4,516 research outputs found

    A novel method for subjective picture quality assessment and further studies of HDTV formats

    Get PDF
    This is the author's accepted manuscript. The final published article is available from the link below. Copyright @ IEEE 2008.This paper proposes a novel method for the assessment of picture quality, called triple stimulus continuous evaluation scale (TSCES), to allow the direct comparison of different HDTV formats. The method uses an upper picture quality anchor and a lower picture quality anchor with defined impairments. The HDTV format under test is evaluated in a subjective comparison with the upper and lower anchors. The method utilizes three displays in a particular vertical arrangement. In an initial series of tests with the novel method, the HDTV formats 1080p/50,1080i/25, and 720p/50 were compared at various bit-rates and with seven different content types on three identical 1920 times 1080 pixel displays. It was found that the new method provided stable and consistent results. The method was tested with 1080p/50,1080i/25, and 720p/50 HDTV images that had been coded with H.264/AVC High profile. The result of the assessment was that the progressive HDTV formats found higher appreciation by the assessors than the interlaced HDTV format. A system chain proposal is given for future media production and delivery to take advantage of this outcome. Recommendations for future research conclude the paper

    Quality Scalability Compression on Single-Loop Solution in HEVC

    Get PDF
    This paper proposes a quality scalable extension design for the upcoming high efficiency video coding (HEVC) standard. In the proposed design, the single-loop decoder solution is extended into the proposed scalable scenario. A novel interlayer intra/interprediction is added to reduce the amount of bits representation by exploiting the correlation between coding layers. The experimental results indicate that the average Bjøntegaard delta rate decrease of 20.50% can be gained compared with the simulcast encoding. The proposed technique achieved 47.98% Bjøntegaard delta rate reduction compared with the scalable video coding extension of the H.264/AVC. Consequently, significant rate savings confirm that the proposed method achieves better performance

    Weighted bi-prediction for light field image coding

    Get PDF
    Light field imaging based on a single-tier camera equipped with a microlens array – also known as integral, holoscopic, and plenoptic imaging – has currently risen up as a practical and prospective approach for future visual applications and services. However, successfully deploying actual light field imaging applications and services will require developing adequate coding solutions to efficiently handle the massive amount of data involved in these systems. In this context, self-similarity compensated prediction is a non-local spatial prediction scheme based on block matching that has been shown to achieve high efficiency for light field image coding based on the High Efficiency Video Coding (HEVC) standard. As previously shown by the authors, this is possible by simply averaging two predictor blocks that are jointly estimated from a causal search window in the current frame itself, referred to as self-similarity bi-prediction. However, theoretical analyses for motion compensated bi-prediction have suggested that it is still possible to achieve further rate-distortion performance improvements by adaptively estimating the weighting coefficients of the two predictor blocks. Therefore, this paper presents a comprehensive study of the rate-distortion performance for HEVC-based light field image coding when using different sets of weighting coefficients for self-similarity bi-prediction. Experimental results demonstrate that it is possible to extend the previous theoretical conclusions to light field image coding and show that the proposed adaptive weighting coefficient selection leads to up to 5 % of bit savings compared to the previous self-similarity bi-prediction scheme.info:eu-repo/semantics/acceptedVersio

    Coding local and global binary visual features extracted from video sequences

    Get PDF
    Binary local features represent an effective alternative to real-valued descriptors, leading to comparable results for many visual analysis tasks, while being characterized by significantly lower computational complexity and memory requirements. When dealing with large collections, a more compact representation based on global features is often preferred, which can be obtained from local features by means of, e.g., the Bag-of-Visual-Word (BoVW) model. Several applications, including for example visual sensor networks and mobile augmented reality, require visual features to be transmitted over a bandwidth-limited network, thus calling for coding techniques that aim at reducing the required bit budget, while attaining a target level of efficiency. In this paper we investigate a coding scheme tailored to both local and global binary features, which aims at exploiting both spatial and temporal redundancy by means of intra- and inter-frame coding. In this respect, the proposed coding scheme can be conveniently adopted to support the Analyze-Then-Compress (ATC) paradigm. That is, visual features are extracted from the acquired content, encoded at remote nodes, and finally transmitted to a central controller that performs visual analysis. This is in contrast with the traditional approach, in which visual content is acquired at a node, compressed and then sent to a central unit for further processing, according to the Compress-Then-Analyze (CTA) paradigm. In this paper we experimentally compare ATC and CTA by means of rate-efficiency curves in the context of two different visual analysis tasks: homography estimation and content-based retrieval. Our results show that the novel ATC paradigm based on the proposed coding primitives can be competitive with CTA, especially in bandwidth limited scenarios.Comment: submitted to IEEE Transactions on Image Processin
    corecore