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Abstract
Topological stabilizer codes with different spatial dimensions have complementary properties. Here I
show that the spatial dimension can be switched using gaugefixing. Combining 2D and 3Dgauge
color codes in a 3Dqubit lattice, fault-tolerant quantum computation can be achievedwith constant
time overhead on the number of logical gates, up to efficient global classical computation, using only
local quantumoperations. Single-shot error correction plays a crucial role.

1. Introduction

Quantumerror correctionmethods [1] that emphasize locality [2] constitute nowadays themost promising
approach for the practical implementation of a quantum computer. In particular, topological stabilizer codes [3]
receive a good deal of attention due to theirflexibility and relative simplicity. 2D topological stabilizer codes are
potentially easiest to implement, but lowdimensionality severely constrains the operations that can be
performed locally [4]. 3D codes do not suffer from such obstructions [5], but requiremanymore qubits, among
other drawbacks. The purpose of this work is to bring together the best of the twoworlds by providing a bridge
between them: a procedure to switch back and forth between 2D and 3D codes.

Among 2D topological stabilizer codes color codes [6] are optimal in terms of the local implementation of
gates. Namely, all Clifford gates are transversal, i.e. act individually on the physical qubits composing the code
(or pair-wise for two-qubit logical gates). See [7] for a recent single-qubit implementation. Unfortunately
Clifford gates are not enough for universal computation, but this is all that 2D topological stabilizer codes can
offer [4, 8]. Theway out is to either resort to complementary techniques that increase the amount of resources
needed [9], to considermore complicated codes [3], or to increase the spatial dimension.

3D (gauge) color codes [10] are 3D topological stabilizer codes withmany remarkable characteristics that,
put together, enable fault-tolerant quantum computationwith quantum-local elementary operations, i.e.
involving only afinite depth local quantum circuit aidedwith global classical information processing [11]. This
comes at a cost: spatial locality can only be attained in 4Ddue to two-qubit logical gates. In addition, 3D color
codes require ( )O n3 2 qubits to correct the same number of errors as an n-qubit 2D color code.

Dimensional jumps solve these problems, at least to a large extent. As the name suggests, in a dimensional
jump the spatial dimension of a local code is switched in constant time, ormore precisely via a quantum-local
operation, where locality refers to a 3D layout. In particular, the procedure allows to switch back and forth fault-
tolerantly between 3D and 2D color codes.

Dimensional jumpsmake use of the principles of single-shot error correction [11, 12], i.e. quantum-local
fault-tolerant error correction. Single-shot error correction plays a key role in the quantum-locality of
operations in 3D color codes. This is again the case for dimensional jumps, which involve error correction.

Equippedwith dimensional jumps one can envision the 3D-local fault-tolerant quantum computing layout
offigure 1. The starting point is a stack of 2D color codes, analogous to the one proposed for toric codes in [2].
Each layer encodes a single logical qubit, and all Clifford gates can be perfomed transversally. On one extreme of
the stack sits a 3D color code lattice, and the 2D color code sitting next to it can be converted back and forth into
a 3D color code. As a 2D code it can be part of the Clifford gates occurring in the stack, and as a 3D code it
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becomes isolated from the other 2D codes but a non-Clifford gate can be implemented, achieving
universality [5].

An advantage of the layout is that all logical qubits but one are encoded in 2D, dramatically reducing the
resources when comparedwith an all-3D encoding. Also important is that all elementary operations are
quantum-local. As a drawback, the 3D capabilities are only available in one location, and therefore parallel
computation is lost1. The time overhead is still constant on the number of logical gates, and for this it is enough
to be able to perform swap gates in the stack, with computations confined to neighbors of the 3D code. Finally, it
is worth noting that, for the 2D and 3D constructions of [10], the required elementarymeasurements involve at
most six physical qubits (plus any ancillas used).

2. Background

This section summarizes and rephrases previous results that will be needed later.

2.1. Stabilizer codes
A stabilizer subsystem code [13] on n physical qubits is defined by two subgroups  , of the Pauli group of
operators on n qubits. The stabilizer group  defines the code subspacewhere quantum information is encoded:
encoded states are eigenstates, with eigenvalue+1, of all the elements of  . The gauge group  generates the
algebra of operators that do not disturb encoded information. The groups  and  satisfy

( ) ( )    Ç- Î µ1 , , 1

where ( )  denotes the centralizer of in the Pauli group. The operators in the group ( )  are (bare) logical
(Pauli) operators: they transform encoded states while preserving the code subspace. Logical operators that are
equivalent up to stabilizers have the same action on encoded qubits. Therefore it is convenient to choose a
representative group of logical operators ( )  Í such that each element of  belongs to a different class of
the quotient ( )   .

2.2. Error correction
Error correction is the procedure that attempts to remove the errors that a code has suffered. Ideally it
amounts to

(a) measure a set of generators of  (the result is the syndromeσ of  ), and

(b) apply a Pauli operatorE that yields an encoded state (such E is said to have syndromeσ).

The operator E anticommutes with the generators with negative eigenvalue outcome. Its choice should
minimize residual logical errors.

When the stabilizer generators are local the above ideal process is quantum-local. However, in practice error
correction is itself noisy, and often inmaking the process fault-tolerant quantum-locality is lost. Surprisingly, for
some codes quantum-locality can be preserved: they allow single-shot error correction [11].

Figure 1.A3D layout for fault-tolerant quantum computation. Each layer of the stack is a 2D color code encoding a logical qubit. On
one extreme sits a 3D color code lattice. The stack acts as amemory. Computations happen on the 3D end.

1
If the number of physical qubits is less of a concern, one can always consider a network of 3D codes connected by 2D codes. In such a setting

parallel gates are again possible, subject to the locality constraints imposed by the lattice structure.
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2.3. Gaugefixing
Gaugefixing is a procedure [14] that allows to switch back and forth between two codes  , and  ¢ ¢, if [10]
they share a representative group of logical operators  and

( ) Í ¢ 2

or, equivalently (up to a choice of signs for  and ¢)

( ) ¢ Í . 3

Any encoded state of  ¢ is also an encoded state for  . Transforming an encoded state of  into an encoded state
of  ¢ is called gaugefixing. The procedure is similar to error correction: ideally it amounts to

(a) extract the syndromeσ of  ¢, and

(b) apply some operator ÎE with syndromeσ.

The syndromeσ is trivial for elements of  , andE is unique up to elements of ¢.

2.4. Splitting
As a particular case of gaugefixing, consider that the code  ¢, ¢ actually consists of several codes with gauge
groups i, i defined on disjoint sets of ni qubits each. Together they form the code on = ån ni i qubits

( )    ¢ = ¢ =, , 4
i

i
i

i

where it is implicitly assumed that all operators have been suitably tensoredwith identities to act on the n qubits.
If the codes have logical representative groups i, wemight choose for the n qubit code the group

≔ ( )  . 5
i

i

Any code  ,  on the n qubits that has logical group  and satisfies conditions(2, 3) can be gaugefixed to  ¢, ¢
(at least ideally). In this case gaugefixing amounts to splitting the n-qubit code into several pieces, eachwith some
of the original physical and logical qubits. Conversely, putting together the pieces yields an encoded state of
 ,  .

2.5. Colexes
2D color codes [6] are defined on two-colexes. These are 2D trivalent lattices with three-colored edges inwhich
plaquettes (two-cells) have edges of two colors. The two-colexes considered here are triangular. In particular,
each side of the triangle has edges in different combinations of two colors, see figure 2. A plaquette with red and
green edges is a rg-plaquette, a blue edge is a b-edge, etc.

3D color codes [5] are defined on three-colexes. These are 3D tetravalent lattices with four-colored edges, in
which plaquettes have edges of two colors and cells (three-cells) have edges of three colors. The three-colexes
considered here as a starting point are tetrahedral. In particular, each facet of the tetrahedron has edges in
different combinations of three colors, see figure 2.

In the present work the specific choice of two- and three-colexes is not relevant. For detailed constructions
and pictures, the reader is referred to the literature [5, 10, 12, 15, 16].

Figure 2. (Left)A triangular two-colex. Plaquettes appear in their complementary color, i.e. rg-plaquettes are colored blue. (Right)A
tetrahedral three-colex. Cells appear in their complementary color, i.e. rgb-plaquettes are colored yellow. Every facet is a triangular
two-colex. The outer vertices (rgb-facet) aremarked in black, the rest are inner vertices.
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2.6. Color codes
2D color codes and 3D gauge color codes [10] are self-dual CSS topological stabilizer codes, i.e. the generators of
the stabilizer and gauge group are products either exclusively of bit-flipX operators or exclusively of phase-flipZ
operators, with the same geometry forX- andZ-type generators. Therefore, the code is completely defined by the
support of the generators.

Both in 2D and 3D there is one physical qubit per vertex of the colex. Denote the respective stabilizer and
gauge groups  ,2 2 and  ,3 3. Let the support of an edge, plaquette or cell operator be the set of vertices of a
given edge, plaquette or cell, respectively. E.g. a plaquette operatorXpflips the qubits of the plaquette p, and so
on. Both 2 and 3 are generated by the set of all plaquette operators, something that will be highly relevant
below. The stabilizers in general depend on the geometry of the code. In 2D triangular codes plaquette operators
generate 2, and in 3D tetrahedral codes cell operators generate 3. In both cases the support ofX andZ logical
operators can be chosen to be the set of all qubits.

It is interesting tomention that error correction has been substantially explored for 2D color codes [17–24],
whereas for 3D little is known [12].

3.Dimensional jumps

This section contains themain results of the paper. Namely, (i) that a tetrahedral 3D gauge color code can be split
into a triangular 2D color code and another 3D gauge color codewith no encoded qubits and (ii) that switching
fault-tolerantly back and forth between the 2D and 3D codes only requires quantum-local operations. The
generalization to higher dimensions is also briefly discussed.

3.1.Outer and inner codes
The starting point is a geometrical observation: each triangular facet of a tetrahedral three-colex is a triangular
two-colex. Assume that such a three-colex and a distinguished facet are given. This facet will be denoted the outer
(two-)colex. Conversely, the inner (three-)colex is composed of those vertices, edges, and cells not in contact
with the outer colex. Cells/plaquettes with both inner and outer vertices are called interface cells/plaquettes.

The three-colex yields a 3D gauge color code  ,3 3, and the outer colex yields a 2D color code  ,2 2.
Crucially for the results below, the 3D code admits logical operator representatives with support the set of all
outer qubits, see appendix A. That is, the 3D gauge color code and the 2D color code have a common group  of
logical operator representatives.

A 3D gauge color code  ,in in can also be defined for the inner colex. Plaquette operators generate in (by
definition) and in is generated by (i) cell operators and (ii) the restriction to the inner qubits of interface cell
operators. The resulting code encodes no logical qubits, see appendix A.

3.2.Dimensional collapse
As observed above, (i) the inner code has no logical qubits, (ii) the outer 2D code and the 3D code share
representative logical operators and (iii)

( )  Í . 62 in 3

According to section 2.4 (with  = 3 and   ¢ = 2 in) the 3D code splits via gaugefixing in two pieces: the
outer 2D code (that keeps the logical qubit) and the inner code.Moreover, due to theCSS structure (2)holds
exactly, not up to a choice of signs:

( )  Í . 73 2 in

Denote by ∣3 2 the group formed by the operators in 3 constrained to the outer qubits. Its generators are
edge operators, the restriction of interface plaquettes to the outer code. Ideally, the dimensional jump from the
3D code to the 2D code amounts to

(1) discard inner qubits,

(2) extract the syndromeσ of 2, and

(3) apply some ∣ÎE 3 2 with syndromeσ.

The operator E is unique up to elements of 2 and is a product of string operators. E.g. a b-string s is
composed of outer b-edges ei andmight have endpoints at outer rg-plaquettes, see figure 3. The string operator
Xsflips the qubits of the edges ei and anticommutes with a plaquette operatorZp if and only if p is an endpoint
of s.

4
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3.3. Flux
The above procedure is not fault-tolerant, nomatter how the syndromeσ is extracted: even if the gaugefixing
process is perfect,most pre-existing single-qubit errors on outer qubits yield a residual logical error. To achieve
fault-tolerance the key is to extractσ indirectly from the inner qubits. The resulting gaugefixing process is not
only fault-tolerant but also quantum-local.

Let the outer colex be the rgb-facet of the tetrahedron, i.e. the facet with r-, g- and b-edges on it. Suppose that
inner rg-plaquetteZp operators aremeasured on an encoded state of 3. Each plaquette has a dual edge that
pierces the plaquette connecting the centers of the cellsmeeting at the plaquette. The result of themeasurement
is codified as the set γ of edges dual to the inner rg-plaquettes with eigenvalue –1.

Given a cell c with rg-plaquettes pi, every vertex in c belongs to exactly one of the pi. Therefore

( )=Z Z . 8
i

c pi

For the initial state =Z 1c and thus γ has no inner endpoints, i.e. inner cells at which an odd number of edges
meet. Therefore γ is a disjoint union of paths gi, or ‘flux-lines’, that are either closed or have endpoints (i) at the
rgy-facet or (ii) at an interface rgy-cell, see figure 3.

Every interface rgy-cell c has a unique outer rg-plaquette pc (the rest are inner, unless the colex is
pathological), see figure 3. Aflux-line is said to have an endpoint at pc when it has an endpoint at c. According to
(8) Zpc

has eigenvalue−1 if and only if pc is the endpoint of and odd number offlux-lines gi. Thus the syndrome
of 2 can be recovered from themeasurement of inner rg-, gb- and rb-plaquetteX andZ operators, which
commute2, see appendix A. The steps (1) and (2) above can be substituted by:

1+2 Obtain a syndromeσ from the destructivemeasurement of the plaquette operators in in with colors
matching the outer plaquettes.

3.4.Measurement errors
Consider again themeasurement of inner rg-plaquetteZp operators. Suppose that the original encoded state is
noiseless butmeasurements can fail: instead of the correct dual edge set γ they yield g d+ , with+ the
symmetric difference of sets: plaquette operators corresponding to edges in δ are assigned thewrong eigenvalue.
The set g d+ can have inner endpoints. Let d0 be a set of dual edges ofminimal cardinality with the same inner
endpoints (efficiently computable using perfectmatching [2]). It provides an ‘effective’ set

≔ ⨆ ( )g g d d g w+ + = + , 9
i

ieff 0

where d d+ 0 decomposes as a disjoint union offlux-lines wi (because d d+ 0 has, like geff , no inner endpoints).
For every outcome γ of rg-flux-lines there is some operator gE that is a product of b-stringX operators and

has the syndrome corresponding to γ; it is unique up to stabilizers. By using geff as input for the third gauge
fixing step, instead of the correct operator Eγwe apply

( )~ ~g g d d g w+E E E E E , 10
i

ieff 0

where the equivalence is up to stabilizers:measurement noise δ translates into errors wE
i
at thefinal stage.

Figure 3.The relationship between b-strings (dotted-blue lines), rg-plaquette syndromes (blue circles) andflux lines (thick black).
(Left)Two-colex with its b-edges and rg-plaquettes emphasized. AXs string operator has support on the qubits along its string s. It
anticommutes withZ plaquette operators at its endpoints. (Right) Schematic three-colexwith the outer colex on the bottom and the
inner colex shaded. Flux lines are composed of edges dual to rg-plaquettes (in red) and can have endpoints at inner rgy-cells (blue).
Each b-string has the syndrome of a certainflux line.

2
It is worth emphasizing that the gauge fixing discussed here differs from the of one considered in [10], which involved all plaquette

operators of eitherX orZ type, which do not commute.
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Howbad are these errors? Each wE
i
is a b-string operator Xsi

that we can choose subject to the constraint that
its endpoints on outer plaquettes shouldmatch those of wi. It follows by inspection of the different geometries,
depicted infigure 3, that the number of qubits in the support of wE

i
is, up to a constant depending on the lattice

structure, smaller than the length ∣ ∣wi of theflux-line.Moreover, at least half of the edges of wi belong to δ, rather
than d0:

∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ( )Ç Çd w d w d w d d+ = - + 11i i i0 0 0 0

because d w+ i0 has the same inner endpoints as d0. Thus an error wE
i
of large support requires a large wi within

which at least ∣ ∣w 2i measurements fail. This suggests that local noise in themeasurement process will yield local
residual noise. Indeed, a standard argument [2, 11] shows that if the noise is local and below a threshold, sowill
be the residual noise, see appendix B.

3.5. Fault tolerance
In general the original 3D state will be noisy, and sowill be themeasurements and the application of ∣ÎE 3 2.
Local errors affecting outer qubits at any timewill remain local, because the application ofE is local. Local errors
affecting inner qubits and previous tomeasurements can be absorbed as localmeasurement errors. If all the
noise is local and below a threshold, sowill be the residual noise after the ‘dimensional collapse’.

3.6. Blowing up
The inverse dimensional jump only requires initializing the inner code. Since it encodes no logical qubits, it
suffices to apply error correction to an arbitrary state of the inner qubits.Moreover, since it is a 3D gauge color
codewith local stabilizer and gauge generators it admits single-shot error correction, see appendix A, and thus
the process is quantum-local.

3.7.Higher dimensions
Colexes and gauge color codes can be defined for arbitrary dimensions [10]. For a givenD-colex it is possible to
build different color codes with labels (d, e) that indicate the dimension of the gauge generators: d and e are
positive integers with +d e D,X-type generators are ( )+e 1 -cell operators, andZ-type generators are
( )+d 1 -cell operators.

Themost interesting class of color codes is that constructed out of simplicial colexes, which generalize the
triangular and tetrahedral colexes considered above. They encode a single qubit, and the logicalX andZ
operators can be chosen to have as support thewhole colex. For these codes gauge fixing can be used to change,
within a given colex, the parameters (d, e) at will [10].

The dimensional jump described above switches between a given ( )1, 1 tetrahedral color code and a ( )1, 1
triangular color code defined on any of the facets of the tetrahedron. Analogously, one can switch between a (d, e)
D-simplicial color code and a (d, e) ( )-D 1 -simplicial color code defined on any of the facets of theD-simplex3.
The lesson is that gauge color codes with different values ofD or (d, e) aremore than just separate codes.
Altogether they form a system of topological stabilizer codes, andmuchmore is possible bymaking themwork
together than by using them separately.

Finally, for every dimensionD there exists aminimal simplicial colexwith -+2 1D 1 vertices [10]. The
corresponding color codes are quantumReed–Muller codes and are known to be related via gaugefixing [25].

4. 3D-local computation

Dimensional jumps open the door to a 3D-local fault-tolerant quantum computer inwhich all operations are
quantum local. This sections describes a particular approach to achieve this this. The time overhead is constant
on the number of logical gates, and only a single 3D color code lattice is required. As a drawback, any parallelism
of the original circuit is lost, so no higher-level fault-tolerance is possible.

5. Layout

The general layout is described infigure 1: a stack of 2D color codes with a 3D color code at one end of the stack.
Computations are performed at the endwhere the 3D code lives, whereas the stack acts as amemory. For the
logical qubits encoded on the 2D color codes next to the three-colex structure, quantum-local initialization and

3
Indeed, the gauge generators triviallymatch, and logical operators can be chosen to have as support the whole facet. To check that such

operators commutewith any cell operator of dimension at least two, observe that there exists only one colorκ such thatκ-edgesmight have a
single vertex in the facet, and the cell operator contains edges ofmore than one color.
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universal gates are available via dimensional jumps (quantum-localmeasurements do not require them [2]).
Moreover, for those 2D codes single-shot error correction is available via dimensional jumps,making fault-
tolerant CNot gates quantum-local. The only operation required in the stack is the (trivially transversal)
swapping of the 2D codes. This allows tomove logical qubits so that they are available at the computing end of
the stackwhen needed. Single-shot error correction is not available in the stack, and it is not needed. For 2D
codes in the stack error correction amounts to keeping track of errors by repeatedlymeasuring the stabilizer
generators [2].

Only one obstacle is left: ensuring that the required logical qubits are always available at the computing end
for each step of the computation, without incurring inwaiting times. A procedure to achieve this is given next.

5.1. Computing at the end of a stack
Consider, as described above, a quantum computer where logical qubits are placed on a stack and non-trivial
computations are limited to the end of the stack: the rest of qubits can only be swappedwith their neighbors in
the stack. It is possibly not entirely obvious that the number of rounds of parallel gates can be, up to a constant,
equal to the number of gates in the circuitmodel. This section provides a simple algorithm for swapping the
stacked logical qubits that achieves this.

At the end of the stack there are a number of (logical) qubits onwhich non-swap gates can be performed. At
least there should be two of them, since two-qubit gates are necessary. These qubits can be regarded as the
‘internal’memory of a ‘processing unit’, while the rest form an ‘external’memory: the stack. On the stack two
kinds of operations are allowed: the swap of neighboring qubits and the swap of the topmost qubit with an
internal qubit.

The computation is divided in steps. At each step a certain external qubit is required to be at the end of the
stack, so that it can be accessed by the processing unit. The challenge is to performon the stack, after each
computational step, a finite depth circuit composed of nearest neighbor swaps that places the next qubit to be
processed at the end of the stack.

The proposed algorithm is the following. The positions in the stack are labeledwith integers: position 1 is the
topmost. At the sth step the position i has an integer labelmi: it indicates that the qubit currently at position i
should be at position 1 on the step m si , but not before. In particular at the sth step

( )=m s. 121

When a qubit will not be used again this label can take any value larger than the number of steps, with the
condition that ¹m mi j for ¹i j.

At start, before the first step, qubits are ordered according to their first use, i.e.

( )< =+m m m, 1. 13i i 1 1

After the step s is performed the labelm1 is updated to its new value (the rest stay clearly the same) and the
following operations are performed, each consisting of a round of parallel swaps:

(1) For every n 0, if

( )>+ +m m 14n n2 1 2 2

swap the qubits at positions +n2 1and +n2 2 (and the labels +m n2 1 and +m n2 2 accordingly).

(2) For every n 1, if

( )> +m m 15n n2 2 1

swap the qubits at positions n2 and +n2 1 (and the labelsm2n and +m n2 1 accordingly).

To check that (12) is satisfied at every step, it suffices to show that at every step and for all positions i

( )m m . 16i1

Suppose that after the sth step and the update ofm1

( )< >+m m n k, , 0. 17n n k2 2

Then, after thefirst round of swaps is performed

( )< >+ + +m m n k, 0, 0 18n n k2 1 2 1

and after the second round of swaps is performed both (16) and (17) hold again. In particular = +m s 11 as
required. Thus the inequalities (17) are an invariant of the two-round procedure. Since they are initially satisfied,
the algorithmworks.
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AppendixA. Boundaries in 3D color codes

Themain textmakes use of some basic properties of gauge color codes that were presented in [11]. For easier
reference they are gathered in this appendix.

A.1. Geometry
The tetrahedral colexes of themain text are just an example of a larger class of geometries for color codes. As in
[11], of interest here are three-colexesΛ that are topological balls and are obtained by removing some vertices
(and all cells in contact with them) of a larger colex L̄without boundary. The boundary ofΛ is a topological
sphere divided in regions (discs), thatmeet at borders (open lines), thatmeet at corners (points). They are defined
as follows. Consider a rgb-cell of L̄ that is not part ofΛ but is in contact withΛ. The rgb-cell andΛ share a set of
plaquettesR, which can only contain rg-, rb- or gb-plaquettes. Typically these plaquettes form a topological disc
in the boundary ofΛ, which is called a rgb-region (otherwise there are several discs, each a region). The r- and g-
edges that separate a rgb-region and a rgy-region are said to form a rg-border. For each rg-border there is exactly
one rg-plaquette in L̄ (and not inΛ) that contains its edges. Finally, when a rg-border, a rb-border and a gb-
bordermeet at a vertex, this is said to be a y-corner of the colex. Again, for each y-corner there is exactly one y-
edge in L̄ (and not inΛ) that contains it. This description of the boundary ofΛ in terms of regions, borders and
corners does not depend on L̄: it is intrinsic toΛ.

In the case of the tetrahedral colex each facet is a regionwith a different color combination: rgb, rgy, rby and
gby. The simplest L̄ is obtained by adding a single additional vertex together with a single edge, plaquette and cell
for each color combination. The resultingmanifold is a three-sphere. Due to this construction, color codes in
tetrahedral colexes have been called ‘punctured’.

The inner colex described in themain text is another example of the above general class of geometries. It is
obtained from a tetrahedral colex by erasing all the cells in contact with one of the facets/regions. Each of the
removed cells contributes a region in the inner colex. E.g. in themain text the outer set of vertices is the rgb-facet,
which is in contact with rgy-, rby- and gby-cells. To obtain the inner colex all the outer vertices are removed,
togetherwith those cells. The remaining inner colex has rgy-, rby- and gby-regions, which are of two kinds. They
can correspond to one of the original facets of the tetrahedron, or they can correspond to one of the erased cells.

The regions of the tetrahedral and inner colex turn out to have very different properties at the level of the
code. Thismotivates some definitions. A border is odd if it connects two corners with different colors. A region
without odd borders is said to be frozen. A regionwith an odd number of odd borders of any given color is said to
be free. In a tetrahedral colex all regions are free, e.g. the rgb-facet has a single odd rg-border, connecting the r-
and the b-corner. In an inner colex all regions are frozen, because all corners have the same color (in the above
example they are y-corners).

A.2. Stabilizer and logical operators
As stated in themain text, a 3D gauge color code is obtained by placing a qubit at each vertex of the three-colex
and attaching gaugeX andZ generators to plaquettes. A bit-flip plaquette operatorXp has support on the qubits
belonging to the plaquette p, and similarly for a phase-flip plaquette operatorZp. If p is a rg-plaquette thenXp

can only anticommutewith ¢Zp if ¢p is a by-plaquette: e.g. if ¢p is a gb-plaquette then it shares with p a certain
number x of b-edges, and then exactly x2 qubits (a qubit belongs atmost to one b-edge).

For the above class of geometries, it is shown in [11] that the generators of ( )  are (i) cell operators and (ii)
region operators, i.e. operators of the form

≔ ≔ ( ) 
Î Î

X X Z Z, , A1R
i R

i R
i R

i

whereXi,Zi are the PauliX,Z, operators on the ith qubit andR is a region, regarded here as set of vertices/qubits.
Moreover, (i) a regionR is free if and only ifXR andZR anticommute, and (ii) given two different regionsR and
¢R ,XR and ¢Z R anticommute if and only if they share an odd number of odd borders. From this result it follows

that to obtain a representative group  of bare logical operators

( ) ( ) ( )      Í , , A2
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it suffices to choose aminimal generating set for  amongX andZ region operators. It follows also that for
frozen regionsR the operatorsXR andZR are stabilizer elements. In particular, ifR is a frozen rgy-regionwith y-
cornersXR can be obtained as a product of plaquette operatorsXp as follows (and similarly forZ operators)

( )=
Î -

X X . A3R
rg in R

p
p plaquettes

Indeed, every vertex/qubit belongs to exactly one rg-plaquette of L̄, and thus either (i) it belongs to exactly one
rg-plaquette ofΛ or (ii) it is part of an rg-border. The second options is never true for a frozen rgy-regionwith y-
corners: it only shares vertices with ry-, gy- and by-borders.Moreover,R only borders with rby- and gby-regions,
which cannot contain rg-plaquettes: if a vertex belongs toR, it belongs to a unique rg-plaquette contained inR.

When all the regions are free region operators cannot contribute any stabilizer generators: a product ofX and
Z region operators can only belong to the stabilizer if it is trivial.When all the regions are frozen, on the other
hand, all region operators belong to the stabilizer. Region operators are, however, not independent. In a colex
where all corners are y-corners the following identity holds (and similarly forZ operators)

( )  =
Î - Î - Î -

X X X , A4
c rgb c rgy R rgycells

c
cells

c
regions

c

whereXc are bit-flip cell operators andXp are bit-flip plaquette operators. This is because each vertex/qubit
belongs (i) exactly to one rgb-cell and (ii) exactly to one rgy-cell, unless it belongs to a rgy-region. Ulternatively,
this lack of independence of region operators is a trivial consequence of the flux picture of themain text and the
expression (A3): aflux incoming at a certain rg-plaquette of a given rgy-region has to exit at another rg-plaquette
of another (or the same) rgy-region.

In tetrahedral codes all the regions are free and thus the stabilizer  is generated by cell operators alone. In
inner codes all the regions are frozen and thus the stabilizer has as generators (i) cell operators and (ii) region
operators, except those coming from the facets of the original tetrahedral colex (facet operators are redundant
due to (A4)). The take homemessage is that for all the geometries considered in themain text there exist a set
local generators of the stabilizer.

A.3. Single-shot error correction
Gauge color codes with local stabilizer and gauge generators exhibit single-shot error correction [11]. In
particular, this is true for the above geometries when (i) all the regions are free or (ii) all the regions are frozen.
The quantum-local process for fault-tolerant error correction can be split in two analogous processes that
correct separately bit-flip and phase-flip errors. Let Z , Z denote the gauge and stabilizer subgroups generated
byZ operators. Single-shot error correction of bit-flip errors amounts to

(1)measureZ plaquette operators (generators of Z),

(2) process themeasurements (classically) to obtain a syndromeσ for Z (a subgroup of Z),

(3) choose a bit-flip operator Ewith syndromeσ, and

(4) applyE.

In the gauge color code families considered in themain text both the stabilizer and gauge group have local
generators. Single-shot error correction is both possible for tetrahedral codes (because all regions are free) and
for inner codes (because all regions are frozen).

Appendix B. Single-shot gaugefixing

The purpose of this appendix is to show that the dimensional collapse procedure of themain text is fault-
tolerant. The derivationwill be entirely parallel to the one used in [11] to show that single-shot error correction
is feasible with 3D gauge color codes.Wewill need in particular the following definition and lemma from [11].

Definition 1. Let p(A) be a probability distribution over subsets ÍA B of some setB. Given some a > 0 the
distribution p isα-bounded if for every ÍA B

˜ ( ) ≔ ( ) ( )∣ ∣å a¢
¢Ê

p A p A . B1
A A

A

Lemma2.Consider a family of graphs with boundedmaximumdegree and some >k 0. Each graph has a set of
nodes G and comes equippedwith (i) two subsets of nodes G Í G =i, 1, 2i , and (ii) a function ⟶G Gf : 1 such
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that for every cluster (set of nodes) Í GV 1 and for every connected componentVc of the cluster f(V)

∣ ∣ ∣ ∣ ( )ÇV V k V . B2c c

There exists some a > 00 such that for every awith a a< <0 0 the following holds. If a probability distributions
( )p V1 over clusters Í GV 1 is a-bounded, then the probability distribution ( )¢p V2 over clusters ¢ Í GV 2 defined by

( ) ≔ ( ) ( )
∣ ( )

å
Ç

¢
G = ¢

p V p V . B3
V f V V

2 1
2

is b-bounded with

≔ ( )
( )

( )b
a a
a a-1

, B4
k

k
0

0

As argued in themain text, it is enough to show that localmeasurement noise in the syndrome extraction step
gives rise to local residual noise after the gaugefixing step.Wewill do this for some simple but compelling
enoughmodel of noise. The starting point is some family of 3D tetrahedral gauge color codes that is regular
enough,i.e. the lattice is translationally invariant up to boundaries and locally identical across the family, and
the shape of the tetrahedron just scales in size across the family, without other changes. As in the text, wewill
focus on the gauge fixing of rg-plaquetteZ operators in 2. Other color combinations andX operators are
analogous.

Let  be the set of edges dual to inner rg-plaquettes. Recall that each edge Îe has two endpoints, each of
which can be (i) in an inner cell, inwhich case it is called an inner endpoint, (ii) in an interface rgy-cell, inwhich
case it is regarded as an endpoint at the corresponding outer rg-plaquette, and called outer endpoint, and (iii) at
the rgy-facet (this case is uninteresting). The endpoints of some g Í are those inner cells or outer plaquettes
that are endpoints of an odd number of edges gÎe . Let  Í0 be the subset of elements without inner
endpoints. Given g Î 0 let g¶ denote the set of outer rg-plaquettes where γhas an endpoint.

Let ∣ Ì 3 2 be the set of bit-flip operators that are products of b-string operators (in the outer 2D color
code). A given ÎE can only anticommutewith an outer plaquette operatorZp if p is an rg-plaquette. Let

ESynd denote the set of such rg-plaquettes, so that ESynd characterizes the syndrome ofE in 2. The geometry
of a 2D triangular color code is such that ESynd can take any value, it is unconstrained. In particular, for every

g Î 0 there exists some ÎgE with

( )g= ¶gESynd . B5

The operatorEγ is unique up to stabilizers, andwe choose it so that it hasminimal support, i.e. for every ÎE

⟹ ∣ ∣ ∣ ∣ ( )g= ¶ gE E ESynd Supp Supp . B6

As discussed in the text, it follows by inspection of the geometry of the problem that there exists some constant
>K 0 such for every set of dual inner edges γwithout inner endpoints

∣ ∣ ∣ ∣ ( ) ggE KSupp . B7

In particular,K is constant across the family of codes.
Wemodel local noise in themeasurements through a probability distribution ( )dp over sets d Í . Recall

that plaquette operators from rg-plaquettes dual to the elements in δ give awrongmeasurement outcome. To
model the locality of themeasurement noise, we impose that ( )dp isα-bounded for some a > 0.

The residual error when thewrong set ofmeasurement outcomes is given by d Í is

( )d d+E , B80

where d Í0 has the same inner endpoints as δ andminimal cardinality among sets with that property, i.e. for
any d¢ Î ,

⟹ ∣ ∣ ∣ ∣ ( )d d d d¶ = ¶ ¢ ¢ . B90

Let be the set of physical qubits in the outer 2D code. To quantify the residual noise we construct a distribution
( )¢p Q over sets of qubits ÍQ , with ( )¢p Q the probability that the support of d d+E

0
isQ, i.e.

( ) ≔ ( ) ( )
∣

å d¢
d =d d+

p Q p . B10
E QSupp 0

The following result quantifies the locality of the residual noise. It shows in particular that it can bemade as small
as desired by improving the quality of themeasurements.

Proposition 3.Given a family of 3D gauge color codes as described above and satisfying in particular condition (B7)
for some >K 0, there exists some a > 00 such that for every a-bounded distribution ( )dp the distribution ( )¢p Q of
(B10) is b-boundedwith b as in (B4) and
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( )
( )=

+
k

K

1

2 1
. B11

Proof.Construct for each code in the family a graphwith node set

( ) G = B12

and such that twonodes a, b are linked if

• Îa b, and a and b share an inner or outer endpoint,

• Îa b, and a and b are both in the same b-edge or in the same rg-plaquette, or

•  Î Îa b, and a is in a rg-plaquette that is an outer endpoint of b.

This definition is designed so that trivially (i) the family of graphs has boundedmaximumdegree and (ii) the
following is satisfied: given a connected component g Qc c of a cluster g Q, where g g Í,c and

ÍQ Q,c , and given ÎE with =E QSupp ,

⟹ ( ) d dÎ Î , B130 c 0

⟹ ( )d d= ¶ = ¶E ESynd Synd , B14c c

where Ec is the restriction ofE to Qc.
The result will follow by applying lemma 2 to the above family of graphs, taking G =1 , G =2 and

( ) ( ) ( )Èd d d= + d d+f ESupp . B150 0

In this case (B2) reads

( )∣ ∣ ∣ ∣ ∣ ∣ ( )Çd d d+ +K Q2 1 , B16c c c

where d Qc c is any connected component of ( )df . Notice that

∣ ∣ ∣ ∣ ∣ ∣ ( )Ç Çd d d d d= - . B17c c 0 c

According to (B13) d Îc 0 and thus

≔ ( )d d d d d+ ¢ Î ¢ +, . B180 0 0 0 c

By theminimality of d0 (B9)

∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ( ) Ç Çd d d d d d d d¢ - = - = -0 2 2 . B190 0 c c 0 c c

Thus

∣ ∣ ∣ ∣ ( )Çd d d2 . B20c c

If Ec is the restriction of d d+E
0
to Qc, according to (B14) d= ¶ESynd c c. Then

≔ ( )¢ = ¢d d d d d+ +E E E E E ESynd Synd , B21c0 0 c

and

∣ ( )∣ ∣ ∣ ∣ ∣
∣ ∣ ∣ ( )∣ ∣ ∣ ( )




+ ¢ ¢
= +

d d d

d d d d

+

+ +

E E E E

E E E Q

Supp Supp Supp

Supp Supp , B22
c

c c

0 c

0 0

where the second inequality is by theminimality of d d+E
0
(B6). Using (B7)

∣ ∣ ∣ ∣ ∣ ∣ ( ) d ¢dK E QSupp . B23c cc

The inequalities (B20) and (B23) imply (B16).
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