,” rather than “girl”). By optimizing the image-
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level entity scores and treating the text entities as queries, we obtain attention scores, which

strongly imply the visual regions that best describe the text entities (Fig. 32 top-middle,

Sec. 8.2.2). We design a way to learn from the weak signal of the attention scores and

predict initial relation detection results in the form of 5-tuples (Sec. 8.2.3). These groundings

are further refined using WSOD techniques [248] (Sec. 8.2.4). Finally, we capture visuo-

linguistic common sense to further rule out unlikely relation tuples (Fig. 32 middle-bottom,

Sec. 8.2.5). We use an RNN to model the fluency of scene graph tuples, enforcing that

subject/object regions should be followed by their labels, and subject/object should be

followed by object/predicate. This module reassigns labels and reranks 5-tuples to improve

the relation detection: if an uncommon tuple is fed to the model, it will be assigned a low

score.

8.2.1 Modeling Phrasal Context

We first determine how to represent the text entities to be matched in the image. A naive

solution would be to use the word embeddings, but this method ignores the context captured

in phrases. We advocate the use of the hints in the phrasal structure, namely mentions of

related adjectives and objects. As shown in Fig. 32 top-left, “wearing sunglasses,” “sitting

on the sofa” and “eating a banana” provide context for the same “girl” and make her

distinguishable from other potential instances of “girl”. We infer the contextualized entity

word features via the phrasal context and apply them in Sec. 8.2.2 to localize visual objects.

We have summarized all notations in Tab. 35 to facilitate reading the following text.

The linguistic structure (Fig. 32 top-left) parsed from a caption is represented using a text

graph GL = (E,R). E = [e1 · · · ene ]
T denotes the ne text graph entities where each ei ∈

{1 . . . ce} represents an entity class ID (ce classes in total, which are defined by [313] or [284]

in our experiments; in Fig. 32 top-left, E = [“glasses”, “girl”, “banana”, “sofa”]T ). R =

[(r1, s1, o1) · · · (rnr , snr , onr)]
T describes the nr relations. For the i-th relation: ri ∈ {1 . . . cr}

is the relation class ID; si, oi ∈ {1 . . . ne} are entity indices: esi denotes the subject entity and

eoi the object entity; in Fig. 32 top-left, R = {(“wear”, 2, 1), (“eat”, 2, 3), (“sit”, 2, 4))}.

Given the GloVe embedding [200] of the entity and relation classes Went ∈ Rce×d, Wrel ∈

132



Rcr×d, and the one-hot representation of entities and relations Yent ∈ Rne×ce , Yrel ∈ Rnr×cr

(each row is a ce or cr-dim one-hot vector, and there are ne and nr rows, respectively), the

initial entity and relation word embeddings can be represented as H
(0)
ent = YentWent ∈ Rne×d

and H
(0)
rel = YrelWrel ∈ Rnr×d.

Now we compute phrasal contextualized entity embeddings ψ(E;GL) ∈ Rne×d. Alg. 1

shows the process, and can be stacked several times. We update relation edge embeddings,

then aggregate the relation features into the connected entity nodes, using linear layers φr

and φα applied on the concatenation of inputs. We use ψ(E;GL) = H
(t)
ent, (t > 1) in the next

section, to localize visual entities.

Algorithm 1: Message passing to utilize phrasal context. We use GraphNets [17]

to implement.

Input : Text graph GL = (E,R)

Initial entity features H
(t)
ent = [e1, . . . , ene ]

T

Initial relation features H
(t)
rel = [r1, . . . , rnr ]

T

Output: Updated H
(t+1)
ent , H

(t+1)
rel

for i← 1 to nr do

r′i ← φr(ri, esi , eoi) // Update edge, r′i ∈ Rd×1
αi ← φα(ri, esi , eoi) // Update edge weight, αi ∈ R1

for i← 1 to ne do

e′i←
∑

j=1:nr,
oj=i

{ exp(αj)∑
k=1:nr,
ok=i

exp(αk)

}
r′j //Aggregate, e′i ∈ Rd×1

return H
(t+1)
ent = [e′1 · · · e′ne

]T , H
(t+1)
rel = [r′1 · · · r′nr

]T

8.2.2 Associating Text Entities with Visual Boxes

After getting the contextualized entity embeddings ψ(E;GL) ∈ Rne×d, we seek their

associated visual regions g(0) ∈ Rne×1 (i.e., grounding vector), where each g
(0)
i ranges in

{1 · · ·nv} and v
g
(0)
i

denotes the visual box best describing the text entity ei. We obtain

g using an attention mechanism. By optimizing the image-level prediction, we expect the

model to learn to focus on the most informative and distinguishable regions, which can often

be used as instance references for training object detectors.
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We first project Vfeat ∈ Rnv×dcnn to the d-dim visual-language space, resulting in attention

and classification heads Hatt, Hcls ∈ Rnv×d. Then, we compute Ddot ∈ Rne×nv , in which

Ddot[i, j] measures the compatibility between text entity ei and visual region vj. We softmax-

normalize Ddot to get the attention matrix A(0) ∈ Rne×nv , and obtain g(0) by selecting the

max-valued entry.

Hatt = VfeatWatt, Hcls = VfeatWcls

Ddot = ψ(E;GL)HT
att, A(0)[i, j] =

exp(Ddot[i, j])∑nv

k=1 exp(Ddot[i, k])

g
(0)
i = argmax

j∈{1···nv}
A(0)[i, j] (22)

We use image-level entity labels Yent ∈ Rne×ce as supervision to learn proper attention

scores. We first aggregate the image-level weighted visual features F = [f1 · · ·fne ]
T ∈ Rne×d,

where fi denotes the image-level feature encoded with proper attention to highlight text

entity ei. For example, given ei = “glasses” in Fig. 32, the model needs to shift attention

to the glasses visual region by adjusting the i-th row of A(0). The final image-level entity

classification score is given by Pcls ∈ Rne×ce , and the grounding module is trained using

cross-entropy.

F = A(0)Hcls, F
′ = FW T

ent

Pcls[i, j] =
exp(F ′[i, j])∑ce
k=1 exp(F ′[i, k])

(23)

Lgrd = −
ne∑
i=1

ce∑
j=1

Yent[i, j] logPcls[i, j] (24)

8.2.3 Initial Scene Graph Generation

Thus far, the text entity embeddings H
(0)
ent played a role in the grounding procedure, and

so did the one-hot encoded label Yent extracted from the caption. Next, the model learns to

predict the entities and relations without help from captions, which will not be available at

inference time.
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To this end, given entities E = [e1 · · · ene ]
T , relations R = [(r1, s1, o1) · · · (rnr , snr , onr)]

T ,

and grounded boxes [v
g
(0)
1
· · · v

g
(0)
ne

]T , we first parse the target instance labels. We extract

Y
(0)
det ∈ Rnv×ce and Yrelsub, Yrelobj ∈ Rnv×cr using Eq. 25, in which all non-mentioned matrix

entries are set to 0. Y
(0)
det [i, j] = 1 means visual region vi involves the j-th entity class.

Yrelsub[i, j] = 1 denotes the potential subject visual region vi (e.g. a “person” region) may

apply the j-th relation (e.g. “ride”) to an unknown object. Yrelobj[i, j] = 1 denotes an

unknown subject may apply the j-th relation to the potential object visual region vi (e.g. a

“horse” region). We add rel to highlight Yrelsub, Yrelobj are relation instance-level labels, but

are attached to the grounded subject and object visual boxes respectively.

Y
(0)
det [i, j] = 1 if ∃k ∈ {1 · · ·ne}, s.t.(g(0)

k = i, ek = j)

Yrelsub[i, j] = 1 if ∃k ∈ {1 · · ·nr}, s.t.(g(nt)
sk

= i, rk = j)

Yrelobj[i, j] = 1 if ∃k ∈ {1 · · ·nr}, s.t.(g(nt)
ok

= i, rk = j) (25)

We next learn to predict the instance-level labels based on these targets, using entity

detection head H
(0)
det ∈ Rnv×d, and relation detection heads Hrelsub, Hrelobj ∈ Rnv×d. Then,

we matrix-multiply the three heads to the entity embedding Went ∈ Rce×d and relation

embedding Wrel ∈ Rcr×d, and softmax-normalize, resulting in entity detection scores P
(0)
det ∈

Rnv×ce and subject/object detection scores Prelsub, Prelobj ∈ Rnv×cr . We use cross-entropy

loss terms L
(0)
det, Lrelsub, Lrelobj similar to Eq. 24 to approximate P

(0)
det ∼ Y

(0)
det , Prelsub ∼ Yrelsub,

and Prelobj ∼ Yrelobj.

X ∈ {det, relsub, relobj}, W ′ ∈ {Went,Wrel}

HX = VfeatWX , FX = HXW
′T

PX [i, j] =
exp(FX [i, j])∑
k exp(FX [i, k])

(26)

After training the aforementioned model, we can detect entities using P
(0)
det ∈ Rnv×ce

and detect relations using Prel ∈ Rnv×nv×cr , where Prel[i, j, k] = min(Prelsub[i, k], Prelobj[j, k]).

Intuitively, we treat the relation as valid if it could be both implied from the subject and
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object visual regions. For example, if the model infers “ride” from the “person” region and

estimates “ride” can also apply to object region “horse”, it determines that “ride” is the

proper predicate bridging the two regions. [313, 317] proposed similar architectures to infer

relation from a single region, [313] for optimizing runtime and [317] to avoid bad solutions.

We use this idea because it is simple and effective, in combination with our stronger module

in Sec. 8.2.5.

Test time post-processing. Given P
(0)
det , and Prel, we adopt the top-K predictions (in

experiments, k=50, 100) denoted in Eq. 27 as the initial scene graph generation (SGGen)

results. In Eq. 27, the universal set U = {(vsvi , vovi , s
e
i , p

r
i , o

e
i )}i denotes all possible 5-tuple

combinations and B is a subset of U of size k. The goal is to seek the subset B(B ⊂

U and |B| = k) such that the sum of log probabilities is maximized. Within a specific

B, sv, ov ∈ {1 · · ·nv} are the indices of proposal boxes to represent the subject and object

regions, respectively; se, oe ∈ {1 . . . ce} are subject and object entity class IDs; pr ∈ {1 . . . cr}

is the relation class ID. To implement Eq. 27 in practice, we use non-max suppression on

P
(0)
det to reduce the search space (ruling out unlikely classes and boxes).

SGinit = argmax
B⊂U,|B|=k

∑
(sv ,ov ,se,pr,oe)∈B

(
logP

(0)
det [s

v, se] + logPrel[s
v, ov, pr] + logP

(0)
det [o

v, oe]
)

(27)

8.2.4 Iterative Detection Scores Estimation

Careful readers may notice the superscript (0) in grounding vector g(0), attention A(0),

instance label Y
(0)
det , and instance prediction P

(0)
det . We use the superscript (0) to denote

these are initial grounding results, which could be improved by the WSOD iterative refining

technique proposed in [248]. Suppose loss L
(t)
det (t ≥ 0) brings P

(t)
det ∈ Rnv×ce close to Y

(t)
det ∈

Rnv×ce , where Y
(t)
det is the caption-guided target label and P

(t)
det is the prediction without help

from captions. We could then incorporate the entity information E = [e1 · · · ene ]
T of the

caption into P
(t)
det to turn it into a stronger instance-level label Y

(t+1)
det . The motivation is

that the initial label Y
(0)
det extracted from attention (Eq. 22, 25) will be easily influenced by

the noise in captions. Since the attention scores always sum to one, some region will be

assigned a higher score than others, regardless of whether the objects have consistent visual
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appearance. In an extreme case, mentioned but not visually present entities also have a

matched proposal. Using P
(t)
det is an indirect way to also consider the visual model’s (Eq. 26)

output, which encodes the objects’ consistent appearance.

To turn P
(t)
det into Y

(t+1)
det , we first extract A(t+1) ∈ Rne×nv (same shape as the attention

matrix A(0)). We simply select the columns (denoted as [:, i]) from P
(t)
det according to E to

achieve A(t+1), and compute g(t+1) and Y
(t+1)
det .

A(t+1) =
[
P

(t)
det[:, e1] · · ·P (t)

det[:, ene ]
]T

g(t+1) = argmax
j∈{1···nv}

A(t+1)[i, j] (28)

Y
(t+1)
det [i, j] = 1 if ∃k ∈ {1 · · ·ne}, s.t.(g(t+1)

k = i, ek = j)

We refine the model nt times, and in Eq. 25, we use g(nt) from the last iteration to

compute Yrelsub and Yrelobj.

8.2.5 Modeling Sequential Context

We observed the model sometimes generates triplets that violate common sense, e.g.,

plate-on-pizza in Fig. 35 top, because the aforementioned test time post-processing (Eq. 27)

considers predictions from Pdet and Prel separately. When joined, the results may not form a

meaningful triplet. To solve the problem, we propose a vision-language module to consider

sequential patterns summarized from the dataset (Fig. 32 middle-bottom). The idea is

inspired by [151], but different because: (1) we encode the language and vision priors within

the same multi-modal RNN while [151] models vision and language separately, and (2)

our label generation captures a language N-gram such that the later generated object and

predicate will not contradict the subject.

Specifically, we gather the grounded tuples Dgt = {(vgsi , vgoi , esi , ri, eoi)}
nr
i=1 within each

training example to learn the sequential patterns. Compared to the SGGen 5-tuple (Eq. 27),

the esi , ri, eoi here are from the ground-truth (E,R) and are always correct (e.g., no “cake-eat-

person”). Since the module receives high-quality supervision from captions, it will assign low
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scores or adjust the prediction (Eq. 27) for imprecise 5-tuples at test time, using its estimate

of what proper 5-tuples look like.

Fig. 32 middle-bottom shows the idea. We use an RNN (LSTM in our implementation) to

consume both word embeddings and visual features of the subject and object. The training

outputs are subject prediction Pcssub ∈ Rnr×ce (cs for common sense), object prediction

Pcsobj ∈ Rnr×ce , and predicate prediction Pcspred ∈ Rnr×cr . We now explain how to generate

their i-th row (to match true esi-ri-eoi).

First, we feed into the RNN a dummy /start/ embedding and the grounded subject

visual feature vgsi . The subject prediction Pcssub[i, :] is achieved by a linear layer projection

(from RNN output to d-dim) and matrix multiplication (using Went ∈ Rce×d). We predict

the object Pcsobj[i, :] similarly, but using the grounded object visual feature vgoi concatenated

with the subject word embedding esi as inputs. If we do not consider the visual input, this

step is akin to learning a subject-object 2-gram language model. Next, the RNN predicts

predicate label Pcspred[i, :] (using Wrel ∈ Rcr×d instead of Went), using object word embedding

eoi and a dummy visual feature ∅ as inputs.

To learn Pcssub, Pcsobj, Pcspred, we extract labels Ycssub, Ycsobj, Ycspred (Eq. 29) and use cross-

entropy losses Lcssub(Pcssub ∼ Ycssub), Lcsobj(Pcsobj ∼ Ycsobj), Lcspred(Pcspred ∼ Ycspred) to

optimize the RNN model.

Ycssub =
[
Yent[esi , :]

T · · ·Yent[esnr
, :]T
]T

(29)

Ycsobj =
[
Yent[eoi , :]

T · · ·Yent[eonr
, :]T
]T

Ycspred = Yrel

At test time, we feed to the RNN the visual features from SGinit (Eq. 27) and the /start/

embedding. We let the RNN re-label the subject-object-predicate using beam search. The

final score for each re-labeled 5-tuple is the sum of log probabilities of generating subject,

object, and predicate. We generate the object before the predicate because objects are

usually more distinguishable than predicates, so this order simplifies inference, allowing the

use of a smaller beam size. We re-rank the beam search results using the final scores and

keep the top ones to compute the Recall@k to evaluate (examples in Fig. 35, Fig. 36).
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Our final model is trained using the following multi-task loss, where β is set to 0.5

since at the core of the task is the grounding of visual objects.

L =Lgrd + β
( nt∑
t=0

L
(t)
det + Lrelsub + Lrelobj + Lcssub + Lcsobj + Lcspred

)
(30)

8.3 Experiments

Datasets. We use the Visual Genome (VG) [126] and Common Objects in Context

(COCO) [147] datasets, which both provide captions describing the visual contents. VG

involves 108,077 images and 5.4 million region descriptions. The associated annotations of

3.8 million object instances and 2.3 million relationships enable us to evaluate the scene graph

generation performance. To fairly compare to the counterpart weakly-supervised scene graph

generation methods [317, 313], we adopt the VG split used in Zareian et al. [313]: keeping

the most frequent ce = 200 entity classes and cr = 100 predicate classes, resulting in 99,646

images with subject-predicate-object annotations. We use the same 73,791/25,855 train/test

split1. We also adopt the split in Xu et al. [284], more commonly used by fully-supervised

methods. It contains 75,651/32,422 train/test images and keeps ce = 150 entity and cr = 50

predicate classes. Both VG splits are preprocessed by [313].

For COCO data, we use the 2017 training split (118,287 images). We rule out the

duplicated images in the VG test set, resulting in 106,401 images for Zareian et al.’s split

and 102,786 images for Xu et al.’s.

Learning tasks. The linguistic structure supervision for training is from the following

three sources:

• VG-GT-Graph imagines an ideal scenario (an upper bound with the noise in captions and

parsers’ impacts isolated) where we have the ground-truth text graph annotations instead

of a set of image-level subject-predicate-object triplets, for training on VG. To get these

ground-truth graphs, we check the visual regions associated with the entities (subjects

1We follow [313], but [317] reports 73,801/25,857 train/test split
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and objects) and connect entities if their regions have IoU greater than 0.5. We do not

use box annotations to improve detection results.

• VG-Cap-Graph utilizes the VG region descriptions. We use [219] to extract text graphs

from these descriptions, but we ignore the region coordinates and treat the graphs as

image-level annotations.

• COCO-Cap-Graph uses captions from COCO and applies the same parsing technique as

VG-Cap-Graph. The difference is that these captions are image-level, and describe the

objects and relations as a whole.

Metrics. We measure how accurately the models generate scene graphs, using the

densely-annotated scene graphs in the VG test set. Following [284], a predicted triplet is

considered correct if the three text labels are correct and the boxes for subject/object have

≥ 0.5 IoU with ground-truth boxes. We then compute the Recall@50 and Recall@100 as the

fraction of the ground-truth triplets that are successfully retrieved in the top-50 and top-100

predictions, respectively.

Methods compared. We conduct ablation studies to verify the benefit of each com-

ponent of our method.

• Basic model refers to our Sec. 8.2.2-8.2.3 without applying the phrasal contextualization.

We set ψ(E,GL) = H
(0)
ent.

• +Phrasal context (Sec. 8.2.1) uses contextualized entity embeddings ψ(E,GL) instead

of H
(0)
ent.

• +Iterative (Sec. 8.2.4) gradually improves the grounding vector g. We iterate nt = 3

times by default.

• +Sequential context (Sec. 8.2.5) revises the prediction presented in Eq. 27, using the

RNN encoded with knowledge regarding sequential patterns.

We compare to weakly-supervised scene graph generation methods that published re-

sults on Zareian et al.’s split: VtransE-MIL [316], PPR-FCN-single [317], PPR-FCN [317]

and VSPNet [313]. We also compare to fully-supervised methods on Xu et al.’s split: It-

erative Message Passing (IMP) [284], Neural Motif Network (MotifNet) [315], Associative

Embedding (Asso.Emb.) [187], Multi-level Scene Description Network (MSDN) [141], Graph

R-CNN [289], and fully-supervised VSPNet [313].
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8.3.1 Results on GT-Graph Setting

The GT-Graph setting allows our method to be fairly compared to the state-of-the-art

methods because in this setting, the information ours and those methods receive is compa-

rable (sets of triplets, in our case connected). Further, the word distribution is the same for

training/testing, while the caption setting causes a train-test shift (described shortly).

Table 36: SGGen recall (%) under VG-GT-Graph setting. We compare our method to the

state-of-the-art methods. High recall (R@50, R@100) is good.

Zareian et al.’s split (weakly sup)

Method R@50 R@100

VtranE-MIL [316] 0.71 0.90

PPR-FCN-single [317] 1.08 1.63

PPR-FCN [317] 1.52 1.90

VSPNet [313] 3.10 3.50

Basic 2.20 2.88

+ Phrasal 2.77 3.62

+ Iterative 3.26 4.15

+ Sequential 4.92 5.84

Xu et al.’s split (fully sup)

Method R@50 R@100

IMP [284] 3.44 4.24

MotifNet [315] 6.90 9.10

Asso.Emb. [187] 9.70 11.30

MSDN [141] 10.72 14.22

Graph R-CNN [289] 11.40 13.70

VSPNet (Full) [313] 12.60 14.20

Basic 3.82 4.96

+ Phrasal 4.04 5.21

+ Iterative 6.06 7.60

+ Sequential 7.30 8.73

In Tab. 36 left, we show our results on Zareian et al.’s VG split and baselines of weakly-

supervised methods. Our Basic method already surpasses VtransE-MIL, PPR-FCN-single,

and PPR-FCN. This may be due to the low quality of the EdgeBox proposals used in them.

Compared to VSPNet, which also uses Faster RCNN proposals, our Basic method is slightly

worse, but our components greatly improve upon Basic, and our final model achieves 4.92,

a 59% improvement over VSPNet (using R@50). +Phrasal context improves Basic by

26% (2.77 v.s. 2.20), +Iterative improves +Phrasal by 18% (3.26 v.s. 2.77), and

+Sequential gains 51% (4.92 v.s. 3.26).
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In Tab. 36 right, we compare to fully-supervised methods on Xu et al.’s split. We observe

our method is very competitive even though we only use image-level annotations. In terms

of Recall@50, our final method (7.30) outperforms IMP (3.44) and MotifNet (6.90). As

for the relative improvement, +Phrasal context improves Basic by 6% (4.04 v.s. 3.82),

+Iterative gains 50% (6.06 v.s. 4.04), and +Sequential gains 20% (7.30 v.s. 6.06).

8.3.2 Results on Cap-Graph Setting

Our proposed Cap-Graph setting is an under-explored and challenging one, as the learned

SGGen model depends on the captions’ exhaustiveness and the parser’s quality, but it allows

learning from less expensive image-text data.

Table 37: SGGen recall (%) under Cap-Graph settings. High recall (R@50, R@100) is good.

VG-Cap-Graph COCO-Cap-Graph

Eval split
Zareian et al.’s Xu et al.’s Zareian et al.’s Xu et al.’s

R@50 R@100 R@50 R@100 R@50 R@100 R@50 R@100

Basic 0.81 0.91 0.99 1.09 1.20 1.51 2.09 2.63

+ Phrasal 0.90 1.04 1.39 1.69 1.17 1.47 1.65 2.16

+ Iterative 1.11 1.32 1.79 2.22 1.41 1.75 2.41 3.02

+ Sequential 1.83 1.94 3.85 4.04 1.95 2.23 3.28 3.69

In Tab. 37, we show the SGGen performance of models learned from VG region captions

(VG-Cap-Graph) and COCO image captions (COCO-Cap-Graph). We see the same trend

as in GT-Graph setting: our components (+Phrasal, +Iterative, and +Sequential)

have positive effects. Further, our final models learned from both VG-Cap-Graph (R@50

1.83) and COCO-Cap-Graph (1.95) are better than all weakly-supervised methods except

VSPNet (in Tab. 36 left). Our models learned from captions are even comparable (VG-Cap-

Graph 3.85, COCO-Cap-Graph 3.28) to the fully-supervised IMP (R@50 3.44).

Fig. 33 shows the relation frequencies in our settings. We observe that some relations

(“has,” “near”) rarely appear in text descriptions but are often annotated in ground-truth
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scene graphs. Meanwhile, there are frequently mentioned prepositions in captions (“of,”

“with,” “at”) which are rarely denoted as relations. These train/test discrepancies (train

on captions, test on triplets) explain our methods’ relative performance in Tab. 37, where

+Phrasal helps under VG-Gap-Graph (more similar to GT-Graph) but hurts slightly under

COCO-Cap-Graph (less similar to GT-Graph).
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Figure 33: Relation frequencies in the three settings.

8.3.3 Qualitative Examples

Fig. 34 compares using and not using Phrasal context. Without out Phrasal module

(left), the grounding procedure gets stuck on the same distinguishable local region (top-left:

head of man) or erroneously attends to the whole image (bottom-left: boarding gate). When

using the Phrasal module (right), our model is better at localizing visual objects. It knows

there should be a complete person in the scene (top-right) and the boarding gate is a concept

related to the plane (bottom-right).

Fig. 35 shows how the learned sequential patterns help correct imprecise predictions.

For the corrections (beam size=5), we show the log-probability of the 5-tuple and individual

probabilities. Given that plate cannot be put on pizza, our model corrects it to plate-under-

pizza. In the bottom example, our model corrects person-wear-person to person-wear-shirt

and person-behind-person. In Fig. 36, we compare our Basic and final methods.

143



A man with a red helmet on a small moped on a dirt road.

An airplane sits on the tarmac of an airport, with a disconnected boarding gate.

w/o PHRASAL context w/ PHRASAL context

Figure 34: Importance of phrasal context; best seen with zoom.

8.3.4 Implementation Details

We pre-extract text graphs using [282]’s implementation of [219]. We use the same

proposals (nv = 20 per image) and features (dcnn = 1536) as [313], extracted using Faster-

RCNN [211] (InceptionResnet backbone [243]) pre-trained on OpenImage [131]. During

training, we use GraphNets [17] to encode phrasal context. Went, Wrel are d = 300 frozen

GloVe embeddings [200]. To train our model, we use a batch size of 32, learning rate 0.00001,

the Adam optimizer [119], and Tensorflow distributed training [1]. We use weight decay of

1e-6 and the random normal initializer (mean=0.0, stdev=0.01) for all fully-connected layers.

We use LSTM cell, 100 hidden units, and dropout 0.2, for the Sequential module. For

the non-max-suppression of Eq. 27, we use score threshold 0.01, IoU threshold 0.4, and limit

the maximum instances per entity class to 4. We set beam size to 5 for the Sequential

144



plate-on-pizza
-1.32 plate(91.6%)-under(31.9%)-pizza(91.3%)
-1.91 plate(91.6%)-with(17.6%)-pizza(91.3%)
-1.92 plate(91.6%)-have(17.5%)-pizza(91.3%)
-2.05 plate(91.6%)-on(15.3%)-pizza(91.3%)
-3.34 plate(91.6%)-of(4.25%)-pizza(91.3%)

person-wear-person
-2.25 person(80.3%)-wear(60.9%)-shirt(21.5%)

-2.56 person(80.3%)-behind(23.9%)-person(40.5%)
-2.71 person(80.3%)-wear(73.2%)-jacket(11.3%)

-2.98 person(80.3%)-in(29.6%)-shirt(21.5%)
-3.02 person(80.3%)-wear(82.2%)-pant(7.4%)

Figure 35: Importance of Sequential context.

Basic Final

Figure 36: Basic v.s. our final model; best viewed with zoom.

module post-processing.
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8.4 Conclusion

In this chapter, we proved the thesis hypotheses H3 and H4 (see Tab. 38). Our proposed

weakly supervised scene graph generation is a natural extension of Chapter 7 since it further

gouges the information beyond entities from the caption. We proposed to use both the

phrasal and sequential contexts. The former captures the entities shared in different subject-

predicate-object triplets while the latter captures language nature. The two components

together pushed forward the limit of utilizing the information from captions, and increased

the reliability of our weakly supervised SGGen model.

To isolate the contribution of global context from the noise contained in captions, we

verify our approach in two settings. We construct a ground-truth triplet graph by connecting

triplets with certain overlap. We show that our full method greatly outperforms prior work

(it boosts the performance of [313] by 59%-67%). Second, we use two types of actual captions.

We observe that modeling phrasal and sequential linguistic context achieves strong results,

significantly better than more direct uses of captions, and competitive with methods using

clean image-level supervision.

Table 38: Conclusion - validated hypotheses in this chapter.

Multimodal
features help to

understand
images/videos
with implicit

persuasive intent,
such as visual

advertisements.

Text features can
be unreliable if

not modeled
appropriately.

Text supervision
contains noise,

but can be used
to localize visual
objects in space,

if modeled
properly.

Text supervision
provides contexts
regarding visual
objects, they are
reliable cues for
disambiguating

entities and
relations.

Noisy audio
narrations as a

multimodal
signal can be
modeled to

localize video
actions in

temporal domain.

This Chapter 3 3
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9.0 Action Detection through Audio Narration Supervision

9.1 Introduction

The last two chapters discussed the way of using captions as supervised signals to learn

image detection models: Chapter 7 proposed a way to choose the proper image-caption pairs

for training and designed a method to learn detector from the selected data; Chapter 8 further

analyzed the linguistic information from the texts and additionally built the relationships

among detected objects. At the core of the two is our exploration of using captions as a

novel and cheap even if potentially noisy supervised signal.

Inexpensive and informative annotations are also needed in the video domain. However,

it is challenging to explore such a signal to achieve the goal of localizing specific actions.

Videos involve natural annotations such as video titles, narrations, and even sparse frame-

level data. Meanwhile, it also features the multi-modalities such as RGB frames, motion

features, and ambient sound. These complicated factors bewilder researchers because not

every single feature provides hints regarding localization. Besides, adopting the signal to

predict instance-level detection results requires proper modeling, which is also not simple.

This chapter will explore audio narrations in the untrimmed video action detection task.

We first distinguish the narration annotations from the instance-level or video-level annota-

tions. We show in Fig. 37 an example video clip from the EPIC Kitchens dataset [45], as well

as the different forms of supervisions. The instance-level annotations are defined by triplets

(start time, end time, action class). Models trained under the fully-supervised setting can

use this form of supervision to generte temporal action proposals [146, 145], or process with

action detection [57, 71, 157, 231, 236, 300, 322]. The major benefit of instance-level data is

that the result model are usually boundary-sensitive, thus the foreground and background

are clearly distinguished by the detection scores, causing high average precision.

However, fully annotating a video dataset with instance-level labels is even more time-

consuming than annotating the bounding boxes for the image object detection tasks. Thus,

methods [129, 190, 191, 197, 230, 269] focus on the weakly supervised action detection
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Instance-level:

Video-level:

Audio narration:

close door pick-up plate put-down plate

{ close door, pick-up plate, put-down plate }
close door pick-up plate put-down plate

Figure 37: Instance-level, video-level, and audio narration supervisions. The audio narration

supervision in the EPIC Kitchens dataset only includes a imprecise start time.

(WSAD), which only requires video-level labels. These methods assume the video to be

a bag of actions and use multi-label cross-entropy loss to optimize. One disadvantage of

WSAD is that it assumes only a few classes per video (e.g., < 5, see Tab. 39). Hence, it is

not applicable in real cases. In an extreme scenario, a 2-hour untrimmed video may consist

all of the action classes, thus the video-level label is too coarse for the model to learn a good

detector.

Table 39: Datasets information. Most WSAD methods use THUMOS 14 [95], in which there

is only 1 action class per video. We explore single-timestamp audio narration annotations

in EPIC Kichens [26].

Dataset Avg. video

length (secs)

Avg. classes

per video

Avg. actions

per video

THUMOS 14 209 1.08 15.01

EPIC Kitchens 477 34.87 89.36

We shall use the audio narrations from EPIC Kitchens [45] dataset. Different from the

ambient sound track, videos were narrated by the annotators to gather an extra narration

audio track. The recorded narration track are later transcribed into texts, and then parsed

into action classes (verb + noun) using a dependency parser, resulting in the forms we use

(see Fig. 37 bottom).
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The major challenge of using audio narrations is that the annotations are noisy .

Unlike the instance-level annotation: 1) narration annotations’ start timestamps are not

precise in that they may overlap with the previous action, and 2) the end time is unknown

since the narrators provide no hints regarding the end time. One can assume the end time to

be before the start time of the next action, but the frames in between are in a gray period,

and the belonging is unsure. Therefore, the narrations provide a trade-off between accurate

instance-level annotation and cheap and fast video-level annotation. One needs to model

the uncertainty to use them.

To use the narrations to learn action detection model, we first cut the untrimmed videos

into clips using the single timestamp (start time) of the audio narration annotations (see

Fig. 37). Thus, each clip can be treated a mixture of actions given that the boundaries are

imprecise. Then, the association between the frames in the clip and the clip-level action

class could be solved by the Multiple Instance Learning (MIL). As compared to the common

WSAD methods such as [190, 191] which only distinguish between foreground and back-

ground (see statistics of THUMOS 14 in Tab. 39), the background in our clip may involve

other semantically meaningful actions. So, we design a class-aware attention mechanism to

assign higher scores to the frames in the clip that are more related to the narrated class.

Meanwhile, we extract video multimodal features from RGB frames, motion flow, and am-

bient sound. We apply a simple early fusion architecture to the problem and ablate the

contributions of each modality.

To summarize, our contributions are as follows:

• We propose to use the audio narrations to learn video action detection model. To our

best knowledge, this is a brand new task that had not been explored (in EPIC Kitchen

tasks C1-C5, only C1-weakly is marginally related but different than our task because

C1-weakly requires only to classify trimmed video at test time while ours requires to

localize actions in untrimmed videos).

• We provide a solution to the proposed task, in which we use class-aware attention mech-

anism to rule-out video frames that are not related to the narration label. Also, our

solution considers multimodal features including RGB frames, motion flow feature, and

audio.
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• We ablate our method on the EPIC-Kitchen dataset, and analyze the contributions of

each model component and feature modality.

9.2 Approach

We first formulate the audio narration guided WSAD task and then overview the model

training pipeline. Then, we introduce the details regarding the multimodal features in

Sec. 9.2.1, discuss the design of the proposed class-aware attention in Sec. 9.2.2, and pro-

vide the post-processing algorithm which turns the frame-level prediction into instance-level

(required by evaluation), in Sec. 9.2.3.

Task formulation: At training time, the video and the paired {timei, verbi, nouni}Ni=1

as N annotated actions are provided, where timei is the narration start time, verbi and

nouni are the narrated verb and noun classes accordingly. Note that here the underlying

assumption is that the timei is not precise to represent the narration starting time since

there may be overlap between consecutive actions. At test time, models have to predict

four tuples of {time si, time ei, verbi, nouni} given the video, where time si, time ei are the

starting and ending time accordingly.

Training pipeline overview(Fig. 38): Given a video and the paired audio narration

annotation {timei, verbi, nouni}Ni=1, we first split the video into training clips. Given a

specific action (timei, verbi, nouni), i ∈ {1 . . . N}, we cut the video from timei to timei+1,

resulting in a video clip (N clips in total) paired with verbi and nouni. We denote the frames

in the i-th clip as {fi,j}Li
j=1 where Li is the total number of frames in the i-th video clip.

Then (Fig. 38 (middle)), we proceed with the feature extraction process, which will

be explained in detail in Sec. 9.2.1. Briefly, we extract the visual CNN features of both

the RGB and Flow frames, and the semantic embedding of the ambient soundtrack. After

feature extraction, we use early fusion to aggregate these multiple modalities.

Finally, we use an audio narration class guided attention mechanism to filter out irrele-

vant classes in the clip, given that the i-th clip should be all regarding the verbi and nouni.

For example, in Fig. 38 (top), we show that given the verb class “put-down” as the query, the
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attention will focus on the last few frames (potentially have overlap with the next action).

However, given the narration supervision of the clip, we need to choose the attention distri-

bution of the verb “pick-up” among frames. The frames that highlighted by the attention

scores are then responsible for predicting the clip-level action (e.g., “pick-up”).
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Figure 38: Model overview. We first cut the video into clips using the single timestamp

denoted in the audio narration. Then, each video clip can be treated as a bag of a few actions.

Next, we extract multimodal features and use early fusion to combine them (Sec. 9.2.1). We

use a class-aware attention mechanism to produce the frame-level detection score (Sec. 9.2.2).

Finally, we use a class-aware, intensity-sensitive post-processing (Sec. 9.2.3) to turn the

frame-level prediction into instance-level (not shown), for evaluation purpose.
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9.2.1 Multimodal Video Features

We consider features from the following sources. Though using them seems to be common

in video recognition, we are working on a novel task of learning action detection models from

narration supervision, in which the contributions of RGB/flow/audio features are unclear.

• RGB and flow frames. We use the standard RGB and flow features provided in

the EPIC Kitchens dataset [45], i.e., the 1024-D RGB and 1024-D Flow CNN features

generated by a TSN model[63] pre-trained in [45].

• Ambient sound. Since the EPIC Kitchens dataset provides the soundtrack of the

ambient audio, we also model them because sound may imply some actions. We use the

VGGish [68] to produce a 128-D semantic embedding for every second. The VGGish

method was first used in the AudioSet [68] classification task and it was pre-trained on

a large YouTube dataset (later became YouTube-8M).

Early fusion of the multimodal video features. We linearly interpolate the ambient

sound semantic embeddings, to convert its sequence lengths to be the same as the RGB and

flow features. We denote the concatenation of these multimodal features as the video frame

feature {fi,j}Li
j=1, fi,j ∈ R2176×1 (RGB 1024-D, Flow 1024-D, Ambient sound 128-D, Li -

number of frames). Let Fi = [fi,1 fi,2 · · ·fi,Li
]T ∈ RLi×2182 be the video sequence feature,

we apply a Conv1D layer (with kernel size 3, ReLu activation) to further extract the frame

feature Fi = [fi,1 fi,2 · · · fi,Li
]T ∈ RLi×d (d = 100 is the number of neuron units):

Fi = Conv1D(Fi) (31)

9.2.2 Class-Aware Attention for Weakly Supervised Action Detection

After getting the multimodal video features, we design a class-aware attention mechanism

to localize the actions in the sequences. Our model selects relevant frames best represent the

action in the video clip and uses their aggregated features to represent the video clip. Take

Fig. 38 as an example, the verb class for the video clip is “pick-up” (i.e., clip-level label),

so we use the embedding of “pick-up” to multiply (dot-product) each frame feature fi to

measure the frame-label similarity, resulting in a sequence of scores. After normalization,
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this score array represent the likelihood that the associated frames involve the action “pick-

up”. We compute the weighted sum of the sequence features (weighed by the normalized

scores). Then, we add a classification layer to predict the action and use cross entropy loss

to optimize.

Formally, we define action label embedding weights W
(1)
verb ∈ RCverb×d, W

(1)
noun ∈ RCnoun×d

where Cverb and Cnoun are the number of verb and noun classes, respectively. Since the

verb detection and noun detection follow the same pipeline and only differ in the number of

classes, we use W(1) = W
(1)
verb or W

(1)
noun as an abstract notation to denote the either label

embedding, C = Cverb or Cnoun to denote the number of classes, and ci = verbi or nouni

to denote the clip-level label. Then, the following procedure applies to both verb and noun

detection parallel tasks.

We first compute the dot-product between the label embedding and the frame feature,

then, we use the sigmoid function to turn the score into a probability A′i ∈ RC×Li (see

Eq. 32; Fig. 38 (top) shows A′i using the color matrix). Since we are aware of the class that

is narrated in the video clip, we select the specific ci-th row in A′i (ci = verbi or nouni),

resulting in Ai ∈ R1×Li . This class-aware row selection process is shown in Fig. 38 (top)

using the blue dashed box.

A′i = sigmoid(W(1) FT
i ), Ai = A′i[c, :] (32)

Meanwhile, we use a fully connected layer W(2) ∈ Rd×C to estimate the per-frame de-

tection score Di ∈ RLi×C . In Eq. 33, j ∈ {1 · · ·Li} denotes frame id and k ∈ {1 · · ·C} is the

class index.

D′i = Fi W(2), Di[j, k] =
exp (D′i[j, k])∑C
k′=1 exp (D′i[j, k

′])
(33)

Directly optimizing the per-frame detection score Di = Dverb i or Dnoun i is hard since we

only have the clip-level label ci = verbi or nouni. Thus, we apply the class-aware attention

weighting Ai to aggregate frame-level information into F̄i ∈ R1×d (Eq. 34), which is a clip-

level feature. Then, the clip-level prediction is given by Pi ∈ RC×1 (Eq. 35), which shares
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the W(2) with Eq. 33.

F̄i =
AiFi∑Li

j=1 Ai[j]
(34)

P′i = (F̄i W(2))T , Pi[k] =
exp (P′i[k])∑C
k′=1 exp (P′i[k

′])
(35)

Finally, we use cross-entropy to optimize the model, where yi is the one-hot representa-

tion of ci (yi[k] = 1 iff k = ci).

L = −
∑
i

C∑
k=1

yi[k] log Pi[k] (36)

9.2.3 Class-Aware Intensity-Sensitive Post Processing

0.1

0.2

0.3

(1) (2) (3)

(4) (5) (6)

Figure 39: Intensity-sensitive post-processing. For each of the action classes, we use a set

of thresholds (e.g., {0.1, 0.2}) and retrieve all the segments (consecutive frames) that meet

the different threshold conditions. The retrieval results are a bunch of action segments with

different intensities. Next, we score each segment and apply Non-Maximum Suppression

(NMS) to remove highly overlapped (measured by IoU) detections. We show the action clips

detected using a threshold of 0.1 using green color and the clips detected by threshold 0.2

using blue. Assuming the IoU threshold of 0.6, segment (5) will be removed because it highly

overlapped with (2).

To get the detections in the form of {time si, time ei, verbi, nouni} from the frame-level

prediction Di (Eq. 33), we use a class-aware intensity-sensitive post process. Specifically, we

consider each action class separately. Given the detection score of a specific class (e.g., the
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k-th class in verb detection Dverb i[:, k]), we first use different thresholds to retrieve the seg-

ments, which are defined to be the longest sequence of consecutive frames that have detection

scores past the threshold. The result is a bunch of potential action segments detected by

different intensity scores (i.e., thresholds). We then assign a score to each segment, denoting

the averaging detection intensity within the segment. In Fig. 39, we show the segments

detected by threshold 0.1 and 0.2 using green and blue colors, respectively. In the next step,

we use Non-Maximum Suppression (NMS) to remove highly overlapped (measured by IoU)

detections and retain only those with higher intensity. Finally, we aggregate the NMS-ed

detections from all action classes and sort them by intensity, resulting in our final detection

results.

9.3 Experiments

We provide the details regarding our model in Sec. 9.3.1. Then, we provide experimental

results in Sec. 9.3.2, including analysis regarding both the contributions of our model com-

ponents and the benefits of multimodal features. To better understand our model, we also

provide qualitative results in Sec. 9.3.3.

9.3.1 Implementation Details

Before training the detector, we offline extract the multimodal features. The CNN fea-

tures of the RGB and Flow frames are from [45], while we pre-processed the audio features.

We use FFMpeg to extract audios from MP4 videos and feed the Mel spectrogram to the

VGGish [68] model pre-trained on the large Youtube dataset (latter becomes Youtube-8M)

to produce semantic audio embedding. After getting the above features, we interpolate the

audio features to make them the same lengths as the RGB and Flow features.

We concatenate the multimodal features as the model input and add a Conv1D layer

(with d = 100 filters, kernel size 3, ReLu activation) to further finetune. During training,

we use a dropout probability of 0.5 for the Conv1D layer, a dropout probability of 0.5 for
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the learned attention (Ai). We use the Tensorflow framework [1], Adam optimizer [119], a

learning rate of 1e-5, and a batch size of 8 (8 clips). All models in our experimental sections

are trained for 300K steps on the EPIC kitchens dataset, using a validation set to pick the

best model.

For the post-processing, we first apply uniform filtering (filter size 3) on each class’s

detection scores (e.g., Dverb i[:, k]) to make the detection scores less fluctuated. Then, we

vary the detection threshold from 0.01 to 0.4 to retrieve all segments and use NMS with an

IoU threshold of 0.4 to remove highly overlapped segments.

9.3.2 Results on the EPIC Kitchens Dataset

Metrics. Although our training process does not rely on instance-level annotations, we

can use the EPIC Kitchens’ C2 task’s (Action Detection) evaluation protocol, which measures

the performance of the action detections. Basically, the protocol computes the average of the

Average Precision (AP) values for each class, aka mean AP. A predicted segment is considered

correct if its Intersection over Union (IoU) with a ground truth segment is greater than or

equal to a given threshold (0.1 to 0.5). Besides the verb and noun detection, the EPIC

Kitchens’ C2 task also involves an action detection evaluation which requires the verb and

noun detections to be correct at the same time.

Contributions of Proposed Components. We verify the effectiveness of the proposed

model and compare to the fully- and weakly-supervised action detection methods:

• Ful. [44] is a fully supervised model trained by the EPIC Kitchens challenge organizer,

using a two-stage approach to solve the action detection (action proposal [145] + action

classification [57]).

• Our Ful. is a one-stage fully supervised method trained by us, in which we predict

the frame-level actions then post-process (Sec. 9.2.3). We treat Our Ful. as a proper

upper bound baseline in that all of our weakly supervised methods depend on similar

frame-level prediction + post-processing.

• Narr. Bas. is the baseline method of using narration supervision. In Narr. Bas., we

treat the single timestamp in the narration annotations as the boundaries and use the
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cut result as instance-level annotations to directly train a fully supervised model.

• Cls. Agno. is an alternative method, in which we use a class agnostic attention instead

of class-aware attention (Sec. 9.2.2).

Table 40: Contributions of proposed components. We show the Average Precision (%) at

certain IoU thresholds (@0.1-@0.5) and the mean Average Precision (Avg.). All numbers are

higher the better. The best weakly supervised model learned using narration annotations is

shown in bold and the second best is in italic.

Action Detection Verb Detection Noun Detection
@0.1 @0.2 @0.3 @0.4 @0.5 Avg. @0.1 @0.2 @0.3 @0.4 @0.5 Avg. @0.1 @0.2 @0.3 @0.4 @0.5 Avg.

Ful. [44] 6.95 6.10 5.22 4.36 3.43 5.21 10.8 9.84 8.43 7.11 5.58 8.36 10.3 8.33 6.17 4.47 3.35 6.53
Our Ful. 6.40 5.69 4.59 3.34 2.39 4.48 12.9 11.4 9.04 6.62 5.03 9.00 11.4 9.61 7.17 4.70 2.98 7.17

Narr. Bas. 4.42 3.62 2.91 2.06 1.47 2.90 9.39 7.45 5.68 3.99 2.85 5.87 8.43 6.92 5.24 3.50 2.37 5.29
Cls. Agno. 4.57 3.78 3.10 2.28 1.70 3.09 10.0 8.53 7.03 4.79 3.40 6.75 8.49 6.82 4.96 3.22 2.04 5.11

Ours 4.68 4.01 3.27 2.33 1.65 3.19 9.64 7.96 6.31 4.70 3.56 6.43 8.51 6.88 5.09 3.36 2.25 5.22

Tab. 40 shows the results. We found Our Ful., though a one-stage method, is very com-

petitive to Ful. [44] (action detection mAP 4.48% v.s. 5.21%). The only weakness is that it

is not that good at boundary refinement, hence its verb and noun detection AP@0.1,0.2,0.3

are higher but its AP@0.4,0.5 are lower. Then, Narr. Bas., which uses the same fully su-

pervised method (but changes to use the narration supervision), inevitably hurts the action

detection performance (action mAP 2.90% v.s. 4.48%). This performance drop is due to

the unclear boundary definition. We conclude that our method with uncertainty modeling

(class-aware attention) helps to improve the use of narration supervision (action mAP 3.19%

v.s. 2.90%). Also, we show that our modeling of class-aware attention is better than the al-

ternative of class-agnostic attention (action mAP 3.19% v.s. 3.09%). The reason, we argue,

is that the class-agnostic attention is only able to distinguish the dynamic actions from the

background frames (e.g., solving the task in TRUMOS 14 as shown in Tab. 39). It fails if

the mixed actions are all semantically meaningful video frames.

Contributions of Multimodal Features. We analyze the contributions of multimodal

features via building our models on different subsets of features. We first build our models

using single modalities, then present our model considering all types of features.
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Table 41: Contributions of multimodal features. We show the Average Precision (%) at

certain IoU thresholds (@0.1-@0.5) and the mean Average Precision (Avg.). All numbers

are higher the better. The best model is shown in bold.

Action Detection Verb Detection Noun Detection
@0.1 @0.2 @0.3 @0.4 @0.5 Avg. @0.1 @0.2 @0.3 @0.4 @0.5 Avg. @0.1 @0.2 @0.3 @0.4 @0.5 Avg.

RGB 4.49 3.76 2.94 2.25 1.67 3.02 8.72 7.07 5.43 4.38 3.15 5.75 8.70 7.13 5.29 3.71 2.56 5.48
Flow 2.32 1.98 1.47 1.10 0.84 1.54 6.59 5.58 4.29 2.95 2.10 4.30 4.33 3.47 2.49 1.68 1.11 2.61
Audio 0.34 0.27 0.23 0.09 0.05 0.20 1.71 1.37 1.07 0.61 0.39 1.03 0.94 0.68 0.51 0.23 0.16 0.50

All 4.68 4.01 3.27 2.33 1.65 3.19 9.64 7.96 6.31 4.70 3.56 6.43 8.51 6.88 5.09 3.36 2.25 5.22

Tab. 41 shows the results. As for the single modal models, the RGB model provides the

best performance on Action Detection (mAP 3.02%). It achieves both high verb detection

(mAP 5.75%) and high noun detection (mAP 5.48%) performance. The Flow model (action

mAP 1.54%) is worse than the RGB model but better than the Audio model, and we can see

that the flow feature provides more information for the dynamic actions (verb mAP 4.30%)

while is not that good at localizing static objects temporally (noun mAP 2.61%). The Audio

model (action mAP 0.20%) is the worst among the three single modal models, but it still

provides useful information, especially in verb detection (mAP 1.03%).

Our final model takes advantage of all features and achieves the best performance in

terms of action detection mAP (3.19%). As compared to the RGB model, it utilizes the Flow

and Audio information to better detect the dynamic actions (verb mAP 6.43% v.s. 5.75%).

Furthermore, as compared to the Flow and Audio models, it combines the appearance feature

(RGB) to better recognize objects in the temporal domain (noun mAP 5.22% v.s. 2.61%,

0.50%). In sum, we conclude that our modeling of the multimodal nature of the videos helps

to improve the weakly supervised action detection task.

We show in Tab. 42 and Fig. 40 the verb and noun classes most detected by the three

modalities. For the verb detection (Fig. 40 (left)), action “wash” can be easily detected by

all three modalities, while “fold” only makes a slight sound, so it is hard to be recognized

by audio. In comparison, “season” sounds loud, but the dynamic action is nuance; thus, it

can be detected by the audio but not the motion flow. The noun detection results is also
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Table 42: Top-5 classes detected by the RGB, Flow, and Audio features.

Verb Detection Noun Detection
RGB Flow Audio RGB Flow Audio

Name AP(%) Name AP(%) Name AP(%) Name AP(%) Name AP(%) Name AP(%)
wash 39.59 wash 37.14 wash 17.47 corn 33.21 yoghurt 28.50 microwave 18.33
filter 31.33 hang 29.69 season 11.81 raisin 33.17 tray 21.81 salt 11.79
rip 30.55 fold 23.32 measure 8.12 yoghurt 33.17 lid 21.14 oatmeal 5.63

season 30.11 dry 19.88 unscrew 6.65 olive 29.34 cloth 20.72 carrot 5.27
fold 25.51 throw 17.75 squeeze 5.11 lid 28.16 oven 18.67 cupboard 4.31

filter
rip

hang
dry

throw

RGB Flow

Audio

measure
unscrew
squeeze

wash

season

fold corn
raisin
olive

tray
cloth
oven

RGB Flow

Audio

microwave
salt

oatmeal
carrot

cupboard

yoghurt
lid

Verb Detection Noun Detection

Figure 40: Venn diagrams - The easily detected top-5 classes by different modalities.

interesting (Fig. 40 (right)). We found the “tray” and “cloth” to be more dynamic, and we

notice that “microwave” makes a sound. So, we conclude that different modalities help to

localize different objects and actions temporally.

9.3.3 Qualitative Examples

We provide a qualitative example visualizing the results of our model. Fig. 41 shows that

our model confidently and correctly localizing the actions “wash pan”, “wash spatula”, and
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wash pan
wash spatula

wash plate
pour liquid:washing

wash fork
wash sponge

put plate
wash knife

wash pan
turn-on tap
throw food
wash fork
take plate

wash colander
take pan
put pan

take spatula
throw bin
wash fork
throw bin

GROUND-TRUTH

Figure 41: Qualitative example of our model’s action detection results. We show the demo

of the video, the ground-truth annotations, and our model’s top-20 predictions. We show the

correct predictions using green and incorrect ones using red. The correctness is determined

by IoU@0.5.

“wash plate”. For actions such as “pour liquid:washing” and “wash sponge”, our model’s

estimations of the starting and ending time are not precise, thus cause the IoU with the

ground truth to be smaller than 0.5. We can hardly find mistakes regarding classification

issues in the top-20. Hence we conclude that localization and refining the action boundaries

are still challenging for weakly supervised action detection and should be focused on.
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9.4 Conclusion

In this chapter, we turn our focus to video action detection in the temporal domain.

Compared to the object detection in the images, videos are natural multimodal inputs, and

the narration supervision has a more classical characteristic. We developed a model to learn

from the narration supervision and utilize multimodal features, including RGB, Motion flow,

and ambient sound. In our design, the model learns to attend to the frames related to the

narration label while suppressing the irrelevant frames from being used. In the experiments,

we show that proposed method outperformed alternative designs. Also, we proved that

the different modalities contribute to the detections of different actions and objects, in the

temporal domain.

This chapter contributes to the thesis hypothesis H5. It tackles a practical problem of

learning action detection model from video sequences using the narration supervision. The

audio narrations are imprecise and noisy, but we show our proposed class-aware attention

tackles the uncertainty regarding the overlapped actions. We show that our method performs

better than directly applying the narration supervision.

Table 43: Conclusion - validated hypotheses in this chapter.

Multimodal
features help to

understand
images/videos
with implicit

persuasive intent,
such as visual

advertisements.

Text features can
be unreliable if

not modeled
appropriately.

Text supervision
contains noise,

but can be used
to localize visual
objects in space,

if modeled
properly.

Text supervision
provides contexts
regarding visual
objects, they are
reliable cues for
disambiguating

entities and
relations.

Noisy audio
narrations as a

multimodal
signal can be
modeled to

localize video
actions in

temporal domain.

This Chapter 3
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10.0 Conclusions

In this thesis, we explored how intelligent models can perceive the same amount of multi-

modal knowledge as human beings, and make multimodal inferences based on comprehensive

evidence, learn to localize visuals using multimodal supervision. Because the perception gap

between human and machine intelligence lies in both the multimodal inputs and multimodal

supervision, we focused on two primary tasks targeting the two — for multimodal inputs, we

focused on visual reasoning; for multimodal supervision, we focused on weakly supervised

detection.

For both tasks, the first challenge lies in how to model the multimodal information.

We built basic multimodal models to proceed with visual reasoning with regard to the

image/video advertisements (Chapter 3, 4). We show that models can perceive information

beyond the traditional modalities such as image and video frames and even rely on knowledge

to resolve reasoning tasks. On more general vision tasks, we also trained models to learn

from multimodal signals such as text captions (Chapter 7) and audio narrations (Chapter

9). Both works show that multimodal supervision, though weak and noisy, is an efficient

way to release the human labor in the annotation-training loop.

Then, we targeted a more practical issue — noise in the multimodal inputs and supervi-

sion. For visual reasoning (which uses multimodal inputs), we investigated the noise in the

external knowledge retrieval process (Chapter 5) and designed a bottom-up hierarchy model

to rule out noisy knowledge paragraphs and gradually refine the relevant and useful infor-

mation. Next, we proposed our observation of the shortcut effects that models over-focus

on shallow connections between inputs and outputs in multi-choice VQA. We presented a

method to quantify the detrimental effect as well as robust training to alleviate it (Chapter

5, 6). We validated that with the efforts of ruling out noise and shortcut effects, visual

reasoning tasks’ performance can be improved. For weakly supervised detection (which uses

multimodal supervision), we explored the noise in the annotated descriptive captions in

Chapter 7. We considered the supervision purity (homogeneity and symmetry scores) of

the image-caption pairs in the preprocessing pipeline to filter out or downweigh the noisy
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examples. Besides, we tackle false negatives (a labeling noise) using a generalizable text

classifier in the label extraction process to amplify the visual objects presented in the image

but not mentioned in the caption. In Chapter 8, we further explored the way of using cap-

tion supervision and proposed to use the text graphs extracted from captions. Such holistic

representations help to filter out the noise in the extracted pseudo instance labels (Chap-

ter 7 only associates text entity to arbitrary relevant instance) — a contextualized entity can

be more accurately matched to a visual region, providing more reliable cues regarding the

location. Finally, we modeled the uncertainty in Chapter 9 to use the noisy audio narration

supervision in videos. We assigned class-dependent attention scores to the frames in between

the previous and next actions. These scores are proportional to the contribution in the final

classification. Hence they can be used to suppress the annotation noise. In sum, we validated

in Chapter 7, 8, 9 that explicitly dealing with noise in the supervision also helps to improve

the weakly supervised detection models.

10.1 Validated Hypotheses

For the thesis hypotheses, we showed that multimodal features help to understand im-

ages/videos with implicit persuasive intent (H1). As demonstrated using the Ads dataset, our

model performs better if we consider the slogan/external knowledge/audio/motion (Chapter

3, 4, 5). We then show that special care for the text features is required for reasoning in

that they may not always be reliable (H2). We diagnosed the unreliable text features in two

datasets and proposed solutions for them: (1) we learned a weighting to de-emphasize unreli-

able retrieved text knowledge in a graph-alike structure (Chapter 5), and (2) we proposed an

approach similar to dropout (Chapter 6) to strengthen vision-language models’ robustness.

Besides the multimodal inputs, we found that the noisy and unreliable nature of multimodal

features also lies in the supervised signals — such as the caption supervision for learning

object detection models (H3) and the audio narrations for action detection (H5). Thus, we

proposed a weakly supervised action detection model to learn from noisy narrations (Chap-

ter 9) and designed a pipeline to filter, squeeze, amplify, and distill the reliable information
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from noisy captions (Chapter 7). We further refine reliable evidence from the extra contexts

(H4) in captions (Chapter 8) and all these efforts allow us to harvest a robust, accurate, and

reliable model.

Table 44: Conclusion - validated hypotheses.

Multimodal
features help to

understand
images/videos
with implicit

persuasive intent,
such as visual

advertisements.

Text features can
be unreliable if

not modeled
appropriately.

Text supervision
contains noise,

but can be used
to localize visual
objects in space,

if modeled
properly.

Text supervision
provides contexts
regarding visual
objects, they are
reliable cues for
disambiguating

entities and
relations.

Noisy audio
narrations as a

multimodal
signal can be
modeled to

localize video
actions in

temporal domain.
Chapter 3
(ADVISE) 3 3
Chapter 4
(STORY) 3 3
Chapter 5

(BREAKING) 3 3
Chapter 6

(VCR) 3
Chapter 7

(CAP2DET) 3
Chapter 8

(LINGUISTIC) 3 3
Chapter 9

(EPIC) 3

10.2 Limitations

First, we provide discussion regarding the concerns readers may have, primarily related

to the low numbers in the experiments of Chapter 8, 9. In these two chapters, the

prediction is no longer a single classification, but a mixture of categorical and numerical pre-

dictions. Given that the final metrics are proportional to the joint probability of making the

final correct prediction, and the joint probability are usually much lower than the probabil-

ity of achieving an individual task (e.g., Chapter 8 requires to correctly predict the subject,

predicate, object classes, as well as the subject and object bounding boxes), it is normal

that the numbers are low (e.g., R@50, R@100 in Chapter 8, and action detection mAP in

Chapter 9). We did not provide the formal significance test to validate the improvements of
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these low numbers, but the experiments are actually reproducible . We believe that in

future work, we can use better metrics that better accord to human intuition and reflect the

models’ performance.

Then, we have to admit that our methods are still different from human reasoning. In

most of our visual reasoning approaches, the neural models are served as black boxes. So, we

cannot validate if our models have similar decision-making process as humans. Though

in Chapter 5 we built a hierarchical reasoning graph similar to the human reasoning process

to allow the external knowledge to reinforce the prediction, we assumed the hierarchy of

the reasoning graph to be known in that we have provided the graph structure (using our

human knowledge). This hardcoded graph structure can not adjust itself accordingly even

the inputs are changed. So, our models have to rely on a “traditional routine” to reason.

Besides, whether human thinks the same way as the routine process needs to be validated.

When we refer to the comparison to human reasoning, the natural issue with regard

to human performance comes. In the thesis, some of our chapters are easy to compare

to the human performance. For example, in ads understanding, humans can easily catch

the points implied in image/video ads, achieving a > 90% accuracy of choosing the paired

statement connected to the ad. In comparison, our best models (chapter 3, 5) only achieved

a 87% accuracy for image ads, and only 64% for video ads. The situation of the VCR

task is similar (see Chapter 6), humans achieved > 90% accuracy for both Q → A and

QA→ R tasks, while the SOTA model we studied only achieved 68.5%, our robust training

improved it by 2% (70.6%). As for the detection models learned from the multimodal

supervision (Chapter 7, 8, 9), it is hard to directly compare their performance to humans.

The primary reason is that detection tasks have an additional variable — location. If we

only consider the most confident locations (e.g., top-1, top-2) produced by the models, the

result numbers are usually too small to compare since precisely capture the localization

information is challenging. In the other end, if we ask humans to provide more than 10

possible predictions to produce metrics such as recall@10, it is a labor-intensive annotation

process. To resolve the dilemma, researchers usually do not require annotators to provide

a human upper-bound baseline for detection tasks. Instead, they treat human annotations

as ground-truth, and only compare models’ predictions and allow imprecise localization to
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some extent (e.g., allowing bounding boxes > 50% overlapped to the ground-truth to be

treated as correct). Though this evaluation did not measure the performance gap between

humans and machines, it can be used for comparing different models. We ensured in each

chapter that our comparison to the baselines is fair .

Next, for the random noise we studied (Chapter 5, 7), a direction that is less explored

is the modeling of the probability distribution . For example, whether the caption

describes the visual objects (Chapter 7) may be conditional depending on the image-caption

relevance, the category of the visual objects, and even the size of the objects. Therefore, it

is possible to design a more dedicated noise model considering all these factors beyond the

homogeneity and symmetry scores. We can even design a mechanism to filter out the noisy

image-caption pairs (Chapter 7) or exclude some knowledge connections (Chapter 5) based

on the modeled probability distributions during training.

We provide some brainstorming regarding the more preferable systematic solutions

of using text captions or audio narrations to train detection models. In our Chapter 7, 8,

9, we proposed pipelines for learning image/video detection models from text captions or

audio narrations. However, these pipelines only simply connect the different processing steps,

without a holistic consideration. For example: (1) Chapter 7 requires to separately train a

model to produce the homogeneity and symmetry scores, and a text classifier to predict the

presence of visual objects given the caption; (2) in Chapter 8, the text graph is extracted

by an external model; (3) the visual region proposals used in Chapter 7, 8 are from pre-

trained region proposal networks. These separately trained components bring helpful domain

knowledge but also the confusing ones since they are optimized on the original tasks but not

the vision-related ones. For example, we have seen noisy and imprecise subject-predicate-

object triplets such as “group-of-people”. Thus, we imagine a unified system that can take

advantage of the external module while also feeding back to these components, telling them

to refresh their knowledge gathered on the original domain. For example, “group-of-people”

should be adjusted to a single entity “people”, while the region proposals can be refined by

their relevance to the caption.

Finally, we would envision the possibility of using the linguistic structures of the

narrations in the EPIC Kitchens dataset. We based our Chapter 9 on the verb+noun
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parsed from the language parser (see [45]). Hence, the chapter is analogous to Chapter 7

which extracts object categories from descriptive captions. However, it is also possible to

parse the closed captions into text graphs to represent the video contents (similar to Chap-

ter 8). In this way, we can model the temporal dependency of the different objects/actions

and utilize temporal context to better localizing them.

10.3 Broader Impacts

In sum, we have made progress to allow machine intelligence to perceive multimodal

information. Though there are limitations, we are promising about the broader impacts of

the thesis study. We assume the AI agent in the multimodal environment will be the perfect

testbed for the technology, such as the self-driving vehicles. Using the multimodal inputs,

vehicles can drive in different weather and daylight conditions because the lidar and radar

sensors complement the visual signals; the driving commands can also be entered by speech

since the machine intelligence can parse the commands and incorporates both knowledge

and environmental information to make decisions. Moreover, using the multimodal signals

for training further alleviates the efforts of humans in the annotation-training loop, allowing

faster iteration of the new products or new applications, or at least for testing new ideas.

In the long future, smart vehicles may even learn from the raw signals, recognizing the

concepts of traffic signs from pixels, building precise estimation regarding the scene depths,

and learning the driving behavior — while all without concrete supervision.
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