118,978 research outputs found

    Spatial interactions in agent-based modeling

    Full text link
    Agent Based Modeling (ABM) has become a widespread approach to model complex interactions. In this chapter after briefly summarizing some features of ABM the different approaches in modeling spatial interactions are discussed. It is stressed that agents can interact either indirectly through a shared environment and/or directly with each other. In such an approach, higher-order variables such as commodity prices, population dynamics or even institutions, are not exogenously specified but instead are seen as the results of interactions. It is highlighted in the chapter that the understanding of patterns emerging from such spatial interaction between agents is a key problem as much as their description through analytical or simulation means. The chapter reviews different approaches for modeling agents' behavior, taking into account either explicit spatial (lattice based) structures or networks. Some emphasis is placed on recent ABM as applied to the description of the dynamics of the geographical distribution of economic activities, - out of equilibrium. The Eurace@Unibi Model, an agent-based macroeconomic model with spatial structure, is used to illustrate the potential of such an approach for spatial policy analysis.Comment: 26 pages, 5 figures, 105 references; a chapter prepared for the book "Complexity and Geographical Economics - Topics and Tools", P. Commendatore, S.S. Kayam and I. Kubin, Eds. (Springer, in press, 2014

    Spatial Modeling using Agents

    Get PDF
    Simulation is a decision support technique that is often used to represent systems of interest and to experiment with them. Multi-Agent Simulation (MAS) is increasingly being used for modeling systems that comprise of autonomous and interacting system components. In such systems, the interactions among the underlying system components may be dependent on their spatial characteristics (e.g., dimension and location in three-dimensional space). The work presented in this paper describes an agent-based approach to spatial modeling through the use of a case study in container loading. The contribution of this paper is the demonstration of the feasibility of using MAS for spatial, proximity-based modeling, wherein not only agent behavior but also their physical dimension and their location in the three dimensional space are key considerations

    Agent-Based Modeling and its Tradeoffs: An Introduction & Examples

    Full text link
    Agent-based modeling is a computational dynamic modeling technique that may be less familiar to some readers. Agent-based modeling seeks to understand the behaviour of complex systems by situating agents in an environment and studying the emergent outcomes of agent-agent and agent-environment interactions. In comparison with compartmental models, agent-based models offer simpler, more scalable and flexible representation of heterogeneity, the ability to capture dynamic and static network and spatial context, and the ability to consider history of individuals within the model. In contrast, compartmental models offer faster development time with less programming required, lower computational requirements that do not scale with population, and the option for concise mathematical formulation with ordinary, delay or stochastic differential equations supporting derivation of properties of the system behaviour. In this chapter, basic characteristics of agent-based models are introduced, advantages and disadvantages of agent-based models, as compared with compartmental models, are discussed, and two example agent-based infectious disease models are reviewed

    Spatial Behavior in Groups: an Agent-Based Approach

    Get PDF
    We present an agent-based model with the aim of studying how macro-level dynamics of spatial distances among interacting individuals in a closed space emerge from micro-level dyadic and local interactions. Our agents moved on a lattice (referred to as a room) using a model implemented in a computer program called P-Space in order to minimize their dissatisfaction, defined as a function of the discrepancy between the real distance and the ideal, or desired, distance between agents. Ideal distances evolved in accordance with the agent\'s personal and social space, which changed throughout the dynamics of the interactions among the agents. In the first set of simulations we studied the effects of the parameters of the function that generated ideal distances, and in a second set we explored how group macro-level behavior depended on model parameters and other variables. We learned that certain parameter values yielded consistent patterns in the agents\' personal and social spaces, which in turn led to avoidance and approaching behaviors in the agents. We also found that the spatial behavior of the group of agents as a whole was influenced by the values of the model parameters, as well as by other variables such as the number of agents. Our work demonstrates that the bottom-up approach is a useful way of explaining macro-level spatial behavior. The proposed model is also shown to be a powerful tool for simulating the spatial behavior of groups of interacting individuals.Spatial Behavior, Proxemics, Agent-Based Modeling, Minimum Dissatisfaction Model, Small Groups, Social Interaction

    Incorporating Spatial Complexity into Economic Models of Land Markets and Land Use Change

    Get PDF
    Recent work in regional science, geography, and urban economics has advanced spatial modeling of land markets and land use by incorporating greater spatial complexity, including multiple sources of spatial heterogeneity, multiple spatial scales, and spatial dynamics. Doing so has required a move away from relying solely on analytical models to partial or full reliance on computational methods that can account for these added features of spatial complexity. In the first part of the paper, we review economic models of urban land development that have incorporated greater spatial complexity, focusing on spatial simulation models with spatial endogenous feedbacks and multiple sources of spatial heterogeneity. The second part of the paper presents a spatial simulation model of exurban land development using an auction model to represent household bidding that extends the traditional Capozza and Helsley (1990) model of urban growth to account for spatial dynamics in the form of local land use spillovers and spatially heterogeneous land characteristics.urban growth, urbanization, land development, spatial dynamics, heterogeneity, agent-based models, spatial interactions, Land Economics/Use, Research Methods/ Statistical Methods,

    Agent-based Modeling of Urban Exposome Interventions: Prospects, Model Architectures and Methodological Challenges

    Get PDF
    With ever more people living in cities worldwide, it becomes increasingly important to understand and improve the impact of the urban habitat on livability, health behaviors and health outcomes. However, implementing interventions that tackle the exposome in complex urban systems can be costly and have long-term, sometimes unforeseen, impacts. Hence, it is crucial to assess the health impact, cost-effectiveness, and social distributional impacts of possible urban exposome interventions before implementing them. Spatial agent-based modeling can capture complex behavior-environment interactions, exposure dynamics, and social outcomes in a spatial context. This paper discusses model architectures and methodological challenges for successfully modeling urban exposome interventions using spatial agent-based modeling. We review the potential and limitations of the method; model components required to capture active and passive exposure and intervention effects; human-environment interactions and their integration into the macro-level health impact assessment and social costs benefit analysis; strategies for model calibration. Major challenges for a successful application of agent-based modeling to urban exposome intervention assessment are (1) the design of realistic behavioral models that can capture different types of exposure and that respond to urban interventions, (2) the mismatch between the possible granularity of exposure estimates and the evidence for corresponding exposure-response functions, (3) the scalability issues that emerge when aiming to estimate long-term effects such as health and social impacts based on high-resolution models of human-environment interactions, (4) as well as the data- and computational complexity of calibrating the resulting agent-based model. Although challenges exist, strategies are proposed to improve the implementation of ABM in exposome research

    Agent-based modeling of malaria vectors: The importance of spatial simulation

    Get PDF
    Background: The modeling of malaria vector mosquito populations yields great insight into drivers of malaria transmission at the village scale. Simulation of individual mosquitoes as agents in a distributed, dynamic model domain may be greatly beneficial for simulation of spatial relationships of vectors and hosts. Methods. In this study, an agent-based model is used to simulate the life cycle and movement of individual malaria vector mosquitoes in a Niger Sahel village, with individual simulated mosquitoes interacting with their physical environment as well as humans. Various processes that are known to be epidemiologically important, such as the dependence of parity on flight distance between developmental habitat and blood meal hosts and therefore spatial relationships of pools and houses, are readily simulated using this modeling paradigm. Impacts of perturbations can be evaluated on the basis of vectorial capacity, because the interactions between individuals that make up the population- scale metric vectorial capacity can be easily tracked for simulated mosquitoes and human blood meal hosts, without the need to estimate vectorial capacity parameters. Results: As expected, model results show pronounced impacts of pool source reduction from larvicide application and draining, but with varying degrees of impact depending on the spatial relationship between pools and human habitation. Results highlight the importance of spatially-explicit simulation that can model individuals such as in an agent-based model. Conclusions: The impacts of perturbations on village scale malaria transmission depend on spatial locations of individual mosquitoes, as well as the tracking of relevant life cycle events and characteristics of individual mosquitoes. This study demonstrates advantages of using an agent-based approach for village-scale mosquito simulation to address questions in which spatial relationships are known to be important. © 2014 Bomblies; licensee BioMed Central Ltd
    • …
    corecore