2 research outputs found

    Identifying Position-Dependent Mechanical Systems: A Modal Approach Applied to a Flexible Wafer Stage

    Get PDF
    Increasingly stringent performance requirements for motion control necessitate the use of increasingly detailed models of the system behavior. Motion systems inherently move, therefore, spatio-temporal models of the flexible dynamics are essential. In this paper, a two-step approach for the identification of the spatio-temporal behavior of mechanical systems is developed and applied to a lightweight prototype industrial wafer stage. The proposed approach exploits a modal modeling framework and combines recently developed powerful linear time invariant (LTI) identification tools with a spline-based mode-shape interpolation approach to estimate the spatial system behavior. The experimental results for the wafer stage application confirm the suitability of the proposed approach for the identification of complex position-dependent mechanical systems, and its potential for motion control performance improvements

    Spatial system identification of a simply supported beam and a trapezoidal cantilever plate

    No full text
    Dynamic models of structural and acoustic systems are usually obtained by means of modal analysis or finite element modelling. To their detriment, both techniques rely on a comprehensive knowledge of the system's physical properties. Experimental data and a nonlinear optimization is often required to refine the model. For the purpose of control, system identification is often employed to estimate the dynamics from disturbance and command inputs to a set of outputs. Such discretization of a spatially distributed system places further unknown weightings on the control objective, in many cases, contradicting the original goal of optimal control. This paper introduces a frequency domain system identification technique aimed at obtaining spatially continuous models for a class of distributed parameter systems. The technique is demonstrated by identifying a simply supported beam and trapezoidal cantilever plate, both with bonded piezoelectric transducers. The plate's dimensions are based on the scaled front elevation of a McDonnell Douglas FA-18 vertical stabilizer
    corecore