515,176 research outputs found

    Dimensional Jump in Quantum Error Correction

    Get PDF
    Topological stabilizer codes with different spatial dimensions have complementary properties. Here I show that the spatial dimension can be switched using gauge fixing. Combining 2D and 3D gauge color codes in a 3D qubit lattice, fault-tolerant quantum computation can be achieved with constant time overhead on the number of logical gates, up to efficient global classical computation, using only local quantum operations. Single-shot error correction plays a crucial role.Comment: As accepted in journal: 10 pages, 3 figure

    Bohmian transmission and reflection dwell times without trajectory sampling

    Full text link
    Within the framework of Bohmian mechanics dwell times find a straightforward formulation. The computation of associated probabilities and distributions however needs the explicit knowledge of a relevant sample of trajectories and therefore implies formidable numerical effort. Here a trajectory free formulation for the average transmission and reflection dwell times within static spatial intervals [a,b] is given for one-dimensional scattering problems. This formulation reduces the computation time to less than 5% of the computation time by means of trajectory sampling.Comment: 14 pages, 7 figures; v2: published version, significantly revised and shortened (former sections 2 and 3 omitted, appendix A added, simplified mathematics

    Spatial Spectrum Analysis of Wave-Front Correction with a Segmented Mirror

    Get PDF
    An expression is derived for the spatial power spectrum of wave-front errors after correction with a segmented mirror. This includes estimates of the spectral contributions of segment piston and tilt corrections and spatial aliasing by a regular array of segments. The approach allows rapid computation of wave-front error spectra in systems with highly segmented mirrors
    • …
    corecore